初三九年级数学题型综合训练
- 格式:doc
- 大小:144.50 KB
- 文档页数:2
长春市数学初中九年级勾股定理选择题中考综合专项复习训练一、易错易错压轴选择题精选:勾股定理选择题1.如图,等腰直角△ABC中,∠C=90°,点F是AB边的中点,点D、E分别在AC、BC边上运动,且∠DFE=90°,连接DE、DF、EF,在此运动变化过程中,下列结论:①图中全等的三角形只有两对;②△ABC的面积是四边形CDFE面积的2倍;③CD+CE=2FA;④AD2+BE2=DE2.其中错误结论的个数有()A.1个B.2个C.3个D.4个2.如图,小红想用一条彩带缠绕易拉罐,正好从A点绕到正上方B点共四圈,已知易拉罐底面周长是12 cm,高是20 cm,那么所需彩带最短的是()A.13 cm B.4cm C.4cm D.52 cm3.如图,是一长、宽都是3 cm,高BC=9 cm的长方体纸箱,BC上有一点P,PC=2BC,一只蚂蚁从点A出发沿纸箱表面爬行到点P的最短距离是()3A.62cm B.33cm C.10 cm D.12 cm4.如图,在四边形ABCD中,∠DAB=30°,点E为AB的中点,DE⊥AB,交AB于点E,DE=3,BC=1,CD=13,则CE的长是()A14B17C15D135.如图中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10cm,正方形A的边长为6cm、B的边长为5cm、C的边长为5cm,则正方形D的边长为( )A.3cm B.14cm C.5cm D.4cm6.如图,正方形ABCD的边长为2,其面积标记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…按照此规律继续下去,则S2016的值为()A.(22)2013B.(22)2014C.(12)2013D.(12)20147.如图,四边形ABCD中,AC⊥BD于O,AB=3,BC=4,CD=5,则AD的长为()A.1 B.32C.4 D.238.如图,在△ABC中,∠BAC=90°,AC=2AB,点D是AC的中点,将一块锐角为45°的直角三角板ADE如图放置,连接BE,EC.下列判断:①△ABE≌△DCE;②BE=EC;③BE⊥EC;④EC=3DE.其中正确的有( )A.1个B.2个C.3个D.4个9.圆柱形杯子的高为18cm,底面周长为24cm,已知蚂蚁在外壁A处(距杯子上沿2cm)发现一滴蜂蜜在杯子内(距杯子下沿4cm),则蚂蚁从A处爬到B处的最短距离为()A .813B .28C .20D .12210.勾股定理是几何中的一个重要定理,在我国算书《网醉算经》中就有“若勾三,股四,则弦五”的记载.如图1,是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=3,BC=5,点D ,E ,F ,G ,H ,I 都在矩形KLMJ 的边上,则矩形KLMJ 的面积为( )A .121B .110C .100D .9011.A 、B 、C 分别表示三个村庄,AB 1700=米,800BC =米,AC 1500=米,某社区拟建一个文化活动中心,要求这三个村庄到活动中心的距离相等,则活动中心P 的位置应在( )A .AB 的中点B .BC 的中点 C .AC 的中点D .C ∠的平分线与AB 的交点12.如图1,分别以直角三角形三边为边向外作等边三角形,面积分别为1S ,2S ,3S ;如图2,分别以直角三角形三边长为直径向外作半圆,面积分别为4S ,5S ,6S ,其中116S =,245S =,511S =,614S =,则43S S +=( ).A .86B .61C .54D .4813.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( ) A .7,24,25 B .111,4,5222 C .3,4,5 D .114,7,82214.如图,在ABC ∆中,D 、E 分别是BC 、AC 的中点.已知90ACB ∠=︒,4BE =,7AD =,则AB 的长为( )A .10B .53C .213D .21515.如图,点A 和点B 在数轴上对应的数分别是4和2,分别以点A 和点B 为圆心,线段AB 的长度为半径画弧,在数轴的上方交于点C .再以原点O 为圆心,OC 为半径画弧,与数轴的正半轴交于点M ,则点M 对应的数为( )A .3.5B .23C .13D .36 16.下列四组线段中,可以构成直角三角形的是( )A .1、2、3B .2、3、4C .1、2、3D .4、5、617.如图,正方体的棱长为4cm ,A 是正方体的一个顶点,B 是侧面正方形对角线的交点.一只蚂蚁在正方体的表面上爬行,从点A 爬到点B 的最短路径是( )A .9B .210C .326+D .1218.已知M 、N 是线段AB 上的两点,AM =MN =2,NB =1,以点A 为圆心,AN 长为半径画弧;再以点B 为圆心,BM 长为半径画弧,两弧交于点C ,连接AC ,BC ,则△ABC 一定是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形19.下列以线段a 、b 、c 的长为边的三角形中,不能构成直角三角形的是( ) A .9,41,40a b c === B .5,5,52a b c ===C .::3:4:5a b c =D .11,12,13a b c === 20.如图,已知ABC 中,10,86,AB AC BC AB ===,的垂直平分线分别交,AC AB于,,D E 连接BD ,则CD 的长为( )A .1B .54C .74D .254【参考答案】***试卷处理标记,请不要删除一、易错易错压轴选择题精选:勾股定理选择题1.B解析:B【分析】结论①错误,因为图中全等的三角形有3对;结论②正确,由全等三角形的性质可以判断;结论③错误,利用全等三角形和等腰直角三角形的性质可以判断;结论④正确,利用全等三角形的性质以及直角三角形的勾股定理进行判断.【详解】连接CF ,交DE 于点P ,如下图所示结论①错误,理由如下:图中全等的三角形有3对,分别为△AFC ≌△BFC ,△AFD ≌△CFE ,△CFD ≌△BFE . 由等腰直角三角形的性质,可知FA=FC=FB ,易得△AFC ≌△BFC .∵FC ⊥AB ,FD ⊥FE ,∴∠AFD=∠CFE .∴△AFD ≌△CFE (ASA ).同理可证:△CFD ≌△BFE .结论②正确,理由如下:∵△AFD ≌△CFE ,∴S △AFD =S △CFE ,∴S 四边形CDFE =S △CFD +S △CFE =S △CFD +S △AFD =S △AFC =12S △ABC , 即△ABC 的面积等于四边形CDFE 的面积的2倍.结论③错误,理由如下:∵△AFD ≌△CFE ,∴CE=AD ,∴CD+CE=CD+AD=AC=2FA .结论④正确,理由如下:∵△AFD ≌△CFE ,∴AD=CE ;∵△CFD ≌△BFE ,∴BE=CD .在Rt △CDE 中,由勾股定理得:222CD CE DE +=,∴222AD BE DE += .故选B .【点睛】本题是几何综合题,考查了等腰直角三角形、全等三角形和勾股定理等重要几何知识点,综合性比较强.解决这个问题的关键在于利用全等三角形的性质.2.D解析:D【解析】【分析】本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决..要求彩带的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,借助于勾股定理.【详解】如图,由图可知,彩带从易拉罐底端的A 处绕易拉罐4圈后到达顶端的B 处,将易拉罐表面切开展开呈长方形,则螺旋线长为四个长方形并排后的长方形的对角线长,设彩带最短长度为xcm ,∵∵易拉罐底面周长是12cm ,高是20cm ,∴x 2=(12×4)2+202∴x 2=(12×4)2+202,所以彩带最短是52cm .故选D.【点睛】本题考查了平面展开−−最短路径问题,圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,3.A解析:A【解析】【分析】将图形展开,可得到安排AP较短的展法两种,通过计算,得到较短的即可.【详解】解:(1)如图1,AD=3cm,DP=3+6=9cm,在Rt△ADP中,AP=2239+=310cm((2)如图2, AC=6cm,CP=6cm,Rt△ADP中,2266+62综上,蚂蚁从点A出发沿纸箱表面爬行到点P的最短距离是62.故选A.【点睛】题考查了平面展开--最短路径问题,熟悉平面展开图是解题的关键.4.D解析:D【解析】【分析】连接BD,作CF⊥AB于F,由线段垂直平分线的性质得出BD=AD,AE=BE,得出∠DBE=∠DAB=30°,由直角三角形的性质得出BD=AD=2DE=233,证出△BCD是直角三角形,∠CBD=90°,得出∠BCF=30°,得出BF=12BC=12,33求出EF=BE+BF=72,在Rt△CEF中,由勾股定理即可得出结果.【详解】解:连接BD ,作CF ⊥AB 于F ,如图所示:则∠BFC=90°,∵点E 为AB 的中点,DE ⊥AB ,∴BD=AD ,AE=BE ,∵∠DAB=30°,∴∠DBE=∠DAB=30°,BD=AD=2DE=233,∵BC 2+BD 2=12+(32=13=CD 2,∴△BCD 是直角三角形,∠CBD=90°,∴∠CBF=180°-30°-90°=60°,∴∠BCF=30°,∠BFC=90°,∴∠BCF=30°,∴BF=12BC=12,33 ∴EF=BE+BF=72, 在Rt △CEF 中,由勾股定理得:22731322⎛⎫⎛⎫+= ⎪ ⎪ ⎪⎝⎭⎝⎭ 故选D .【点睛】本题考查了勾股定理、勾股定理的逆定理、线段垂直平分线的性质、等腰三角形的性质;熟练掌握勾股定理和逆定理是解题的关键.5.B解析:B【解析】【分析】先求出S A 、S B 、S C 的值,再根据勾股定理的几何意义求出D 的面积,从而求出正方形D 的边长.【详解】解∵S A =6×6=36cm 2,S B =5×5=25cm 2,Sc=5×5=25cm 2,又∵1010A B C D S S S S +++=⨯ ,∴36+25+25+S D =100,∴S D =14,∴正方形D 14故选:B.【点睛】本题考查了勾股定理,熟悉勾股定理的几何意义是解题的关键.6.C解析:C【分析】根据等腰直角三角形的性质可得出S2+S2=S1,写出部分S n的值,根据数的变化找出变化规律“S n=(12)n−3”,依此规律即可得出结论.【详解】解:在图中标上字母E,如图所示.∵正方形ABCD的边长为2,△CDE为等腰直角三角形,∴DE2+CE2=CD2,DE=CE,∴S2+S2=S1.观察,发现规律:S1=22=4,S2=12S1=2,S3=12S2=1,S4=12S3=12,…,∴S n=(12)n−3.当n=2016时,S2016=(12)2016−3=(12)2013.故选:C.【点睛】本题考查了等腰直角三角形的性质、勾股定理以及规律型中数的变化规律,解题的关键是找出规律“S n=(12)n−3”.本题属于中档题,难度不大,解决该题型题目时,写出部分S n的值,根据数值的变化找出变化规律是关键.7.B解析:B【分析】设OA=a,OB=b,OC=c,OD=d,根据勾股定理求出a2+b2=AB2=9,c2+b2=BC2=16,c2+d2=CD2=25,即可证得a2+d2=18,由此得到答案.【详解】设OA=a,OB=b,OC=c,OD=d,由勾股定理得,a2+b2=AB2=9,c2+b2=BC2=16,c2+d2=CD2=25,则a 2+b 2+c 2+b 2+c 2+d 2=50,∴a 2+d 2+2(b 2+c 2)=50,∴a 2+d 2=50﹣16×2=18,∴AD=故选:B .【点睛】此题考查勾股定理的运用,根据题中的已知条件得到直角三角形,再利用勾股定理求出未知的边长,解题中注意直角边与斜边.8.C解析:C【分析】根据AC=2AB ,点D 是AC 的中点求出AB=CD ,再根据△ADE 是等腰直角三角形求出AE=DE ,并求出∠BAE=∠CDE=135°,然后利用“边角边”证明△ABE 和△DCE 全等,从而判断出①小题正确;根据全等三角形对应边相等可得BE=EC ,从而判断出②小题正确;根据全等三角形对应角相等可得∠AEB=∠DEC ,然后推出∠BEC=∠AED ,从而判断出③小题正确;DE 表示出AD ,然后得到AB 、AC ,再根据勾股定理用DE 与EC 表示出BC ,整理即可得解,从而判断出④小题错误.【详解】解:∵AC=2AB ,点D 是AC 的中点,∴CD=12AC=AB , ∵△ADE 是等腰直角三角形,∴AE=DE ,∠BAE=90°+45°=135°,∠CDE=180°-45°=135°,∴∠BAE=∠CDE ,在△ABE 和△DCE 中,AB CD BAE CDE AE DE =⎧⎪∠=∠⎨⎪=⎩, ∴△ABE ≌△DCE (SAS ),故①小题正确;∴BE=EC ,∠AEB=∠DEC ,故②小题正确;∵∠AEB+∠BED=90°,∴∠DEC+∠BED=90°,∴BE ⊥EC ,故③小题正确;∵△ADE 是等腰直角三角形,∴,∵AC=2AB ,点D 是AC 的中点,∴,,在Rt△ABC中,BC2=AB2+AC2=(2DE)2+(22DE)2=10DE2,∵BE=EC,BE⊥EC,∴BC2=BE2+EC2=2EC2,∴2EC2=10DE2,解得EC=5DE,故④小题错误,综上所述,判断正确的有①②③共3个.故选:C.【点睛】本题考查了全等三角形的判定与性质,等腰直角三角形的性质,准确识图,根据△ADE是等腰直角三角形推出AE=DE,∠BAE=∠CDE=135°是解题的关键,也是解决本题的突破口.9.C解析:C【解析】分析:将杯子侧面展开,建立A关于EF的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.详解:如图所示,将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离,A′B2222'++ (cm)=1216=20A D BD故选C.点睛:本题考查了勾股定理、最短路径等知识.将圆柱侧面展开,化曲面为平面并作出A关于EF的对称点A′是解题的关键.10.B解析:B【分析】延长AB交KF于点O,延长AC交GM于点P,可得四边形AOLP是正方形,然后求出正方形的边长,再求出矩形KLMJ的长与宽,然后根据矩形的面积公式列式计算即可得解.【详解】解:如图,延长AB交KF于点O,延长AC交GM于点P,则四边形OALP是矩形.∠=︒,CBF90∴∠+∠=︒,90ABC OBF又直角ABC ∆中,90ABC ACB ∠+∠=︒,OBF ACB ∴∠=∠,在OBF ∆和ACB ∆中,BAC BOF ACB OBF BC BF ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()OBF ACB AAS ∴∆≅∆,AC OB =∴,同理:ACB PGC ∆≅∆,PC AB ∴=,OA AP ∴=,所以,矩形AOLP 是正方形,边长347AO AB AC =+=+=,所以,3710KL =+=,4711LM =+=,因此,矩形KLMJ 的面积为1011110⨯=,故选B .【点睛】本题考查了勾股定理的证明,作出辅助线构造出正方形是解题的关键.11.A解析:A【分析】先计算AB 2=2890000,BC 2=640000,AC 2=2250000,可得BC 2+AC 2=AB 2,那么△ABC 是直角三角形,而直角三角形斜边上的中线等于斜边的一半,从而可确定P 点的位置.【详解】解:如图∵AB 2=2890000,BC 2=640000,AC 2=2250000∴BC 2+AC 2=AB 2,∴△ABC 是直角三角形,∴活动中心P 应在斜边AB 的中点.故选:A .【点睛】本题考查了勾股定理的逆定理.解题的关键是证明△ABC 是直角三角形.12.C解析:C【分析】设1S ,2S ,3S 对应的边长为1L ,2L ,3L ,根据题意,通过等边三角形和勾股定理的性质,得23L ,从而计算得到3S ;设4S ,5S ,6S 对应的边长为4L ,5L ,6L ,通过圆形面积和勾股定理性质,得24L ,从而计算得到4S ,即可得到答案.【详解】分别以直角三角形三边为边向外作等边三角形,面积分别为1S ,2S ,3S则1S ,2S ,3S 对应的边长设为1L ,2L ,3L根据题意得:21111116224S L L L ===222454S L == ∴21L =,22L =∵222132L L L += ∴22232129L L L =-=∴2332929S === 以直角三角形三边长为直径向外作半圆,面积分别为4S ,5S ,6S 则4S ,5S ,6S 对应的边长设为4L ,5L ,6L 根据题意得:2255511228L S L ππ⎛⎫=⨯=⨯= ⎪⎝⎭ 2266614228L S L ππ⎛⎫=⨯=⨯= ⎪⎝⎭ ∴25811L π=⨯,26814L π=⨯∵222564L L L += ∴()22245688111425L L L ππ=+=⨯+=⨯ ∴2448S 252588L πππ==⨯⨯= ∴43292554S S +=+=故选:C .【点睛】本题考查了勾股定理、等边三角形、圆形面积的知识;解题的关键是熟练掌握勾股定理、等边三角形面积计算的性质,从而完成求解.13.B解析:B【分析】根据勾股定理的逆定理分别计算各个选项,选出正确的答案.【详解】A 、22272425+=,能组成直角三角形,故正确;B 、22211145222⎛⎫⎛⎫⎛⎫+≠ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,不能组成直角三角形,故错误; C 、222345+=,能组成直角三角形,故正确; D 、2221147822⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,能组成直角三角形,故正确; 故选:B .【点睛】本题考查了勾股定理的逆定理:已知三角形ABC 的三边满足a 2+b 2=c 2,则三角形ABC 是直角三角形. 14.C解析:C【分析】设EC=x ,DC=y ,则直角△BCE 中,x 2+4y 2=BE 2=16,在直角△ADC 中,4x 2+y 2=AD 2=49,由方程组可求得x 2+y 2,在直角△ABC 中,2244ABx y 【详解】解:设EC=x ,DC=y ,∠ACB=90°,∵D 、E 分别是BC 、AC 的中点,∴AC=2EC=2x ,BC=2DC=2y ,∴在直角△BCE 中,CE 2+BC 2=x 2+4y 2=BE 2=16在直角△ADC 中,AC 2+CD 2=4x 2+y 2=AD 2=49,∴2255164965x y ,即2213x y +=,在直角△ABC 中,2244413213AB x y .故选:C .【点睛】 本题考查了勾股定理的灵活运用,考查了中点的定义,本题中根据直角△BCE 和直角△ADC 求得22x y +的值是解题的关键.15.B解析:B【分析】如图,作CD ⊥AB 于点D ,由题意可得△ABC 是等边三角形,从而可得BD 、OD 的长,然后根据勾股定理即可求出CD 与OC 的长,进而可得OM 的长,于是可得答案.【详解】解:∵点A 和点B 在数轴上对应的数分别是4和2,∴OB=2,OA=4,如图,作CD ⊥AB 于点D ,则由题意得:CA=CB=AB=2,∴△ABC 是等边三角形,∴BD=AD=112AB =, ∴OD=OB+BD=3,223CD BC BD =-=,∴()22223323OC OD CD =+=+=,∴OM=OC=23,∴点M 对应的数为23.故选:B .【点睛】本题考查了实数与数轴、等边三角形的判定与性质以及勾股定理等知识,属于常见题型,正确理解题意、熟练掌握上述知识是解题的关键.16.A解析:A【分析】求出两小边的平方和、最长边的平方,看看是否相等即可.【详解】A 、12+22=32∴以1、2、3为边组成的三角形是直角三角形,故本选项正确;B、22+32≠42∴以2、3、4为边组成的三角形不是直角三角形,故本选项错误;C、12+22≠32∴以1、2、3为边组成的三角形不是直角三角形,故本选项错误;D、42+52≠62∴以4、5、6为边组成的三角形不是直角三角形,故本选项错误;故选A..【点睛】本题考查了勾股定理的逆定理应用,掌握勾股定理逆定理的内容就解答本题的关键. 17.B解析:B【分析】将正方体的左侧面与前面展开,构成一个长方形,用勾股定理求出距离即可.【详解】解:如图,AB=22++=.(24)2210故选:B.【点睛】此题求最短路径,我们将平面展开,组成一个直角三角形,利用勾股定理求出斜边就可以了.18.B解析:B【分析】依据作图即可得到AC=AN=4,BC=BM=3,AB=2+2+1=5,进而得到AC2+BC2=AB2,即可得出△ABC是直角三角形.【详解】如图所示,AC=AN=4,BC=BM=3,AB=2+2+1=5,∴AC2+BC2=AB2,∴△ABC是直角三角形,且∠ACB=90°,故选B.【点睛】本题主要考查了勾股定理的逆定理,如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.19.D解析:D【分析】根据直角三角形的判定,符合a 2+b 2=c 2即可;反之不符合的不能构成直角三角形.【详解】解:A 、因为92+402=412,故能构成直角三角形;B 、因为52+52=(252,故能构成直角三角形; C 、因为()()()222345x x x +=,故能构成直角三角形;D 、因为112+122≠152,故不能构成直角三角形;故选:D .【点睛】本题考查的是勾股定理的逆定理,当三角形中三边满足222a b c +=关系时,则三角形为直角三角形.20.C解析:C【分析】先根据勾股定理的逆定理证明△ABC 是直角三角形,根据垂直平分线的性质证得AD=BD ,由此根据勾股定理求出CD.【详解】∵AB=10,AC=8,BC=6,∴2222228610AC BC AB +=+==,∴△ABC 是直角三角形,且∠C=90°,∵DE 垂直平分AB ,∴AD=BD ,在Rt △BCD 中,222BD BC CD =+ ,∴222(8)6CD CD -=+,解得CD=74,故选:C.【点睛】此题考查勾股定理及其逆定理,线段垂直平分线的性质,题中证得△ABC是直角三角形,且∠C=90°是解题的关键,再利用勾股定理求解.。
冀教版数学九年级上册综合知识训练100题含答案(单选题、多选题、填空题、解答题)一、单选题1.如图,在O 中,已知22.5OAB ∠=︒,则C ∠的度数为( )A .122.5︒B .135︒C .112.5︒D .115.5︒2.甲、乙两名射击运动员10次射击成绩的平均数均为9.5环,其中甲运动员成绩的方差为0.03,乙运动员成绩的方差为0.05,则下列说法正确的是( ) A .甲的成绩比乙的成绩更稳定 B .乙的成绩比甲的成绩更稳定 C .甲、乙两人的成绩一样稳定 D .甲、乙两人的成绩不能比较【答案】A【分析】方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布越集中,各个数据偏离平均数越小,即波动越小,数据越稳定,据此即可作出判断. 【详解】解:∠甲运动员成绩的方差为0.03,乙运动员成绩的方差为0.05,即0.03<0.05,∠甲的成绩比乙的成绩更稳定 故选:A【点睛】本题考查方差的意义,解题的关键是理解方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布越集中,各个数据偏离平均数越小,即波动越小,数据越稳定.3.如图,O 是ABC 的外接圆,连结AO ,BO ,则下列选项中与AOB ∠度数一定相等的是( )A .2CAB ∠ B .2ABC ∠ C .2ACB ∠D .2ABO ∠【答案】C【分析】由题意直接依据圆周角定理即同弧所对圆周角等于它所对圆心角的一半进行分析即可得出答案.【详解】解:因为AOB ∠与ACB ∠是AB 所对的圆心角和圆周角, 所以AOB ∠=2ACB ∠. 故选:C.【点睛】本题考查圆周角定理,熟练掌握圆周角定理即同弧所对圆周角等于它所对圆心角的一半是解题的关键.4.一个面积为10的矩形,若长与宽分别为x , y ,则y 与x 之间的关系用图象可大致表示为( )A.B.C.D.5.如果两个相似多边形的相似比为1:5,则它们的面积比为()A.1:25B.1:5C.1:2.5D.【答案】A【分析】根据相似多边形面积的比等于相似比的平方即可得出结论.【详解】解:∠两个相似多边形的相似比为1:5,∠它们的面积比=12:52=1:25.故选:A.【点睛】本题考查的是相似多边形的性质,熟知相似多边形面积的比等于相似比的平方是解答此题的关键.6.某种植物的主干长出若干数目的枝干,每个枝干又长出同样数目的小分支,主干、枝干和小分支的总数是91,设每个枝干长出x小分支,列方程为()A.(1+x)2=91B.1+x+x2=91C.(1+x)x=91D.1+x+2x=91【答案】B【分析】设每个枝干长出x个小分支,则主干上长出了x个枝干,根据主干、枝干和小分支的总数是91,即可得出关于x 的一元二次方程,此题得解. 【详解】设每个枝干长出x 个小分支,则主干上长出了x 个枝干, 根据题意得:x 2+x+1=91. 故选:B .【点睛】本题考查了由实际问题抽象出一元二次方程,根据主干、枝干和小分支的总数是91,列出关于x 的一元二次方程是解题的关键. 7.如图,已知点A 是函数y=x 与y=的图象在第一象限内的交点,点B 在x 轴负半轴上,且OA=OB ,则∠AOB 的面积为( )A .2B .C .2D .4【答案】C【详解】试题分析:先根据点A 是函数y=x 与y=的图象在第一象限内的交点求得点A 的坐标,再根据OA=OB 及勾股定理即可求得点B 的坐标,最后根据三角形的面积公式求解即可.解:∠点A 是函数y=x 与y=的图象在第一象限内的交点,∠x=,解得x=2(舍负),则A (2,2),又∠OA=OB=2,∠B (-2,0),故选C .考点:函数图象上的点的坐标的特征,勾股定理,三角形的面积公式点评:此类问题是初中数学的重点,是中考中比较常见的知识点,一般难度不大,需熟练掌握.8.若关于x 的方程2410ax x ++=有实数根,则a 的取值范围是( ) A .4a ≤ B .4a <C .4a ≤且0a ≠D .4a <且0a ≠【答案】A9.将一元二次方程x2﹣8x﹣5=0化成(x+a)2=b(a,b为常数)形式,则a+b值为()A.25B.17C.29D.21【答案】B【分析】方程配方后判断即可求出a与b的值.【详解】解:方程x2﹣8x﹣5=0,变形得:x2﹣8x=5,配方得:x2﹣8x+16=21,即(x﹣4)2=21,则a=﹣4,b=21,故a+b=﹣4+21=17,故选:B.【点睛】此题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解本题的关键.10.某校准备选派甲、乙、丙、丁中的一名队员代表学校参加市直跳绳比赛,表中是这四名队员选拔赛成绩的平均数和方差,你觉得最适合的队员是()A .甲B .乙C .丙D .丁【答案】A【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加即可. 【详解】解:甲、丙成绩的平均数大于乙、丁成绩的平均数, ∴从甲和丙中选择一人参加比赛,22S S <甲丙,∴最适合的队员是甲;故选:A .【点睛】此题考查了平均数和方差,正确理解方差与平均数的意义是解题关键. 11.将一个半径为1的圆形纸片,如下图连续对折三次之后,用剪刀沿虚线∠剪开,则虚线∠所对的圆弧长和展开后得到的多边形的内角和分别为( )A .,1802π︒B .,5404π︒C .,10804π︒D .,21603π︒12.如图,AB 为∠O 的直径,点C 、点D 是∠O 上的两点,连接CA ,CD ,AD .若∠CAB =35°,则∠ADC 的度数是( )A.40°B.45°C.55°D.100°【答案】C【分析】连接CB,根据圆周角定理求出∠ACB=90°,根据圆周角定理求出∠ADC=∠B 即可.【详解】解:连接CB,∠AB是∠O的直径,∠∠ACB=90°,∠∠CAB=35°,∠∠B=90°-∠CAB=55°,∠∠ADC=∠B=55°,故选:C.【点睛】本题考查了圆周角定理的推论,能熟记直径所对的圆周角是直角和在同圆或等圆中,同弧所对的圆周角相等是关键.π,则这弧所对圆心角度数是13.如果O的半径为3cm,其中一弧长2cm()A.150B.120C.60D.4514.如图,点A、B、C、D在O上,112AOC∠=︒点B是弧AC的中点,则D∠的度数是()A.56︒B.35︒C.38︒D.28︒15.在反比例函数y=3kx-的图象的每一个象限内,y都随x的增大而减小,则k的取值范围是()A.k>3B.k>0C.k≥3D.k<316.若关于x 的一元二次方程260x x a +-=有两个不相等的实数根,则a 的取值范围是( ) A .9a >- B .9a <- C .9a ≥- D .9a ≤-【答案】A【分析】根据判别式的意义得到2640a ∆=+>,然后解不等式即可. 【详解】解:根据题意得224640b ac a ∆=-=+>, 解得9a >-. 故选:A .【点睛】本题考查了根的判别式:一元二次方程()200ax bx c a ++=≠的根与24b ac ∆=-有如下关系:当0∆>时,方程有两个不相等的实数根;当Δ0=时,方程有两个相等的实数根;当Δ0<时,方程无实数根. 17.据调查,某班20为女同学所穿鞋子的尺码如表所示,则鞋子尺码的众数和中位数分别是( )A .35码,35码 B .35码,36码C .36码,35码D .36码,36码【答案】D【分析】众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【详解】数据36出现了10次,次数最多,所以众数为36,一共有20个数据,位置处于中间的数是:36,36,所以中位数是(36+36)÷2=36. 故选D.【点睛】考查中位数与众数,掌握众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数是解题的关键.18.钟面上的分针的长为1,从3点到3点30分,分针在钟面上扫过的面积是()A.B.C.D.【答案】A【详解】试题分析:分针每分钟旋转6°,30分钟旋转180°,所以分针在钟面上扫过的扇形是半径为1半圆,根据圆的面积公式即可求得分针在钟面上扫过的面积:.考点:扇形面积.19.下列说法正确的是()A.为了解我国中学生课外阅读的情况,应采取全面调查的方式B.一组数据1、2、5、5、5、3、3的中位数和众数都是5C.投掷一枚硬币100次,一定有50次“正面朝上”D.若甲组数据的方差是0.03,乙组数据的方差是0.1,则甲组数据比乙组数据稳定【答案】D【详解】为了解我国中学生课外阅读的情况,应采取抽样调查的方式,故选项A错误,把数据1、2、5、5、5、3、3从小到大排列1、2、3、3、5、5、5;所以中位数为:3;5出现的次数最多,所以众数是5,故选项B错误,投掷一枚硬币100次,可能有50次“正面朝上”,但不一定有50次“正面朝上”,故选项C错误,若甲组数据的方差是0.03,乙组数据的方差是0.1,则甲组数据比乙组数据稳定,故选项D正确,故选:D.【点睛】本题考查全面调查与抽样调查、中位数、众数、方差,解答本题的关键是明确它们各自的含义.20.如图,已知ABC,90C∠=︒,按以下步骤作图:∠以点A为圆心,以适当长为半径画弧,分别交边AC,AB于点M,N;∠分别以M,N为圆心,以大于12 MN的长为半径画弧,两弧在ABC的内部相交于点P;∠作射线AP交BC于点D;∠分别以A,D为圆心,以大于12AD的长为半径画弧,两弧相交于点G,H;∠作直线GH,分别交AC,AB于点E,F,若3AF=,1CE=,则ABC的面积是()A.B.C.D.22223122CE,21.下列命题中,正确的是()A.如果一条直线截三角形两边的延长线所得的对应线段成比例,那么这条直线一定平行于三角形的第三边B.有一个内角相等的两个菱形相似C.点O是等边三角形ABC的中心,则向量OA、OB、OC是相等向量D.有一个锐角相等的两个等腰三角形相似【答案】B【分析】根据平行线分线段成比例的逆定理,相似多边形概念,相等向量的概念,相似三角形定义等逐项判断.【详解】A、如果一条直线截三角形两边的延长线所得的对应线段成比例,那么这条直线不一定平行于三角形的第三边,选项错误,不符合题意;B、因为菱形的四条边相等,所以有一角对应相等的两个菱形相似,选项正确,符合题意;C、点O是等边三角形ABC的中心,则|OA OB OC==,但它们不是相等向量,选项错误,不符合题意;D、有一个锐角相等的两个等腰三角形不一定相似,选项错误,不符合题意吧;故选B.【点睛】本题考查命题与定理,解题的关键是掌握相关的概念和定理.22.我国古代数学《九章算术》中,有个“井深几何”问题:今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸(1尺=10寸),问井深几何?其意思如图所示,则井深BD的长为()A.12尺B.56尺5寸C.57尺5寸D.62尺5寸【答案】C【分析】根据平行证△ABC∠∠ADE,再根据相似三角形的性质即可求AD的长,最后减去AB的长即可得到井深.【详解】∠BC∠DE,∠∠ABC∠∠ADE,∠AB:AD=BC:DE,即5:AD=0.4:5,解得AD=62.5,BD=AD﹣AB=62.5﹣5=57.5尺.故选C.【点睛】本题考查了相似三角形的判定与性质.解题的关键是得到△ABC∠∠ADE.23.如图,四边形ABCD内接于半径为5的∠O,且AB=6,BC=7,CD=8,则AD 的长度是()AB.C.D.A .45°B .60°C .75°D .105°25.如图,ABCD 中,E ,F 为CD 的三等分点,连接AF ,BE ,相交于点G ,则:EFG ABG S S △△等于( )A .1:2B .1:3C .1:4D .1:9【答案】D【分析】利用相似三角形的性质面积比等于相似比的平方即可解决问题; 【详解】∠四边形ABCD 是平行四边形, ∠CD=AB ,CD∠AB , ∠DE=EF=FC , ∠EF :AB=1:3,EFG BAGS S=故选D .【点睛】本题考查平行四边形的性质、相似三角形的性质等知识,解题的关键是灵活26.用配方法解一元二次方程x 2﹣6x ﹣8=0,下列变形正确的是( ) A .(x ﹣6)2=﹣8+36 B .(x ﹣6)2=8+36 C .(x ﹣3)2=8+9D .(x ﹣3)2=﹣8+9 【答案】C【分析】移项,配方,即可得出答案. 【详解】x 2-6x-8=0, x 2-6x=8, x 2-6x+9=8+9, (x-3)2=17, 故选C .【点睛】本题考查了解一元二次方程,能够正确配方是解此题的关键. 27.多项式22225122451x xy y x y -++-+的最小值为( ) A .41 B .32C .15D .12【答案】C【分析】先将多项式2x 2﹣2xy +5y 2+12x ﹣24y +51分组配方,根据偶次方的非负性可得答案.【详解】2x 2﹣2xy +5y 2+12x ﹣24y +51 =x 2﹣4xy +4y 2+12x ﹣24y +36+x 2+2xy +y 2+15 =(x ﹣2y )2+12(x ﹣2y )+36+(x +y )2+15 =(x ﹣2y +6)2+(x +y )2+15 ∠(x ﹣2y +6)2≥0,(x +y )2≥0, ∠(x ﹣2y +6)2+(x +y )2+15≥15. 故选:C .【点睛】本题考查了配方法在多项式最值中的应用,熟练掌握配方法并灵活运用及恰当分组,是解答本题的关键.28.如图,函数1y x =(x>0)和3y x=(x>0)的图象分别是1l 和2l .设点P 在2l 上,PA∠y 轴交1l 于点A ,PB∠x 轴,交1l 于点B ,△PAB 的面积为( )A .12B .23C .13D .3429.如图,点()0,0A 、()11,0D 是菱形111AB C D 的两个顶点,160B ∠=︒,11B C 与y 轴交于点2D ,以2AD 为边,作第二个菱形222AB C D ,使得260B ∠=︒,22B C 与x 轴交于点3D ,以3AD 为边,作第三个菱形333AB C D ,使得360B ∠=︒,33B C 与y 轴交于点4D ,以4AD 为边,作第四个菱形444AB C D ,使得4B ∠60=︒,…,以此类推,则点2019B 的横坐标为( )A .2018⎝⎭B .2019⎝⎭C .201820192D .2019201822sin 60⎛︒= ⎝3B 中,B ∠的横坐标为()2332二、多选题30.若0°<α<90°,则下列说法正确的是()A.sinα随α的增大而增大B.cosα随α的增大而减小C.tanα随α的增大而增大D.sinα、cosα、tanα的值都随α的增大而增大【答案】ABC【分析】根据锐角三角函数的增减性作答.【详解】解:A、若0°<α<90°,则sinα随α的增大而增大,故本选项正确;B、若0°<α<90°,则cosα随α的增大而减小,故本选项正确;C、若0°<α<90°,则tanα随α的增大而增大,故本选项正确;D、若0°<α<90°,则sinα、tanα的值都随α的增大而增大,而cosα随α的增大而减小,故本选项错误.故选:ABC.【点睛】本题考查了锐角三角函数的增减性:当角度在0°~90°间变化时,∠正弦值随着角度的增大(或减小)而增大(或减小);∠余弦值随着角度的增大(或减小)而减小(或增大);∠正切值随着角度的增大(或减小)而增大(或减小).31.不能说明∠ABC∠∠A’B’C’的条件是()A.AB ACA B A C=''''或BCB C''B.AB A BAC A C''=''且A C'∠=∠C.AB BCA B B C=''''且B B'∠=∠D.AB BCA B A C=''''且B A'∠=∠32.如图,下列条件能判定∠ABC与∠ADE相似的是()A.AE DEAC BC=B.∠B=∠ADE C.AE ACAD AB=D.∠C=∠AED33.如果α、β都是锐角,下面式子中不正确的是( ) A .sin (α+β)=sinα+sinβ B .cos (α+β)=12时,α+β=60°C .若α≥β时,则cosα≥cosβD .若cosα>sinβ,则α+β>90°34.在直角坐标系中,已知点A (6,﹣3),以原点O 为位似中心,相似比为13,把线段OA 缩小为OA ′,则点A ′的坐标为( ) A .(﹣2,﹣1) B .(﹣2,1) C .(2,1) D .(2,﹣1)35.下列各数不是方程21(2)23x +=解的是( )A .6B .2C .4D .0【答案】ACD36.如图,已知楼房AB高为100m,铁塔塔基距楼房基间的水平距离BD为,塔高CD为(100m+,则下面结论中正确的是()A.由楼顶望塔顶角为45︒B.由楼顶望塔基俯角为45︒C.由楼顶望塔顶仰角为30︒D.由楼顶望塔基俯角为30︒Rt ABD中,利用锐角三角函数,即可得到【详解】解:如图,过点100m,Rt ACE 中,CE CAE AE∠=45CAE =︒即由楼顶望塔顶角为ADE △ 中,37.如图,90ABC BDA ∠=∠=︒,下列线段比值等于cos A 的是( )A .BD AB B .BC AB C .BD BC D .AB AC【答案】CD【分析】根据余弦等于邻边比斜边,可得答案.【详解】90ABC BDA ︒∠=∠=38.下列方程中,有实数根的方程是()A.(x﹣1)2=2B.(x+1)(2x﹣3)=0C.3x2﹣2x﹣1=0D.x2+2x+4=0C.3a=,b24∴∆=-b方程有实数根,D.1a=,b24∴∆=-b方程无实数根,故选:ABC【点睛】本题考查了一元二次方程根的判断,熟练掌握根的判别式是解题的关键.39.下列命题正确的是()A.垂直于弦的直径平分弦所对的两条弧B.弦的垂直平分线经过圆心C.平分弦的直径垂直于弦D.平分弦所对的两条弧的直线垂直于弦【答案】ABD【分析】根据垂径定理及其推论进行判断即可.【详解】A、垂直于弦的直径平分弦所对的两条弧,正确;B、弦的垂直平分线经过圆心,正确;C、平分弦(不是直径)的直径垂直于弦,故错误;D、平分弦所对的两条弧的直线垂直于弦,正确;故选ABD.【点睛】本题考查了垂径定理:熟练掌握垂径定理及其推论是解决问题的关键.40.下列生活中的做法与其背后的数学原理对应正确的是()A.砌墙时,在两端钉钉子,沿中间的拉线砌墙(两点确定一条直线)B.在景区两景点之间设计“曲桥”(垂线段最短)C.工人师傅砌门时,常用一根木条固定长方形门框(三角形具有稳定性)D.车轱辘设计为圆形(圆上的点到圆心的距离相等)【答案】ACD【分析】A.根据公理“两点确定一条直线”进行判断;B.根据线段的性质即可判断;C.根据三角形的稳定性判断;D.根据圆的性质进行判断.【详解】解:A.砌墙时,在两端钉钉子,沿中间的拉线砌墙(两点确定一条直线),故本选项正确,符合题意;B.在景区两景点之间设计“曲桥”,即是增加了桥的长度,即蕴含的数学知识是:两点之间线段最短,而不是垂线段最短,故本选项错误,不符合题意;C.工人师傅砌门时,常用一根木条固定长方形门框(三角形具有稳定性),故本选项正确,符合题意;D.车轱辘设计为圆形(圆上的点到圆心的距离相等),故本选项正确,符合题意;故选:ACD.【点睛】本题主要考查了直线的性质,线段公理等知识,三角形的稳定性以及圆的认识,将实际问题数学化是解决问题的关键.41.若函数kyx的图象经过点(3,-7),那么它一定不经过点()A.(3,7)B.(-3,-7)C.(-3,7)D.(2,-7)【答案】ABD42.如图,在Rt∠ABC 中,∠A =90°,AD ∠BC ,垂足为D .则下列结论中正确的是( )A .sin α=sin BB .sin α=cos βC .AD 2=BD •DC D .AB 2=BD •BC 【答案】ABCD 【分析】根据同角的余角相等判断A ;根据三角函数的定义判断B ;根据相似三角形的判定和性质判断C 、D .【详解】解:∠∠A =90°,AD ∠BC ,∠∠B =∠α=90°−∠C ,∠sin α=sin B ,A 正确;∠α+β=90°,∠sin α=cos β,B 正确;∠,90ABD CBA ADB CAB ∠=∠∠=∠=︒,,∠ B =∠α,∠ADB =∠CDA =90°,∠~ADB CAB ∆∆,~ADB CDA ∆∆,∠AD 2=BD •DC ,AB 2=BD •BC ,C 、D 正确;故选:ABCD .【点睛】本题考查的是相似三角形的判定与性质、锐角三角函数的性质,熟练掌握相关知识是解题关键.43.如图,在O 中,AB 为直径,80AOC ∠=,点D 为弦AC 的中点,点E 为BC 上任意一点,则CED ∠的大小不可能是( )A.20︒B.30︒C.10︒D.40︒知识点,能求出CN的范围是解此题的关键.44.如图所示是∠ABC位似图形的几种画法,正确的是()A.B.C.D.【答案】ABCD【分析】利用位似图形的画法:∠确定位似中心;∠分别连接并延长位似中心和能代表原图的关键点;∠根据位似比,确定能代表所作的位似图形的关键点;∠顺次连接上述各点,得到放大或缩小的图形.【详解】解:第一个图形中的位似中心为A点,第二个图形中的位似中心为BC上的一点,第三个图形中的位似中心为O点,第四个图形中的位似中心为O点.故选:ABCD.【点睛】本题主要考查了位似变换,正确把握位似图形的定义是解题关键.45.如图,若ACD ABC△∽△,以下4个等式正确的是()A.AC ABCD BC=B.CD BCAD AC=C.2CD AD DB=⋅D.2AC AD AB=⋅46.如图,在平面直角坐标系中,平行四边形ABCO的顶点A,C的坐标分别(8,0),(3,4).点D,E三等分线段OB,延长CD,CE交OA,AB于点F,G,连接FG.对于以下结论:∠F是OA的中点;∠OFD与BEG相似;∠四边形DEGF的面积是20;∠OD=.正确的是()3A.∠B.∠C.∠D.∠CDE CFG S S = DEGF CFG S S 四边形四边形DEGF ∠结论正确;性质、勾股定理、三角形的中位线定理、平行四边形和三角形面积的计算等知识,难度适中,熟练掌握平行四边形和相似三角形的性质是关键.47.如图,点E 是ABC 的内心,连接AE 并延长交BC 于点F ,交ABC 的外接圆于点D ,连接BD .以下结论中正确的有( )A .AE 平分BAC ∠B .BD DC = C .DBC BAD ∠=∠ D .DFB DBA ∆∆∽【答案】ABCD【分析】根据三角形的内心的性质和圆周角定理判断即可. 【详解】解:A 、点E 是ABC ∆的内心,AE ∴平分BAC ∠,正确,符合题意;B 、AE 平分BAC ∠,BAD DAC ∴∠=∠,∴BD DC =,正确,符合题意;C 、BD DC =,DBC BAD ∴∠=∠,正确,符合题意;D 、D D ∠=∠,DBC BAD ∠=∠,DFB DBA ∴∆∆∽,正确,符合题意;故选:ABCD .【点睛】本题考查相似三角形的判定,解题的关键是掌握相似三角形的判定定理. 48.如图,已知AOB ∠,按以下步骤作图:∠在射线OA 上取一点,以点O 为圆心,OC 长为半径作PQ ,交射线OB 于点D ;∠连接CD ,分别以点C 、D 为圆心,CD 长为半径作弧,交PQ 于点M 、N ;∠连接OM ,MN .根据以上作图过程及所作图形,下列结论中正确的是( )A .COM COD ∠=∠B .点M 与点D 关于直线OA 对称C .若20AOB ∠=︒MN = D .//MN CD∠//MN CD,∠D正确;故选:ABD.【点睛】本题考查了几何作图,三角形全等,线段的垂直平分线,等腰三角形的性质,圆心角与圆周角的关系定理,熟练掌握作图,理解作图的意义,活用相关知识是解题的关键.49.小明家1至6月份的用水量统计如图所示,关于这组数据,下列说法中正确的是()A.众数是6吨B.平均数是5吨C.中位数是5吨D.方差是2吨、6吨出现了吨,故选项正确,符合题意;++++456、把这些数从小到大排列,则中位数是、这组数据的方差为1[(46三、填空题50.把方程2x2=3x﹣1化为一般形式得:_____【答案】2x2﹣3x+1=0.【分析】直接利用一元二次方程的一般形式分析得出答案.【详解】将一元二次方程2x2=3x−1化为一般形式之后,变为2x2﹣3x+1=0,故答案是:2x2﹣3x+1=0.【点睛】此题主要考查了一元二次方程的一般形式,正确把握定义是解题关键.51.已知杭州市某天六个整点时的气温绘制成的统计图,则这六个整点时气温的中位数是_______.【答案】15.6【详解】试题分析:此题考查了折线统计图和中位数,掌握中位数的定义是本题的关键,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.把这些数从小到大排列为:4.5,10.5,15.3,15.9,19.6,20.1,最中间的两个数的平均数是(15.3+15.9)÷2=15.6(∠),则这六个整点时气温的中位数是15.6∠.考点:折线统计图;中位数52.已知y与2x成反比例,且当x=3时,y=16,那么当x=2时,y=_________,当y=2时,x=_________.53.如图,在ABC ∆中,D 是AB 边上的点,如果________或________,则.ABC ACD ∆∆∽【答案】 B ACD ∠=∠ ACB ADC ∠=∠ 【分析】利用三角形相似的判定求解即可.【详解】由图可知BAC DAC ∠=∠,根据相似三角形的判定,再加一个对应角相等即可,所以,可以为:B ACD ∠=∠或ACB ADC ∠=∠使得ABC ACD ∆∆∽ 故答案为B ACD ∠=∠或ACB ADC ∠=∠【点睛】此题主要考查学生对相似三角形的判定定理的理解和掌握. 54.如图,在平面直角坐标系中,点A 、B 在函数y kx=(k ≠0,x >0)的图象上,点B 在点A 的右侧,点A 的坐标为(2,4),过点A 作AD ∠x 轴于点D ,过点B 作BC ∠x 轴于点C ,连接OA 、AB ,若D 为OC 的中点,则四边形OABC 的面积为___.【答案】10【分析】将(2,4)代入解析式可得k =8,根据线段中点的定义可得OC 的长,从而确55.如图,Rt△ABC中,∠C=90°,AC=6,AB=10,D为BC上一点,将AC沿AD 折叠,使点C落在AB上点C1处,则CD的长为__________.【答案】3【分析】翻折前后,对应线段、对应角不变,据此构建直角三角形,根据勾股定理,列方程解答即可.【详解】解:∠∠C=90°,AC=6,AB=10,∠BC=8,由折叠可得AC1=AC=6,∠BC 1=10﹣6=4, 设CD =x ,则BD =8﹣x ,在Rt △DBC 1中,42+x 2=(8﹣x )2, ∠x =3. ∠CD =3, 故答案为:3.【点睛】本题考查的知识点是图形的折叠变换以及勾股定理,解题关键是掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.56.在一张复印出来的纸上,一个多边形的一条边由原图中的2cm 变成了6cm ,这次复印的放缩比例是________ . 【答案】1:3【详解】由题意可知,相似多边形的边长之比=相似比=2:6=1:3, 故答案为1:3.【点睛】本题考查相似多边形的性质.相似多边形对应边之比、周长之比等于相似比.在本题中,要注意放缩前后两个多边形是相似多边形,然后根据相似多边形的性质求解即可.57.关于x 的方程22(2)320m m x x -+-+=是关于x 一元二次方程,则m ______. 【答案】2【分析】根据一元二次方程的定义列得222m -=,且20m +≠,求解即可. 【详解】解:由题意得222m -=,且20m +≠, 解得m=2, 故答案为:2.【点睛】此题考查一元二次方程的定义:只含有一个未知数并且未知数的最高次数为2的方程叫一元二次方程,熟记定义是解题的关键.58.一元二次方程2430x x -+=配方为()22x k -=,则k 的值是______. 【答案】1【分析】将原方程2430x x -+=变形成与()22x k -=相同的形式,即可求解. 【详解】解:2430x x -+= 243101x x -++=+2441x x -+=()221x -=∠1k = 故答案为:1.【点睛】本题主要考查解一元二次方程中的配方法,掌握配方法的解题步骤是解本题的关键.59.在ABC 中,6AB =,8AC =,ABC 绕点A 旋转后能与11AB C △重合,那么1ABB 与1ACC △的周长之比是______.【答案】3:4##34【分析】根据旋转的性质可知1ABB 与1ACC △是顶角相等的两个等腰三角形,易证它们相似,利用相似三角形的性质解题. 【详解】解:如图,由旋转的性质可知,1AB AB =,1AC AC =,旋转角11BAB CAC ∠=∠,所以,11BAB CAC ∽△△,相似比34AB AC =::, 根据相似三角形的周长比等于相似比可知, 1ABB 与1ACC △的周长之比为3:4,故答案为:3:4.【点睛】本题利用旋转的性质,证明相似三角形,再用相似三角形的性质求周长的比.60.如图,在半径为4的∠O 中,弦AB∠OC ,∠BOC =30°,则AB 的长为_____.30角的直角三角形的性质,平行线的性61.一个两位数等于它的个位数字的平方,且个位数字比十位数字大3,则这个两位数为________. 【答案】25或36【详解】设这个两位数的十位数字为x ,则个位数字为(3x +). 依题意得:2103(3)x x x ++=+, 解得:122,3x x ==.∠ 这个两位数为25或36.62.若α为锐角,且sin 250°+sin 2α=1,则α=__. 【答案】40°【分析】根据sin 2α+cos 2α=1可得cos 250°= sin 2α即cos50°= sinα,再根据互余两角的三角函数值相等即可得出答案.【详解】解:∠sin 250°+cos 250°=1,sin 250°+sin 2α=1, ∠cos 250°= sin 2α, ∠α为锐角, ∠sinα=cos50°, 则α+50°=90°,解得,α=40°, 故答案为:40°.【点睛】本题考查的是互余两角三角函数的关系,在直角三角形中,∠A+∠B =90°时,sinA =cos (90°﹣∠A ),sin 2A+cos 2A =1.63.如图,在矩形ABCD 中,4AB =,6BC =,E 为CD 的中点,G 为AE 的中点,F 为CB 上的一个动点,当12FG AE =时,BF 的长为___________.【答案】2或4##4或2【分析】连接,AF EF 根据已知条件可得90AFE ∠=︒,再根据矩形的性质得到164.已知平行四边形ABCD的周长为28,自顶点A作AE∠DC于点E,AF∠BC于点F,若AE=3,AF=4,则CE-CF=_____65.对于一个三角形,设其三个内角的度数为x°,y°,z°,若x,y,z满足x2+y2=z2我们定义这个三角形为美好三角形.已知△ABC为美好三角形,∠A<∠B<∠C,∠B=60°,则∠A的度数为__________.【答案】45°【分析】利用美好三角形的定义结合三角形内角和定理得出∠A的度数.【详解】解:设∠A=x°,则∠C=180°-60°-x°=(120-x)°,∠∠A<∠B<∠C,根据美好三角形定义,∠C为最大角,∠222x+60=(120-x),解得:x=45,即∠A=45°,故答案为:45°.【点睛】此题考查三角形内角和定理、二次函数综合应用,解题关键在于掌握三角形内角和定理.66.如图,在直径为8的弓形ACB中,弦AB=C是弧AB的中点,点M为弧上动点,CN∠AM于点N,当点M从点B出发逆时针运动到点C,点N所经过的路径长为___.6022,1803367.“十二五”时期,山西将建成中西部旅游强省,以旅游业为龙头的服务业将成为推动山西经济发展的丰要动力.2010年全省全年旅游总收入大约1000亿元,如果到2012年全省每年旅游总收入要达到1440亿元,那么年平均增长率应为___________.【答案】20%【详解】根据题意设年平均增长率为x ,列出一元二次方程,解方程即可得出答案.设年平均增长率为x , 则1000(1+x )2=1440,解得x 1=0.2或x 2=-2.2(舍去),所以年平均增长率为20%;故答案为20% .68.如图,菱形ABCD 中,AB AC =,点E 、F 分别为边AB 、BC 上的点,且AE BF =,连接CE 、AF 交于点H ,连接DH 交AC 于点O ,60.CHD ∠=︒则下列结论:∠ABF △∠CAE ,∠120AHC ∠=︒,∠AH CH DH +=,∠2AD OD DH =⋅中,正确的是______.【答案】∠∠∠∠【分析】由菱形ABCD 中,AB =AC ,易证得△ABC 是等边三角形,则可得∠B =∠EAC =60°,由SAS 即可证得△ABF ∠∠CAE ;则可得∠BAF =∠ACE ,利用三角形外角的性质,即可求得∠AHC =120°;在HD 上截取HK =AH ,连接AK ,易得点A ,H ,C ,D 四点共圆,则可证得△AHK 是等边三角形,然后由AAS 即可证得△AKD ∠∠AHC ,则可证得AH +CH =DH ;易证得△OAD ∠∠AHD ,由相似三角形的对应。
九年级数学综合训练一、选择题(本大题共9 小题,共27.0 分)1.如图,在平面直角坐标系中2 条直线为l1:y=-3x+3,l2:y=-3x+9,直线l1交x 轴于点A,交y 轴于点B,直线l2交x 轴于点D,过点B 作x 轴的平行线交l2于点C,点A、E 关于y 轴对称,抛物线y=ax2+bx+c 过E、B、C 三点,下列判断中:①a-b+c=0;②2a+b+c=5;③抛物线关于直线x=1 对称;④抛物线过点(b,c);⑤S 四边形ABCD=5,其中正确的个数有()A. 5B. 4C. 3D. 22.如图,10 个不同的正偶数按下图排列,箭头上方的每个数都等于其下方两数的和,如,表示a1=a2+a3,则a1的最小值为()A.32B.36C.38D.403.如图,直线y= ��x -6 分别交x 轴,y 轴于A,B,M 是反比例函数y=�(x>0)的图象上位于直线上方的一点,MC∥x 轴交AB 于C,MD⊥MC 交AB 于D,AC•BD=43,则k 的值为()A. ‒ 3B. ‒ 4C. ‒ 5D. ‒ 64.在平面直角坐标系xOy 中,将一块含有45°角的直角三角板如图放置,直角顶点C 的坐标为(1,0),顶点A 的坐标为(0,2),顶点B 恰好落在第一象限的双曲线上,现将直角三角板沿x 轴正方向平移,当顶点A 恰好落在该双曲线上时停止运动,则此时点C 的对应点C′的坐标为()(3,0) (2,0) (5,0) (3,0)A. 2B.C. 2D.5.如图,在矩形ABCD 中,AB<BC,E 为CD 边的中点,将△ADE 绕点E 顺时针旋转180°,点D 的对应点为C,点A 的对应点为F,过点E 作ME⊥AF 交BC 于点M,连接AM、BD 交于点N,现有下列结论:35 ①AM =AD +MC ;②AM =DE +BM ;③DE 2=AD •CM ;④点 N 为△ABM 的外心. 其中正确的个数为()A. 1 个B. 2 个C. 3 个D. 4 个6. 规定:如果关于 x 的一元二次方程 ax 2+bx +c =0(a ≠0)有两个实数根,且其中一个根是另一个根的 2倍,则称这样的方程为“倍根方程”.现有下列结论:①方程 x 2+2x -8=0 是倍根方程;②若关于 x 的方程 x 2+ax +2=0 是倍根方程,则 a =±3;③若关于 x 的方程 ax 2-6ax +c =0(a ≠0)是倍根方程,则抛物线 y =ax 2-6ax +c 与 x 轴的公共点的坐标是 (2,0)和(4,0); 4 ④若点(m ,n )在反比例函数 y =x 的图象上,则关于 x 的方程 mx 2+5x +n =0 是倍根方程. 上述结论中正确的有( )A. ①②B. ③④C. ②③D. ②④7. 如图,六边形 ABCDEF 的内角都相等,∠DAB =60°,AB =DE ,则下列结论成立的个数是() ①AB ∥DE ;②EF ∥AD ∥BC ;③AF =CD ;④四边形 ACDF 是平行四边形;⑤六边形 ABCDEF 既是中心对称图形,又是轴对称图形.A. 2B. 3C. 4D. 58. 如图,在 Rt △ABC 中,∠C =90°,以△ABC 的一边为边画等腰三角形,使得它的第三个顶点在△ABC 的其他边上,则可以画出的不同的等腰三角形的个数最多为( )A. 4B. 5C. 6D. 79. 如图,矩形 ABCD 中,AE ⊥BD 于点 E ,CF 平分∠BCD ,交 EA 的延长线于点 F ,且 BC =4,CD =2,给出下列结论:①∠BAE =∠CAD ;4②∠DBC =30°;③AE =5 5;④AF =2 ,其中正确结论的个数有( )A. 1 个B. 2 个C. 3 个D. 4 个二、填空题(本大题共 10 小题,共 30.0 分)10.如图,在Rt△ABC 中,∠BAC=30°,以直角边AB 为直径作半圆交AC 于点D,以AD 为边作等边△ADE,延长ED 交BC 于点F,BC=2 3,则图中阴影部分的面积为.(结果不取近似值)11.如图,在6×6 的网格内填入1 至6 的数字后,使每行、每列、每个小粗线宫中的数字不重复,则a×c=.12.如图,正方形ABCD 中,BE=EF=FC,CG=2GD,BG 分别交AE,AF 于M,N.下列结论:4 �M 3 1①AF⊥BG;②BN=3NF;③M G=8;④S 四边形CGNF=2S 四边形ANGD.其中正确的结论的序号是.13.已知:如图,在△AOB 中,∠AOB=90°,AO=3cm,BO=4cm.将△AOB 绕顶点O,按顺时针方向旋转到△A1OB1处,此时线段OB1与AB 的交点D 恰好为AB 的中点,则线段B1D= cm.14.如图,边长为4 的正六边形ABCDEF 的中心与坐标原点O 重合,AF∥x 轴,将正六边形ABCDEF 绕原点O 顺时针旋转n 次,每次旋转60°.当n=2017 时,顶点A 的坐标为.15.如图,在Rt△ABC 中,BC=2,∠BAC=30°,斜边AB 的两个端点分别在相互垂直的射线OM、ON 上滑动,下列结论:①若C、O 两点关于AB 对称,则OA=2 3;②C、O 两点距离的最大值为4;③若AB 平分CO,则AB⊥CO;�④斜边AB 的中点D 运动路径的长为2;其中正确的是(把你认为正确结论的序号都填上).16.如图,∠AOB 的边OB 与x 轴正半轴重合,点P 是OA 上的一动点,点N(3,0)是OB 上的一定点,点M 是ON 的中点,∠AOB=30°,要使PM+PN 最小,则点P 的坐标为.17.在一条笔直的公路上有A、B、C 三地,C 地位于A、B 两地之间,甲车从A地沿这条公路匀速驶向C 地,乙车从B 地沿这条公路匀速驶向A 地,在甲车出发至甲车到达C 地的过程中,甲、乙两车各自与C 地的距离y(km)与甲车行驶时间t(h)之间的函数关系如图所示.下列结论:①甲车出发2h 时,两车相遇;②乙车出发1.5h 时,两车相距170km;③乙车出5发27h 时,两车相遇;④甲车到达C 地时,两车相距40km.其中正确的是(填写所有正确结论的序号).�18.如图,在平面直角坐标系中,OA=AB,∠OAB=90°,反比例函数y=x(x>0)的图象经过A,B 两点.若点A 的坐标为(n,1),则k 的值为.19.如图,在平面直角坐标系中,△ABC 的顶点坐标分别为A(-1,1),B(0,-2),C(1,0),点P(0,2)绕点A 旋转180°得到点P1,点P1绕点B 旋转180°得到点P2,点P2绕点C 旋转180°得到点P3,点P3绕点A 旋转180°得到点P4,…,按此作法进行下去,则点P2017的坐标为.答案和解析1.【答案】C【解析】解:∵直线l1:y=-3x+3 交x 轴于点A,交y 轴于点B,∴A(1,0),B(0,3),∵点A、E 关于y 轴对称,∴E(-1,0).∵直线l2:y=-3x+9 交x 轴于点D,过点B 作x 轴的平行线交l2 于点C,∴D(3,0),C 点纵坐标与B 点纵坐标相同都是3,把y=3 代入y=-3x+9,得3=-3x+9,解得x=2,∴C(2,3).∵抛物线y=ax2+bx+c 过E、B、C 三点,∴,解得,∴y=-x2+2x+3.①∵抛物线y=ax2+bx+c 过E(-1,0),∴a-b+c=0,故①正确;②∵a=-1,b=2,c=3,∴2a+b+c=-2+2+3=3≠5,故②错误;③∵抛物线过B(0,3),C(2,3)两点,∴对称轴是直线x=1,∴抛物线关于直线x=1 对称,故③正确;④∵b=2,c=3,抛物线过C(2,3)点,∴抛物线过点(b,c),故④正确;⑤∵直线l1∥l2,即AB∥CD,又BC∥AD,∴四边形ABCD 是平行四边形,∴S 四边形ABCD=BC•OB=2×3=6≠5,故⑤错误.综上可知,正确的结论有3个.故选:C.根据直线l1的解析式求出A(1,0),B(0,3),根据关于y 轴对称的两点坐标特征求出E(- 1,0).根据平行于x 轴的直线上任意两点纵坐标相同得出C 点纵坐标与B 点纵坐标相同都是3,再根据二次函数图象上点的坐标特征求出C(2,3).利用待定系数法求出抛物线的解析式为y=-x2+2x+3,进而判断各选项即可.本题考查了抛物线与x 轴的交点,一次函数、二次函数图象上点的坐标特征,关于y 轴对称的两点坐标特征,平行于x 轴的直线上任意两点坐标特征,待定系数法求抛物线的解析式,平行四边形的判定及面积公式,综合性较强,求出抛物线的解析式是解题的关键.2.【答案】D【解析】解:∵a1=a2+a3=a4+a5+a5+a6=a7+a8+a8+a9+a8+a9+a9+a10=a7+3(a8+a9)+a10,∴要使a1 取得最小值,则a8+a9 应尽可能的小,取a8=2、a9=4,∵a5=a8+a9=6,则a7、a10 中不能有6,若a7=8、a10=10,则a4=10=a10,不符合题意,舍去;若a7=10、a10=8,则a4=12、a6=4+8=12,不符合题意,舍去;若a7=10、a10=12,则a4=10+2=12、a6=4+12=16、a2=12+6=18、a3=6+16=22、a1=18+22=40,符合题意;综上,a1的最小值为40,故选:D.由a1=a7+3(a8+a9)+a10 知要使a1 取得最小值,则a8+a9 应尽可能的小,取a8=2、a9=4,根据a5=a8+a9=6,则a7、a10 中不能有6,据此对于a7、a8,分别取8、10、12 检验可得,从而得出答案.本题主要考查数字的变化类,根据题目要求得出a1取得最小值的切入点是解题的关键.3.【答案】A【解析】解:过点D 作DE⊥y 轴于点E,过点C 作CF⊥x 轴于点F,令x=0 代入y= x-6,∴y=-6,∴B(0,-6),∴OB=6,令y=0 代入y= x-6,∴x=2 ,∴(2 ,0),∴OA=2 ,∴勾股定理可知:AB=4 ,∴sin∠OAB= = ,cos∠OAB= =设M(x,y),∴CF=-y,ED=x,∴sin∠OAB= ,∴AC=- y,∵cos∠OAB=cos∠EDB= ,∴BD=2x,∵AC•BD=4,∴- y×2x=4 ,∴xy=-3,∵M 在反比例函数的图象上,∴k=xy=-3,故选(A)过点D 作DE⊥y 轴于点E,过点C 作CF⊥x 轴于点F,然后求出OA 与OB 的长度,即可求出∠OAB 的正弦值与余弦值,再设M(x,y),从而可表示出BD 与AC 的长度,根据AC•BD=4列出即可求出k 的值.本题考查反比例函数与一次函数的综合问题,解题的关键是根据∠OAB 的锐角三角函数值求出BD、AC,本题属于中等题型.4.【答案】C【解析】解:过点B 作BD⊥x 轴于点D,∵∠ACO+∠BCD=90°,∠OAC+∠ACO=90°,∴∠OAC=∠BCD,在△ACO 与△BCD 中,∴△ACO➴△BCD(AAS)∴OC=BD,OA=CD,∵A(0,2),C(1,0)∴OD=3,BD=1,∴B(3,1),∴设反比例函数的解析式为y= ,将B(3,1)代入y= ,∴k=3,∴y= ,∴把y=2 代入y= ,∴x= ,当顶点A 恰好落在该双曲线上时,此时点A 移动了个单位长度,∴C 也移动了个单位长度,此时点C 的对应点C′的坐标为(,0)故选:C.过点B 作BD⊥x 轴于点D,易证△ACO➴△BCD(AAS),从而可求出B 的坐标,进而可求出反比例函数的解析式,根据解析式与 A 的坐标即可得知平移的单位长度,从而求出 C 的对应点.本题考查反比例函数的综合问题,涉及全等三角形的性质与判定,反比例函数的解析式,平移的性质等知识,综合程度较高,属于中等题型.5.【答案】B【解析】解:∵E 为CD 边的中点,∴DE=CE,又∵∠D=∠ECF=90°,∠AED=∠FEC,∴△ADE➴△FCE,∴AD=CF,AE=FE,又∵ME⊥AF,∴ME 垂直平分AF,∴AM=MF=MC+CF,∴AM=MC+AD,故①正确;如图,延长CB 至G,使得∠BAG=∠DAE,由AM=MF,AD∥BF,可得∠DAE=∠F=∠EAM,可设∠BAG=∠DAE=∠EAM=α,∠BAM=β,则∠AED=∠EAB=∠GAM=α+β,由∠BAG=∠DAE,∠ABG=∠ADE=90°,可得△ABG∽△ADE,∴∠G=∠AED=α+β,∴∠G=∠GAM,∴AM=GM=BG+BM,由△ABG∽△ADE,可得= ,而AB<BC=AD,∴BG<DE,∴BG+BM<DE+BM,即AM<DE+BM,∴AM=DE+BM 不成立,故②错误;∵ME⊥FF,EC⊥MF,∴EC2=CM×CF,又∵EC=DE,AD=CF,∴DE2=AD•CM,故③正确;∵∠ABM=90°,∴AM 是△ABM 的❧➓圆的直径,∵BM<AD,∴当BM∥AD 时,= <1,∴N 不是AM 的中点,∴点N 不是△ABM 的❧心,故④错误.综上所述,正确的结论有2 个,故选:B.根据全等三角形的性质以及线段垂直平分线的性质,即可得出AM=MC+AD;根据△ABG∽△ ADE,且AB<BC,即可得出BG<DE,再根据AM=GM=BG+BM,即可得出AM=DE+BM 不成立;根据ME⊥FF,EC⊥MF,运用射影定理即可得出EC2=CM×CF,据此可得DE2=AD•CM 成立;根据N 不是AM 的中点,可得点N 不是△ABM 的❧心.本题主要考查了相似三角形的判定与性质,全等三角形的判定与性质,矩形的性质以及旋转的性质的综合应用,解决问题的关键是运用全等三角形的对应边相等以及相似三角形的对应边成比例进行推导,解题时注意:三角形❧➓圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的❧心,故❧心到三角形三个顶点的距离相等.6.【答案】C【解析】解:①由x2-2x-8=0,得(x-4)(x+2)=0,解得x1=4,x2=-2,∵x1≠2x2,或x2≠2x1,1 1 ∴方程 x 2-2x-8=0 不是倍根方程. 故①错误;②关于 x 的方程 x 2+ax+2=0 是倍根方程,∴设 x 2=2x 1,∴x 1•x 2=2x 2=2,∴x 1=±1,当 x 1=1 时 ,x 2=2,当 x 1=-1 时 ,x 2=-2,∴x 1+x 2=-a=±3,∴a=±3,故②正确;③关于 x 的方程 ax 2-6ax+c=0(a≠0)是倍根方程,∴x 2=2x 1,∵抛物线 y=ax 2-6ax+c 的对称轴是直线 x=3,∴抛物线 y=ax 2-6ax+c 与 x 轴的交点的坐标是(2,0)和(4,0),故③正确;④∵点(m ,n )在反比例函数 y= 的图象上,∴mn=4,解 mx 2+5x+n=0 得 x 1=- ,x 2=- ,∴x 2=4x 1,∴关于 x 的方程 mx 2+5x+n=0 不是倍根方程;故选:C .①通过解方程得到该方程的根,结合“倍根方程”的定义进行判断;②设 x 2=2x 1,得到 x 1•x 2=2x 2=2,得到当 x 1=1 时,x 2=2,当 x 1=-1 时,x 2=-2,于是得到结论;③根据“倍根方程”的定义即可得到结论;④若点(m,n)在反比例函数y= 的图象上,得到mn=4,然后解方程mx2+5x+n=0 即可得到正确的结论;本题考查了反比例函数图象上点的坐标特征,根与系数的关系,正确的理解倍根方程的定义是解题的关键.7.【答案】D【解析】解:∵六边形ABCDEF 的内角都相等,∴∠EFA=∠FED=∠FAB=∠ABC=120°,∵∠DAB=60°,∴∠DAF=60°,∴∠EFA+∠DAF=180°,∠DAB+∠ABC=180°,∴AD∥EF∥CB,故②正确,∴∠FED+∠EDA=180°,∴∠EDA=∠ADC=60°,∴∠EDA=∠DAB,∴AB∥DE,故①正确,∵∠FAD=∠EDA,∠CDA=∠BAD,EF∥AD∥BC,∴四边形EFAD,四边形BCDA 是等腰梯形,∴AF=DE,AB=CD,∵AB=DE,∴AF=CD,故③正确,连➓CF 与AD 交于点O,连➓DF、AC、AE、DB、BE.∵∠CDA=∠DAF,∴AF∥CD,AF=CD,∴四边形AFDC 是平行四边形,故④正确,同法可证四边形AEDB 是平行四边形,∴AD 与CF,AD 与BE 互相平分,∴OF=OC,OE=OB,OA=OD,∴六边形ABCDEF 既是中心对称图形,故⑤正确,故选D.根据六边形ABCDEF 的内角都相等,∠DAB=60°,平行线的判定,平行四边形的判定,中心对称图形的定义一一判断即可.本题考查平行四边形的判定和性质、平行线的判定和性质、轴对称图形、中心对称图形等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.8.【答案】D【解析】解:如图:故选:D.①以B 为圆心,BC 长为半径画弧,交AB 于点D,△BCD 就是等腰三角形;②以A 为圆心,AC 长为半径画弧,交AB 于点E,△ACE 就是等腰三角形;③以C 为圆心,BC 长为半径画弧,交AC 于点F,△BCF 就是等腰三角形;④以C 为圆心,BC 长为半径画弧,交AB 于点K,△BCK 就是等腰三角形;⑤作AB 的垂直平分线交AC 于G,则△AGB 是等腰三角形;➅作BC 的垂直平分线交AB 于I,则△BCI 和△ACI 是等腰三角形.本题考查了等腰三角形的判定的应用,主要考查学生的理解能力和动手操作能力.9.【答案】C【解析】解:在矩形ABCD 中,∵∠BAD=90°,∵AE⊥BD,∴∠AED=90°,∴∠ADE+∠DAE=∠DAE+∠BAE=90°,∴∠BAE=∠ADB,∵∠CAD=∠ADB,∴∠BAE=∠CAD,故①正确;∵BC=4,CD=2,∴tan∠DBC= = ,∴∠DBC≠30°,故②错误;∵BD= =2 ,∵AB=CD=2,AD=BC=4,∵△ABE∽△DBA,∴,即,∴AE= ;故③正确;∵CF 平分∠BCD,∴∠BCF=45°,∴∠ACF=45°-∠ACB,∵AD∥BC,∴∠DAC=∠BAE=∠ACB,∴∠EAC=90°-2∠ACB,∴∠EAC=2∠ACF,∵∠EAC=∠ACF+∠F,∴∠ACF=∠F,∴AF=AC,∵AC=BD=2 ,∴AF=2 ,故④正确;故选C.根据余角的性质得到∠BAE=∠ADB,等量代换得到∠BAE=∠CAD,故①正确;根据三角函数的定义得到tan∠DBC= = ,于是得到∠DBC≠30°,故②错误;由勾股定理得到BD==2 ,根据相似三角形的性质得到AE= ;故③正确;根据角平分线的定义得到∠BCF=45°,求得∠ACF=45°-∠ACB,推出∠EAC=2∠ACF,根据❧角的性质得到∠EAC=∠ACF+∠F,得到∠ACF=∠F,根据等腰三角形的判定得到AF=AC,于是得到AF=2 ,故④正确.本题考查了矩形的性质,相似三角形的判定和性质,三角形的❧角的性质,角平分线的定义,熟练掌握相似三角形的判定和性质是解题的关键.10.【答案】3【解析】3 3-2π解:如图所示:设半圆的圆心为O,连➓DO,过D 作DG⊥AB 于点G,过D 作DN⊥CB 于点N,∵在Rt△ABC 中,∠BAC=30°,∴∠ACB=60°,∠ABC=90°,∵以AD 为边作等边△ADE,∴∠EAD=60°,∴∠EAB=60°+30°=90°,可得:AE∥BC,则△ADE∽△CDF,∴△CDF 是等边三角形,∵在Rt△ABC 中,∠BAC=30°,BC=2 ,∴AC=4 ,AB=6,∠DOG=60°,则AO=BO=3,故DG=DO•sin60°=,则AD=3 ,DC=AC-AD= ,故DN=DC•sin60°=×= ,则S 阴影=S△ABC-S△AOD-S 扇形DOB-S△DCF= ×2 ×6- ×3×- - × ×=3 - π.故答案为:3 - π.根据题意结合等边三角形的性质分别得出AB,AC,AD,DC 的长,进而利用S 阴影=S△ABC-S△AOD-S 扇形DOB-S△DCF 求出答案.此题主要考查了扇形面积求法以及等边三角形的性质和锐角三角函数关系等知识,正确分割图形是解题关键.11.【答案】2【解析】解:对各个小宫格编号如下:先看己:已经有了数字3、5、6,缺少1、2、4;观察发现:4 不能在第四列,2 不能在第五列,而2 不能在第六列;所以2 只能在第六行第四列,即a=2;则b 和c 有一个是1,有一个是4,不确定,如下:观察上图发现:第四列已经有数字2、3、4、6,缺少1 和5,由于5 不能在第二行,所以5 在第四行,那么1 在第二行;如下:再看乙部分:已经有了数字1、2、3,缺少数字4、5、6,观察上图发现:5 不能在第六列,所以5在第五列的第一行;4 和6 在第六列的第一行和第二行,不确定,分两种情况:①当4 在第一行时,6 在第二行;那么第二行第二列就是4,如下:再看甲部分:已经有了数字1、3、4、5,缺少数字2、6,观察上图发现:2 不能在第三列,所以2 在第二列,则6 在第三列的第一行,如下:观察上图可知:第三列少1 和4,4 不能在第三行,所以4 在第五行,则1 在第三行,如下:观察上图可知:第五行缺少1 和2,1 不能在第1 列,所以1 在第五列,则2 在第一列,即c=1,所以b=4,如下:观察上图可知:第六列缺少1 和2,1 不能在第三行,则在第四行,所以2 在第三行,如下:再看戊部分:已经有了数字2、3、4、5,缺少数字1、6,观察上图发现:1 不能在第一列,所以1 在第二列,则6 在第一列,如下:观察上图可知:第一列缺少3 和4,4 不能在第三行,所以4 在第四行,则3 在第三行,如下:观察上图可知:第二列缺少5 和6,5 不能在第四行,所以5 在第三行,则6 在第四行,如下:观察上图可知:第三行第五列少6,第四行第五列少3,如下:所以,a=2,c=1,ac=2;②当6 在第一行,4 在第二行时,那么第二行第二列就是6,如下:再看甲部分:已经有了数字1、3、5、6,缺少数字2、4,观察上图发现:2 不能在第三列,所以2 在第2 列,4 在第三列,如下:观察上图可知:第三列缺少数字1 和6,6 不能在第五行,所以6 在第三行,则1 在第五行,所以c=4,b=1,如下:观察上图可知:第五列缺少数字3 和6,6 不能在第三行,所以6 在第四行,则3 在第三行,如下:观察上图可知:第六列缺少数字1 和2,2 不能在第四行,所以2 在第三行,则1 在第四行,如下:观察上图可知:第三行缺少数字1 和5,1 和5 都不能在第一列,所以此种情况不成立;综上所述:a=2,c=1,a×c=2;故答案为:2.粗线把这个数独分成了6 块,为了便于解答,对各部分进行编号:甲、乙、丙、丁、戊、己,先从各部分中数字最多的己出发,找出其各个小方格里面的数,再根据每行、每列、每小宫格都不出现重复的数字进行推算.本题是六阶数独,比较复杂,关键是找出突破口,先推算出一个区域或者一行、一列,再逐步的进行推算.12.【答案】①③【解析】解:①∵四边形ABCD 为正方形,∴AB=BC=CD,∵BE=EF=FC,CG=2GD,∴BF=CG,∵在△ABF 和△BCG 中,,∴△ABF➴△BCG,∴∠BAF=∠CBG,∵∠BAF+∠BFA=90°,∴∠CBG+∠BFA=90°,即AF⊥BG;①正确;②∵在△BNF 和△BCG 中,,∴△BNF∽△BCG,∴ = = ,∴BN= NF;②错误;③作EH⊥AF,令AB=3,则BF=2,BE=EF=CF=1,AF= = ,∵S△ABF= AF•BN=AB•BF,∴BN= ,NF= BN= ,∴AN=AF-NF= ,∵E 是BF 中点,∴EH 是△BFN 的中位线,∴EH= ,NH= ,BN∥EH,∴AH= , = ,解得:MN= ,∴BM=BN-MN= ,MG=BG-BM= ,∴ = ;③正确;④连➓AG,FG,根据③中结论,则NG=BG-BN= ,∵S 四边形CGNF=S△CFG+S△GNF= CG•CF+NF•NG=1+= ,S 四边形ANGD=S△ANG+S△ADG= AN•GN+AD•DG= + = ,∴S 四边形CGNF≠S 四边形ANGD,④错误;故答案为①③.①易证△ABF➴△BCG,即可解题;②易证△BNF∽△BCG,即可求得的值,即可解题;③作EH⊥AF,令AB=3,即可求得MN,BM 的值,即可解题;④连➓AG,FG,根据③中结论即可求得S 四边形CGNF 和S 四边形ANGD,即可解题.本题考查了全等三角形的判定和性质,考查了相似三角形的判定和对应边成比例的性质,本题中令AB=3 求得AN,BN,NG,NF 的值是解题的关键.13.【答案】1.5【解析】解:∵在△AOB 中,∠AOB=90°,AO=3cm,BO=4cm,∴AB= =5cm,∵点D 为AB 的中点,∴OD= AB=2.5cm.∵将△AOB 绕顶点O,按顺时针方向旋转到△A1OB1 处,∴OB1=OB=4cm,∴B1D=OB1-OD=1.5cm.故答案为1.5.先在直角△AOB 中利用勾股定理求出AB= =5cm,再利用直角三角形斜边上的中线等于斜边的一半得出OD= AB=2.5cm.然后根据旋转的性质得到OB1=OB=4cm,那么B1D=OB1-OD=1.5cm.本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了直角三角形斜边上的中线等于斜边的一半的性质以及勾股定理.14.【答案】(2,2 3)【解析】解:2017×60°÷360°=336…1,即与正六边形ABCDEF 绕原点O 顺时针旋转1 次时点A 的坐标是一样的.当点A 按顺时针旋转60°时,与原F 点重合.连➓OF,过点F 作FH⊥x 轴,垂足为H;由已知EF=4,∠FOE=60°(正六边形的性质),∴△OEF 是等边三角形,∴OF=EF=4,∴F(2,2 ),即旋转2017 后点A 的坐标是(2,2 ),故答案是:(2,2 ).将正六边形ABCDEF 绕原点O 顺时针旋转2017 次时,点A 所在的位置就是原F 点所在的位置.此题主要考查了正六边形的性质,坐标与图形的性质-旋转.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.15.【答案】①②③【解析】解:在Rt△ABC 中,∵BC=2,∠BAC=30°,∴AB=4,AC= =2 ,①若C、O 两点关于AB 对称,如图1,∴AB 是OC 的垂直平分线,则OA=AC=2 ;所以①正确;②如图1,取AB 的中点为E,连➓OE、CE,∵∠AOB=∠ACB=90°,∴OE=CE= AB=2,当OC 经过点E 时,OC 最大,则C、O 两点距离的最大值为4;所以②正确;③如图2,同理取AB 的中点E,则OE=CE,∵AB 平分CO,∴OF=CF,∴AB⊥OC,所以③正确;④如图3,斜边AB 的中点D 运动路径是:以O 为圆心,以2 为半径的圆周的,则:=π.所以④不正确;综上所述,本题正确的有:①②③;故答案为:①②③.①先根据直角三角形30°的性质和勾股定理分别求AC 和AB,由对称的性质可知:AB 是OC 的垂直平分线,所以OA=AC;②当OC 经过AB 的中点E 时,OC 最大,则C、O 两点距离的最大值为4;③如图2,根据等腰三角形三线合一可知:AB⊥OC;④如图3,半径为2,圆心角为90°,根据弧长公式进行计算即可.本题是三角形的综合题,考查了直角三角形30°的性质、直角三角形斜边中线的性质、等腰三角形的性质、轴对称的性质、线段垂直平分线的性质、动点运动路径问题、弧长公式,熟练掌握直角三角形斜边中线等于斜边一半是本题的关键,难度适中.3 316.【答案】(2, 2 )【解析】解:作N 关于OA 的对称点N′,连➓N′M 交OA 于P,则此时,PM+PN 最小,∵OA 垂直平分NN′,∴ON=ON′,∠N′ON=2∠AON=60°,∴△NON′是等边三角形,∵点M 是ON 的中点,∴N′M⊥ON,∵点N(3,0),∴ON=3,∵点M 是ON 的中点,∴OM=1.5,∴PM= ,∴P(,).故答案为:(,).作N 关于OA 的对称点N′,连➓N′M 交OA 于P,则此时,PM+PN 最小,由作图得到ON=ON′,∠N′ON=2∠AON=60°,求得△NON′是等边三角形,根据等边三角形的性质得到N′M⊥ON,解直角三角形即可得到结论.本题考查了轴对称-最短路线问题,等边三角形的判定和性质,解直角三角形,关键是确定P 的位置.17.【答案】②③④【解析】解:①观察函数图象可知,当t=2 时,两函数图象相交,∵C 地位于A、B 两地之间,∴交点代表了两车离C 地的距离相等,并不是两车相遇,结论①错误;②甲车的速度为240÷4=60(km/h),乙车的速度为200÷(3.5-1)=80(km/h),∵(240+200-60-170)÷(60+80)=1.5(h),∴乙车出发1.5h 时,两车相距170km,结论②正确;③∵(240+200-60)÷(60+80)=2 (h),∴乙车出发2 h 时,两车相遇,结论③正确;④∵80×(4-3.5)=40(km),∴甲车到达C 地时,两车相距40km,结论④正确.综上所述,正确的结论有:②③④.故答案为:②③④.①观察函数图象可知,当t=2 时,两函数图象相交,结合交点代表的意义,即可得出结论①错误;②根据速度=路程÷时间分别求出甲、乙两车的速度,再根据时间=路程÷速度和可求出乙车出发1.5h 时,两车相距170km,结论②正确;③根据时间=路程÷速度和可求出乙车出发2 h 时,两车相遇,结论③正确;④结合函数图象可知当甲到C 地时,乙车离开C 地0.5 小时,根据路程=速度×时间,即可得出结论④正确.综上即可得出结论.本题考查了一次函数的应用,根据函数图象逐一分析四条结论的正误是解题的关键.18.【答案】【解析】5 ‒ 1 2解:作AE⊥x 轴于E,BF⊥x 轴于F,过B 点作BC⊥y 轴于C,交AE 于G,如图所示:则AG⊥BC,∵∠OAB=90°,∴∠OAE+∠BAG=90°,∵∠OAE+∠AOE=90°,∴∠AOE=∠GAB ,在△AOE 和△BAG 中,,∴△AOE ➴△BAG (AAS ),∴OE=AG ,AE=BG ,∵点 A (n ,1),∴AG=OE=n ,BG=AE=1,∴B (n+1,1-n ),∴k=n×1=(n+1)(1-n ),整理得:n 2+n-1=0,解得:n= ∴n=,(负值舍去), ∴k=故答案为: ;.作 AE ⊥x 轴于 E ,BF ⊥x 轴于 F ,过 B 点作 BC ⊥y 轴于 C ,交 AE 于 G ,则 AG ⊥BC ,先求得△ AOE ➴△BAG ,得出 AG=OE=n ,BG=AE=1,从而求得 B (n+1,1-n ),根据 k=n×1=(n+1)(1-n )得出方程,解方程即可.本题考查了全等三角形的判定与性质、反比例函数图象上点的坐标特征、解方程等知识;熟练掌握反比例函数图象上点的坐标特征,证明三角形全等是解决问题的关键.19.【答案】(-2,0)【解析】解:如图所示,P 1(-2,0),P 2(2,-4),P 3(0,4),P 4(-2,-2),P 5(2,-2),P 6(0,2),发现 6 次一个循环,∵2017÷6=336…1,∴点 P 2017 的坐标与 P 1 的坐标相同,即 P 2017(-2,0),故答案为(-2,0).画出P1~P6,寻找规律后即可解决问题.本题考查坐标与图形的性质、点的坐标等知识,解题的关键是循环探究问题的方法,属于中考常考题型.“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。
南京市数学初中九年级一次函数中考综合专项复习训练一、易错压轴选择题精选:一次函数选择题1.如图1,在矩形ABCD 中,动点E 从点B 出发,沿BADC 方向运动至点C 处停止,设点E 运动的路程为x ,△BCE 的面积为y ,如果y 关于x 的函数图象如图2所示,则矩形ABCD 的周长为( )A .20B .21C .14D .72.直线l 1:y=ax+b 与直线l 2:y=mx+n 在同一平面直角坐标系中的图象如图所示,则关于x 的不等式ax+b <mx+n 的解集为( )A .x >﹣2B .x <1C .x >1D .x <﹣23.小明家、食堂、图书馆依次在同一条直线上,小明从家去食堂吃早餐,接着云图书馆读报,然后回家.如图反映了这个过程,小明离家的距离与时间之间的对应关系,下列说法错误的是( )A .小明从家到食堂用了8minB .小明家离食堂0.6km ,食堂离图书馆0.2km C .小明吃早餐用了30min ,读报用了17min D .小明从图书馆回家的平均速度为0.08km/min4.已知正比例函数y=kx ,且y 随x 的增大而减少,则直线y=2x+k 的图象是( ) A . B . C . D .5.函数1y x =-x 的取值范围是( )A .1x >B .1≥xC .1x ≥-D .1x ≠ 6.若点(2,1)P -在直线y x b =-+上,则b 的值为( )A .1B .-1C .3D .-3 7.一次函数y kx b =+的图象如图所示,则下列说法:①0kb >;②若点(2,)A m -与(3,)B n 都在直线y kx b =+上,则m n >;③当0x >时,y b >.其中正确的说法是( )A .①②B .①③C .②③D .①②③8.下列各图象中,y 不是..x 的函数的是( )A .B .C .D .9.一个装有进水管和出水管的容器,开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,每分钟的进水量和出水量是两个常数. 容器内的水量y (单位:升)与时间x (单位:分)之间的关系如图,则6分钟时容器内的水量(单位:升)为( )A .22B .22.5C .23D .2510.如图,矩形ABCD 中,AB=2,BC=4,P 为矩形边上的一个动点,运动路线是A→B→C→D→A ,设P 点经过的路程为x ,以A ,P ,B 为顶点的三角形面积为y ,则选项图象能大致反映y 与x 的函数关系的是( )A .B .C .D .11.李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为24米.要围成的菜园是如图所示的矩形ABCD .设BC 边的长为x 米,AB 边的长为y 米,则y 与x 之间的函数关系式是( )A .y=-2x+24(0<x<12)B .y=-x +12(0<x<24)C .y=2x -24(0<x<12)D .y=x -12(0<x<24)12.一次函数y mx n =-+22()m n n -所得的结果是( )A .mB .m -C .2m n -D .2m n - 13.下列函数的图象不经过...第一象限,且y 随x 的增大而减小的是( ) A .y x =- B .1y x =+ C .21y x =-+ D .1y x =- 14.如图1,已知在四边形ABCD 中,//AB CD ,=90B ∠︒,AC AD =,动点P 从点B 出发沿折线B →A →D →C 的方向以1个单位/秒的速度匀速运动,整个运动过程中,△BCP 的面积S 与运动时间t (秒)的函数关系如图2所示,则AD 的长为( )A .5B .34C .8D .2315.如图所示的计算程序中,y 与x 之间的函数关系所对应的图象应为( )A .B .C .D . 16.在平面直角坐标系中,一次函数1y x =-的图象是( )A .B .C .D .17.如图,直线3y kx =+经过点(2,0),则关于x 的不等式30kx +≥的解集是( )A .2x >B .2x <C .2x ≥D .2x ≤18.一列火车由甲市驶往相距600km 的乙市,火车的速度是200km/时,火车离乙市的距离s(单位:km)随行驶时间t(单位:小时)变化的关系用图象表示正确的是( )A .B .C .D .19.甲、乙两车从A 城出发匀速行驶至B 城.在整个行驶过程中,甲、乙两车离开A 城的距离y (千米)与甲车行驶的时间t (小时)之间的函数关系如图所示.则下列结论: ①A ,B 两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后1.5小时追上甲车;④当甲、乙两车相距50千米时,54t =或154其中正确的结论有( )A .1个B .2个C .3个D .4个20.若点()1,2A 和点()4,B m 在直线2y x n =-+上,则m 的值为 ( )A .8B .4C .-4D .不是唯一的【参考答案】***试卷处理标记,请不要删除一、易错压轴选择题精选:一次函数选择题1.C【分析】分点E 在AB 段运动、点E 在AD 段运动时两种情况,分别求解即可.【详解】解:当点E 在AB 段运动时,y =12BC ×BE =12BC •x ,为一次函数,由图2知,AB =3, 当点E 在AD 上运动时, y =12×AB ×BC ,为常数,由图2知,AD =4, 故矩形的周长为7×2=14,故选C .【点睛】本题考查的是动点图象问题,涉及到一次函数、图形面积计算等知识,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.2.B【分析】由图象可以知道,当x=1时,两个函数的函数值是相等的,再根据函数的增减性可以判断出不等式ax+b <mx+n 解集.【详解】解:观察图象可知,当x <1时,ax+b <mx+n ,∴不等式ax+b <mx+n 的解集是x <1故选B .【点睛】本题考查了一次函数与一元一次不等式的关系,根据交点得到相应的解集是解决本题的关键.3.C【分析】根据题意,分析图象,结合简单计算,可以得到答案.【详解】解:根据图象可知:A. 小明从家到食堂用了8min ,故A 选项说法正确;B. 小明家离食堂0.6km ,食堂离图书馆0.8-0.6=0.2(km ),故B 选项说法正确;C. 小明吃早餐用了25-8=17(min ),读报用了58-28=30(min ),故C 选项错误;D. 小明从图书馆回家的平均速度为0.8÷(68-58=)0.08(km/min ),故D 选项正确. 故选C.【点睛】本题考核知识点:函数的图形. 重点:分析函数图象,得到相关信息,并进行简单运算. 4.D【详解】∵正比例函数y kx =,且y 随x 的增大而减少,0k .∴< 在直线2y x k =+中,200k ><,,∴函数图象经过一、三、四象限.故选D .5.B【分析】根据二次根式的意义,被开方数是非负数.【详解】解:根据题意得x-1≥0,解得x≥1.故选:B .【点睛】本题考查函数自变量的取值范围的确定和分式的意义.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负数.6.B【分析】将点P (-2,1)的坐标代入直线y=-x+b 即可解得b 的值;【详解】解:∵直线y=-x+b 经过点P (-2,1),∴1=-(-2)+b ,∴b= -1.故选:B .【点睛】本题考查待定系数法求一次函数解析式,解题关键是根据点的坐标利用待定系数法求出b 的值.7.B【分析】由图象经过第一,二,三象限,可得k >0,b>0,可判断A ①,根据增减性,可判断②,由图象可直接判断③【详解】解:∵图象过第一,第二,第三象限,∴k >0,b>0,∴0kb >,①正确, y 随x 增大而增大,∵-2<3∴m <n ,②错误,又∵一次函数y kx b =+的图象与y 轴交于点(0,b ), 当0x >时,图像在第一象限,都在点(0,b )的上方,又是增函数,∴这部分图像的纵坐标y>b ,③正确,故①③正确故选:B .【点睛】本题考查一次函数图象上点的坐标特征,一次函数图象的性质,解题关键是灵活运用一次函数图象的性质.8.B【分析】对于自变量x 的每一个确定的值y 都有唯一的确定值与其对应,则y 是x 的函数,根据函数的定义解答即可.【详解】根据函数的定义,选项A 、C 、D 图象表示y 是x 的函数,B 图象中对于x 的一个值y 有两个值对应,故B 中y 不是x 的函数,故选:B .【点睛】此题考查函数的定义,函数图象,结合函数图象正确理解函数的定义是解题的关键. 9.B【分析】由题意结合图象,设后8分钟的函数解析式为y=kx+b ,将x=4时,y=20;x=12时,y=30代入求得k 、b 值,可得函数解析式,再将x=6代入求得对应的y 值即可.【详解】设当4≤x ≤12时函数的解析式为y=kx+b(k ≠0),由图象,将x=4时,y=20;x=12时,y=30代入,得:2043012k b k b =+⎧⎨=+⎩,解得:5415k b ⎧=⎪⎨⎪=⎩, ∴5154y x =+, 当x=6时,56157.51522.54y =⨯+=+=, 故选:B .【点睛】本题考查了一次函数的应用,解答的关键是从图象上获取相关联的量,会用待定系数法求函数的解析式,特别要注意分段函数自变量的取值范围的划分.10.B【分析】根据题意可以分别表示出各段的函数解析式,从而可以根据各段对应的函数图象判断选项的正误即可.【详解】由题意可得,点P 到A→B 的过程中,y=0(0≤x≤2),故选项C 错误,点P 到B→C 的过程中,y=12⨯2(x-2)=x-2(2<x≤6),故选项A 错误, 点P 到C→D 的过程中,y=12⨯2⨯4=4(6<x≤8),故选项D 错误, 点P 到D→A 的过程中,y=12⨯2(12-x)=12-x(8<x ≤12),由以上各段函数解析式可知,选项B 正确,故选B.【点睛】本题考查动点问题的函数图象,明确题意,写出各段函数对应的函数解析式,明确各段的函数图象是解题关键.11.B【解析】由实际问题抽象出函数关系式关键是找出等量关系,本题等量关系为“用篱笆围成的另外三边总长应恰好为24米”,结合BC 边的长为x 米,AB 边的长为y 米,可得BC +2AB=24,即x +2y=24,即y=-x +12.因为菜园的一边是足够长的墙,所以0<x<24.故选B . 12.D【分析】根据题意可得﹣m <0,n <0,再进行化简即可.【详解】∵一次函数y =﹣mx +n 的图象经过第二、三、四象限,∴﹣m <0,n <0,即m >0,n <0, 22()m n n -=|m ﹣n |+|n |=m ﹣n ﹣n=m ﹣2n ,故选D .【点睛】本题考查了二次根式的性质与化简以及一次函数的图象与系数的关系,熟练掌握一次函数的图象与性质是解题的关键.13.A【分析】分别分析各个一次函数图象的位置.【详解】A. y x =- ,图象经过第二、四象限,且y 随x 的增大而减小;B. 1y x =+, 图象经过第一、二、三象限;C. 21y x =-+,图象经过第一、二、四象限;D. 1y x =-,图象经过第一、三、四象限;所以,只有选项A 符合要求.故选A【点睛】本题考核知识点:一次函数的性质.解题关键点:熟记一次函数的性质.14.B【分析】由题意可得当t=3时,点P到达A处,即AB=3,过点A作AE⊥CD交CD于点E,则四边形ABCE为矩形,根据等腰三角形的性质可求出CD的长,当S=15时,点P到达点D处,进而可求出BC的长,再根据勾股定理即可求出结果.【详解】解:当t=3时,点P到达A处,即AB=3;过点A作AE⊥CD交CD于点E,则四边形ABCE为矩形,∵AC=AD,∴CD=2CE=2AB=6,当S=15时,点P到达点D处,则S=12CD•BC=12×6•BC=3×BC=15,∴BC=5,由勾股定理得:AD=AC223534+故选:B.【点睛】本题以动态的形式考查了矩形的判定和性质、勾股定理、函数的图象和等腰三角形的性质,具有一定的综合性,正确添加辅助线、读懂图象信息是解题的关键.15.A【分析】先求出一次函数的关系式,再根据函数图象与坐标轴的交点及函数图象的性质解答即可.【详解】解:由题意知,函数关系为一次函数y=-3x-6,由k=-3<0可知,y随x的增大而减小,且当x=0时,y=-6,当y=0时,x=-2.故选:A.【点睛】本题考查学生对计算程序及函数性质的理解.根据计算程序可知此计算程序所反映的函数关系为一次函数y=-3x-6,然后根据一次函数的图象的性质求解.16.A【分析】先确定一次函数解析式中k与b的符号,然后再利用一次函数图象及性质即可解答.【详解】解:一次函数y=1-x其中k=-1,b=1其图象为:.故选:A.【点睛】本题考查了一次函数的图象,掌握一次函数的图象与性质是解答本题的关键.17.D【分析】写出函数图象在x轴上方及x轴上所对应的自变量的范围即可.【详解】解:当x≤2时,y≥0.所以关于x的不等式kx+3≥0的解集是x≤2.故选:D.【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y =kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.18.A【分析】首先写出函数的解析式,根据函数的特点即可确定.【详解】由题意得:s与t的函数关系式为s=600-200t,其中0≤t≤3,所以函数图象是A.故选A.【点睛】本题主要考查函数的图象的知识点,解答时应看清函数图象的横轴和纵轴表示的量,再根据实际情况来判断函数图象.19.C【分析】由图象所给数据可求得甲、乙两车离开A城的距离y与时间t的关系式,可求得两函数图象的交点,进而判断,再令两函数解析式的差为50,可求得t ,可得出答案.【详解】图象可知A 、B 两城市之间的距离为300km ,甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时,故①②都正确;设甲车离开A 城的距离y 与t 的关系式为y kt =甲,把()5,300代入可求得60k =,60y t ∴=甲,设乙车离开A 城的距离y 与t 的关系式为y mt n =+乙,把()1,0和()4,300代入可得04300m n m n +=⎧⎨+=⎩,解得100100m n =⎧⎨=-⎩, 100100y t ∴=-乙,令y y =甲乙可得:60100100t t =-,解得 2.5t =,即甲、乙两直线的交点横坐标为 2.5t =,此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车,故③正确; 令50y y -=甲乙,可得|60100100|50t t -+=,即|10040|50t -=,当1004050t -=时,可解得54t =, 当1004050t -=-时,可解得154t =, 又当56t =时,50y =甲,此时乙还没出发, 当256t =时,乙到达B 城,250y =甲; 综上可知当t 的值为54t =或154t =或56t =或256t =时,两车相距50千米,故④不正确; 综上可知正确的有①②③共三个,故选:C .【点睛】本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,学会构建一次函数,利用方程组求两个函数的交点坐标,属于中考常考题型.20.C【分析】把点A 的坐标代入直线解析式求出n 的值,再把点B 的坐标代入解析式即可求出m 的值.【详解】解:∵点A (1,2)在直线y =-2x +n 上,∴-2×1+n =2,解得n=4,∴直线的解析式为y=-2x+4,∵点B(4,m)在直线上,∴-2×4+4=m,解得:m=-4.故选C.【点睛】本题主要考查了一次函数图象上点的坐标特征,已知点在直线上,将点的坐标代入解析式是解决此题的关键.。
选择、填空综合训练(时间:40分钟分值:54分)一、选择题:本大题共10小题,每小题3分,共30分.每小题只有一个正确选项.1.√(−8)33的立方根是( )A.8 B.-8 C.2 D.-22.下列计算结果是x5的为( C )A.x10÷x2B.x6-x1C.-x2·(-x)3D.(-x)3·(-x)2 3.一个物体的三视图如图所示,根据图中的数据,可求这个物体的表面积为( )第3题图A.60π cm2B.48π cm2C.96π cm2D.80π cm2 4.一组数据3,5,5,7,若添加一个数据5,则发生变化的统计量是( )A.平均数B.中位数C.方差D.众数5.满足下列条件的三条线段a,b,c能构成三角形的是( )A.a∶b∶c=1∶2∶3 B.a+b=4,a+b+c=9C.a=3,b=4,c=5 D.a∶b∶c=1∶1∶26.如图,小明随意向水平放置的大正方形内部区域抛一个小球,则小球停在小正方形内部(阴影)区域的概率为( )第6题图A.34B.13C.12D.147.如图所示,在正五边形ABCDE中,过顶点A作AF⊥CD,垂足为点F,连接对角线AC,则∠CAF的度数是( )第7题图A.16° B.18° C.24° D.28°8.如图,在长为62米、宽为42米的矩形草地上修同样宽的路,余下部分种植草坪.要使草坪的面积为2400平方米,设道路的宽为x米,则可列方程为( )第8题图A.(62-x)(42-x)=2400 B.(62-x)(42-x)+x2=2400C.62×42-62x-42x=2400 D.62x+42x=24009.已知二次函数y=-14x2+bx+c的图象如图,则一次函数y=-14x-2b与反比例函数y=cx在同一平面直角坐标系中的图象大致是( )第9题图10.如图1,点P为矩形ABCD边上的一个动点,运动路线是A→B→C→D→A.设点P运动的路径长为x,△ABP的面积S△ABP=y,图2是y随x变化的函数图象,则矩形ABCD的对角线BD的长是( )第10题图A.34B.41 C.8 D.10二、填空题:本大题共8小题,每小题3分,共24分.11.比较大小:-3-22(填“>”“<”或“=”).12.要使式子x+3x-1+(x-2)0有意义,则x的取值范围为.13.如果在解关于x的分式方程xx-1+k1-x=2时出现了增根x=1,那么常数k的值为.14.如图,在△ABC中,∠B与∠C的平分线交于点O,过点O作MN∥BC,分别交AB,AC于点M,N.若AB=8,AC=10,则△AMN的周长为.第14题图15.《九章算术》第九章“勾股”问题十九:“今有邑方(正方形小城)不知大小,各开中门.出北门三十步有木,出西门七百五十步见木.问:邑方几何(小城的边长)?”根据描述如图所示,其中E表示西门,F表示北门,G,H处是木(E,F 分别是所在边的中点).则邑的边长为步.第15题图16.如图,在Rt△ABC中,∠B=90°,点O在边AB上,以点O为圆心,OA为半径的圆经过点C,过点C作直线MN,使∠BCM=2∠A.若OA=4,∠BCM=60°,则图中阴影部分的面积为 .第16题图17.如图,点O是▱ABCD的对称中心,AD>AB,E,F是边AB上的点,且EF=12 AB,G,H是BC边上的点,且GH=13BC,若S1,S2分别表示△EOF和△GOH的面积,则S 1与S2之间的等量关系是.第17题图18.如图,等腰Rt△ABC中,∠ACB=90°,AC=BC=1,且AC边在直线a上,将△ABC绕点A顺时针旋转到位置①,可得到点P1,此时AP1=2;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=1+2;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=2+2;….按此规律继续旋转,直至得到点P2020为止,则AP2020=.第18题图选择、填空综合训练(时间:40分钟分值:54分)一、选择题:本大题共10小题,每小题3分,共30分.每小题只有一个正确选项.1.√(−8)33的立方根是( D )A.8 B.-8 C.2 D.-22.下列计算结果是x5的为( C )A.x10÷x2B.x6-x1C.-x2·(-x)3D.(-x)3·(-x)2 3.一个物体的三视图如图所示,根据图中的数据,可求这个物体的表面积为( C )第3题图A.60π cm2B.48π cm2C.96π cm2D.80π cm2 4.一组数据3,5,5,7,若添加一个数据5,则发生变化的统计量是( C )A.平均数B.中位数C.方差D.众数5.满足下列条件的三条线段a,b,c能构成三角形的是( C )A.a∶b∶c=1∶2∶3 B.a+b=4,a+b+c=9C.a=3,b=4,c=5 D.a∶b∶c=1∶1∶26.如图,小明随意向水平放置的大正方形内部区域抛一个小球,则小球停在小正方形内部(阴影)区域的概率为( C )第6题图A.34B.13C.12D.147.如图所示,在正五边形ABCDE中,过顶点A作AF⊥CD,垂足为点F,连接对角线AC,则∠CAF的度数是( B )第7题图A.16° B.18° C.24° D.28°8.如图,在长为62米、宽为42米的矩形草地上修同样宽的路,余下部分种植草坪.要使草坪的面积为2400平方米,设道路的宽为x米,则可列方程为( A )第8题图A.(62-x)(42-x)=2400 B.(62-x)(42-x)+x2=2400C.62×42-62x-42x=2400 D.62x+42x=24009.已知二次函数y=-14x2+bx+c的图象如图,则一次函数y=-14x-2b与反比例函数y=cx在同一平面直角坐标系中的图象大致是( C )第9题图10.如图1,点P为矩形ABCD边上的一个动点,运动路线是A→B→C→D→A.设点P运动的路径长为x,△ABP的面积S△ABP=y,图2是y随x变化的函数图象,则矩形ABCD的对角线BD的长是( B )第10题图A.34B.41 C.8 D.10二、填空题:本大题共8小题,每小题3分,共24分.11.比较大小:-3<-22(填“>”“<”或“=”).12.要使式子x+3x-1+(x-2)0有意义,则x的取值范围为 x≥-3且x≠1且x≠2.13.如果在解关于x的分式方程xx-1+k1-x=2时出现了增根x=1,那么常数k的值为 1 .14.如图,在△ABC中,∠B与∠C的平分线交于点O,过点O作MN∥BC,分别交AB,AC于点M,N.若AB=8,AC=10,则△AMN的周长为 18 .第14题图15.《九章算术》第九章“勾股”问题十九:“今有邑方(正方形小城)不知大小,各开中门.出北门三十步有木,出西门七百五十步见木.问:邑方几何(小城的边长)?”根据描述如图所示,其中E表示西门,F表示北门,G,H处是木(E,F 分别是所在边的中点).则邑的边长为 300 步.第15题图16.如图,在Rt△ABC中,∠B=90°,点O在边AB上,以点O为圆心,OA为半径的圆经过点C,过点C作直线MN,使∠BCM=2∠A.若OA=4,∠BCM=60°,则图中阴影部分的面积为16π3-4 3 .第16题图17.如图,点O是▱ABCD的对称中心,AD>AB,E,F是边AB上的点,且EF=12 AB,G,H是BC边上的点,且GH=13BC,若S1,S2分别表示△EOF和△GOH的面积,则S 1与S2之间的等量关系是 S1=32S2.第17题图18.如图,等腰Rt△ABC中,∠ACB=90°,AC=BC=1,且AC边在直线a上,将△ABC绕点A顺时针旋转到位置①,可得到点P1,此时AP1=2;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=1+2;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=2+2;….按此规律继续旋转,直至得到点P2020为止,则AP2020= 1346+674 2 .第18题图。
2019-2020学年九年级数学中考实际应用题综合强化训练(含答案)1.某市为了鼓励居民节约用水,决定实行两级收费制度.若每月用水量不超过14吨(含14吨),则每吨按政府补贴优惠价m元收费;若每月用水量超过14吨,则超过部分每吨按市场价n元收费.小明家3月份用水20吨,交水费49元;4月份用水18吨,交水费42元.(1)求每吨水的政府补贴优惠价和市场价分别是多少?(2)设每月用水量为x吨,应交水费为y元,请写出y与x之间的函数关系式;(3)小明家5月份用水26吨,则他家应交水费多少元?2.某大型企业为了保护环境,准备购买A、B两种型号的污水处理设备共8台,用于同时治理不同成分的污水,若购买A型2台、B型3台需54万,购买A型4台、B型2台需68万元.(1)求出A型、B型污水处理设备的单价;(2)经核实,一台A型设备一个月可处理污水220吨,一台B型设备一个月可处理污水190吨,如果该企业每月的污水处理量不低于1565吨,请你为该企业设计一种最省钱的购买方案.3.有甲、乙、丙三种糖果混合而成的什锦糖100千克,其中各种糖果的单价和千克数如表所示,商家用加权平均数来确定什锦糖的单价.甲种糖果乙种糖果丙种糖果单价(元/千克)152530千克数404020(1)求该什锦糖的单价.(2)为了使什锦糖的单价每千克至少降低2元,商家计划在什锦糖中加入甲、丙两种糖果共100千克,问其中最多可加入丙种糖果多少千克?4.某进口专营店销售一种“特产”,其成本价是20元/千克,根据以往的销售情况描出销量y(千克/天)与售价x(元/千克)的关系,如图所示.(1)试求出y与x之间的一个函数关系式;(2)利用(1)的结论:①求每千克售价为多少元时,每天可以获得最大的销售利润.②进口产品检验、运输等过程需耗时5天,该“特产”最长的保存期为一个月(30天),若售价不低于30元/千克,则一次进货最多只能多少千克?5.为了经济发展的需要,某市2014年投入科研经费500万元,2016年投入科研经费720万元.(1)求2014至2016年该市投入科研经费的年平均增长率;(2)根据目前经济发展的实际情况,该市计划2017年投入的科研经费比2016年有所增加,但年增长率不超过15%,假定该市计划2017年投入的科研经费为a 万元,请求出a的取值范围.6.近期猪肉价格不断走高,引起了民众与政府的高度关注.当市场猪肉的平均价格每千克达到一定的单价时,政府将投入储备猪肉以平抑猪肉价格.(1)从今年年初至5月20日,猪肉价格不断走高,5月20日比年初价格上涨了60%.某市民在今年5月20日购买2.5千克猪肉至少要花100元钱,那么今年年初猪肉的最低价格为每千克多少元?(2)5月20日,猪肉价格为每千克40元.5月21日,某市决定投入储备猪肉并规定其销售价在每千克40元的基础上下调a%出售.某超市按规定价出售一批储备猪肉,该超市在非储备猪肉的价格仍为每千克40元的情况下,该天的两种猪肉总销量比5月20日增加了a%,且储备猪肉的销量占总销量的,两种猪肉销售的总金额比5月20日提高了a%,求a的值.7.某蛋糕产销公司A品牌产销线,2015年的销售量为9.5万份,平均每份获利1.9元,预计以后四年每年销售量按5000份递减,平均每份获利按一定百分数逐年递减;受供给侧改革的启发,公司早在2104年底就投入资金10.89万元,新增一条B品牌产销线,以满足市场对蛋糕的多元需求,B品牌产销线2015年的销售量为1.8万份,平均每份获利3元,预计以后四年销售量按相同的份数递增,且平均每份获利按上述递减百分数的2倍逐年递增;这样,2016年,A、B两品牌产销线销售量总和将达到11.4万份,B品牌产销线2017年销售获利恰好等于当初的投入资金数.(1)求A品牌产销线2018年的销售量;(2)求B品牌产销线2016年平均每份获利增长的百分数.8.某商店购进甲乙两种商品,甲的进货单价比乙的进货单价高20元,已知20个甲商品的进货总价与25个乙商品的进货总价相同.(1)求甲、乙每个商品的进货单价;(2)若甲、乙两种商品共进货100件,要求两种商品的进货总价不高于9000元,同时甲商品按进价提高10%后的价格销售,乙商品按进价提高25%后的价格销售,两种商品全部售完后的销售总额不低于10480元,问有哪几种进货方案?(3)在条件(2)下,并且不再考虑其他因素,若甲乙两种商品全部售完,哪种方案利润最大?最大利润是多少?9.某种商品的标价为400元/件,经过两次降价后的价格为324元/件,并且两次降价的百分率相同.(1)求该种商品每次降价的百分率;(2)若该种商品进价为300元/件,两次降价共售出此种商品100件,为使两次降价销售的总利润不少于3210元.问第一次降价后至少要售出该种商品多少件?10.由于雾霾天气频发,市场上防护口罩出现热销,某医药公司每月固定生产甲、乙两种型号的防雾霾口罩共20万只,且所有产品当月全部售出,原料成本、销售单价及工人生产提成如表:甲乙原料成本128销售单价1812生产提成10.8(1)若该公司五月份的销售收入为300万元,求甲、乙两种型号的产品分别是多少万只?(2)公司实行计件工资制,即工人每生产一只口罩获得一定金额的提成,如果公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元,应怎样安排甲、乙两种型号的产量,可使该月公司所获利润最大?并求出最大利润(利润=销售收入﹣投入总成本)11.旅游公司在景区内配置了50辆观光车共游客租赁使用,假定每辆观光车一天内最多只能出租一次,且每辆车的日租金x(元)是5的倍数.发现每天的营运规律如下:当x不超过100元时,观光车能全部租出;当x超过100元时,每辆车的日租金每增加5元,租出去的观光车就会减少1辆.已知所有观光车每天的管理费是1100元.(1)优惠活动期间,为使观光车全部租出且每天的净收入为正,则每辆车的日租金至少应为多少元?(注:净收入=租车收入﹣管理费)(2)当每辆车的日租金为多少元时,每天的净收入最多?12.随着人们“节能环保,绿色出行”意识的增强,越来越多的人喜欢骑自行车出行,也给自行车商家带来商机.某自行车行经营的A型自行车去年销售总额为8万元.今年该型自行车每辆售价预计比去年降低200元.若该型车的销售数量与去年相同,那么今年的销售总额将比去年减少10%,求:(1)A型自行车去年每辆售价多少元?(2)该车行今年计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍.已知,A型车和B型车的进货价格分别为1500元和1800元,计划B型车销售价格为2400元,应如何组织进货才能使这批自行车销售获利最多?13.学生在素质教育基地进行社会实践活动,帮助农民伯伯采摘了黄瓜和茄子共40kg,了解到这些蔬菜的种植成本共42元,还了解到如下信息:黄瓜的种植成本是1元/kg,售价是1.5元/kg;茄子的种植成本是1.2元/kg,售价是2元/kg.(1)请问采摘的黄瓜和茄子各多少千克?(2)这些采摘的黄瓜和茄子可赚多少元?14.某一公路的道路维修工程,准备从甲、乙两个工程队选一个队单独完成.根据两队每天的工程费用和每天完成的工程量可知,若由两队合做此项维修工程,6天可以完成,共需工程费用385200元,若单独完成此项维修工程,甲队比乙队少用5天,每天的工程费用甲队比乙队多4000元,从节省资金的角度考虑,应该选择哪个工程队?15.我市为全面推进“十个全覆盖”工作,绿化提质改造工程如火如荼地进行,某施工队计划购买甲、乙两种树苗共600棵对某标段道路进行绿化改造,已知甲种树苗每棵100元,乙种树苗每棵200元.(1)若购买两种树苗的总金额为70000元,求需购买甲、乙两种树苗各多少棵?(2)若购买甲种树苗的金额不少于购买乙种树苗的金额,至少应购买甲种树苗多少棵?16.倡导健康生活,推进全民健身,某社区要购进A,B两种型号的健身器材若干套,A,B两种型号健身器材的购买单价分别为每套310元,460元,且每种型号健身器材必须整套购买.(1)若购买A,B两种型号的健身器材共50套,且恰好支出20000元,求A,B 两种型号健身器材各购买多少套?(2)若购买A,B两种型号的健身器材共50套,且支出不超过18000元,求A 种型号健身器材至少要购买多少套?17.学校准备购进一批节能灯,已知1只A型节能灯和3只B型节能灯共需26元;3只A型节能灯和2只B型节能灯共需29元.(1)求一只A型节能灯和一只B型节能灯的售价各是多少元;(2)学校准备购进这两种型号的节能灯共50只,并且A型节能灯的数量不多于B型节能灯数量的3倍,请设计出最省钱的购买方案,并说明理由.2019-2020学年九年级数学中考实际应用题综合强化训练(含答案)1.某市为了鼓励居民节约用水,决定实行两级收费制度.若每月用水量不超过14吨(含14吨),则每吨按政府补贴优惠价m元收费;若每月用水量超过14吨,则超过部分每吨按市场价n元收费.小明家3月份用水20吨,交水费49元;4月份用水18吨,交水费42元.(1)求每吨水的政府补贴优惠价和市场价分别是多少?(2)设每月用水量为x吨,应交水费为y元,请写出y与x之间的函数关系式;(3)小明家5月份用水26吨,则他家应交水费多少元?【解答】解:(1)设每吨水的政府补贴优惠价为m元,市场调节价为n元.,解得:,答:每吨水的政府补贴优惠价2元,市场调节价为3.5元.(2)当0≤x≤14时,y=2x;当x>14时,y=14×2+(x﹣14)×3.5=3.5x﹣21,故所求函数关系式为:y=;(3)∵26>14,∴小英家5月份水费为3.5×26﹣21=69元,答:小英家5月份水费69吨.2.某大型企业为了保护环境,准备购买A、B两种型号的污水处理设备共8台,用于同时治理不同成分的污水,若购买A型2台、B型3台需54万,购买A型4台、B型2台需68万元.(1)求出A型、B型污水处理设备的单价;(2)经核实,一台A型设备一个月可处理污水220吨,一台B型设备一个月可处理污水190吨,如果该企业每月的污水处理量不低于1565吨,请你为该企业设计一种最省钱的购买方案.【解答】解:(1)设A型污水处理设备的单价为x万元,B型污水处理设备的单价为y万元,根据题意可得:,解得:.答:A型污水处理设备的单价为12万元,B型污水处理设备的单价为10万元;(2)设购进a台A型污水处理器,根据题意可得:220a+190(8﹣a)≥1565,解得:a≥1.5,∵A型污水处理设备单价比B型污水处理设备单价高,∴A型污水处理设备买越少,越省钱,∴购进2台A型污水处理设备,购进6台B型污水处理设备最省钱.3.有甲、乙、丙三种糖果混合而成的什锦糖100千克,其中各种糖果的单价和千克数如表所示,商家用加权平均数来确定什锦糖的单价.甲种糖果乙种糖果丙种糖果单价(元/千克)152530千克数404020(1)求该什锦糖的单价.(2)为了使什锦糖的单价每千克至少降低2元,商家计划在什锦糖中加入甲、丙两种糖果共100千克,问其中最多可加入丙种糖果多少千克?【解答】解:(1)根据题意得:=22(元/千克).答:该什锦糖的单价是22元/千克;(2)设加入丙种糖果x千克,则加入甲种糖果千克,根据题意得:≤20,解得:x≤20.答:加入丙种糖果20千克.4.某进口专营店销售一种“特产”,其成本价是20元/千克,根据以往的销售情况描出销量y(千克/天)与售价x(元/千克)的关系,如图所示.(1)试求出y与x之间的一个函数关系式;(2)利用(1)的结论:①求每千克售价为多少元时,每天可以获得最大的销售利润.②进口产品检验、运输等过程需耗时5天,该“特产”最长的保存期为一个月(30天),若售价不低于30元/千克,则一次进货最多只能多少千克?【解答】解:(1)设y与x之间的一个函数关系式为y=kx+b,则,解得.故函数关系式为y=﹣2x+112;(2)依题意有w=(x﹣20)(﹣2x+112)=﹣2(x﹣38)2+324,故每千克售价为38元时,每天可以获得最大的销售利润;(3)由题意可得,售价越低,销量越大,即能最多的进货,设一次进货最多m千克,则≤30﹣5,解得:m≤1300.故一次进货最多只能是1300千克.5.为了经济发展的需要,某市2014年投入科研经费500万元,2016年投入科研经费720万元.(1)求2014至2016年该市投入科研经费的年平均增长率;(2)根据目前经济发展的实际情况,该市计划2017年投入的科研经费比2016年有所增加,但年增长率不超过15%,假定该市计划2017年投入的科研经费为a 万元,请求出a的取值范围.【解答】解:(1)设2014至2016年该市投入科研经费的年平均增长率为x,根据题意,得:500(1+x)2=720,解得:x1=0.2=20%,x2=﹣2.2(舍),答:2014至2016年该市投入科研经费的年平均增长率为20%.(2)根据题意,得:×100%≤15%,解得:a≤828,又∵该市计划2017年投入的科研经费比2016年有所增加故a的取值范围为720<a≤828.少是226万元.6.近期猪肉价格不断走高,引起了民众与政府的高度关注.当市场猪肉的平均价格每千克达到一定的单价时,政府将投入储备猪肉以平抑猪肉价格.(1)从今年年初至5月20日,猪肉价格不断走高,5月20日比年初价格上涨了60%.某市民在今年5月20日购买2.5千克猪肉至少要花100元钱,那么今年年初猪肉的最低价格为每千克多少元?(2)5月20日,猪肉价格为每千克40元.5月21日,某市决定投入储备猪肉并规定其销售价在每千克40元的基础上下调a%出售.某超市按规定价出售一批储备猪肉,该超市在非储备猪肉的价格仍为每千克40元的情况下,该天的两种猪肉总销量比5月20日增加了a%,且储备猪肉的销量占总销量的,两种猪肉销售的总金额比5月20日提高了a%,求a的值.【解答】解:(1)设今年年初猪肉价格为每千克x元;根据题意得:2.5×(1+60%)x≥100,解得:x≥25.答:今年年初猪肉的最低价格为每千克25元;(2)设5月20日两种猪肉总销量为1;根据题意得:40(1﹣a%)×(1+a%)+40×(1+a%)=40(1+a%),令a%=y,原方程化为:40(1﹣y)×(1+y)+40×(1+y)=40(1+y),整理得:5y2﹣y=0,解得:y=0.2,或y=0(舍去),则a%=0.2,∴a=20;答:a的值为20.7.某蛋糕产销公司A品牌产销线,2015年的销售量为9.5万份,平均每份获利1.9元,预计以后四年每年销售量按5000份递减,平均每份获利按一定百分数逐年递减;受供给侧改革的启发,公司早在2104年底就投入资金10.89万元,新增一条B品牌产销线,以满足市场对蛋糕的多元需求,B品牌产销线2015年的销售量为1.8万份,平均每份获利3元,预计以后四年销售量按相同的份数递增,且平均每份获利按上述递减百分数的2倍逐年递增;这样,2016年,A、B 两品牌产销线销售量总和将达到11.4万份,B品牌产销线2017年销售获利恰好等于当初的投入资金数.(1)求A品牌产销线2018年的销售量;(2)求B品牌产销线2016年平均每份获利增长的百分数.【解答】解:(1)9.5﹣(2018﹣2015)×0.5=8(万份);答:品牌产销线2018年的销售量为8万份;(2)设A品牌产销线平均每份获利的年递减百分数为x,B品牌产销线的年销售量递增相同的份数为k万份;根据题意得:,解得:,或(不合题意,舍去),∴,∴2x=10%;答:B品牌产销线2016年平均每份获利增长的百分数为10%.8.某商店购进甲乙两种商品,甲的进货单价比乙的进货单价高20元,已知20个甲商品的进货总价与25个乙商品的进货总价相同.(1)求甲、乙每个商品的进货单价;(2)若甲、乙两种商品共进货100件,要求两种商品的进货总价不高于9000元,同时甲商品按进价提高10%后的价格销售,乙商品按进价提高25%后的价格销售,两种商品全部售完后的销售总额不低于10480元,问有哪几种进货方案?(3)在条件(2)下,并且不再考虑其他因素,若甲乙两种商品全部售完,哪种方案利润最大?最大利润是多少?【解答】解:(1)设甲每个商品的进货单价是x元,每个乙商品的进货单价是y元.根据题意得:,解得:,答:甲商品的单价是每件100元,乙每件80元;(2)设甲进货x件,乙进货(100﹣x)件.根据题意得:,解得:48≤x≤50.又∵x是正整数,则x的正整数值是48或49或50,则有3种进货方案;(3)销售的利润w=100×10%x+80(100﹣x)×25%,即w=2000﹣10x,则当x取得最小值48时,w取得最大值,是2000﹣10×48=1520(元).此时,乙进的件数是100﹣48=52(件).答:当甲进48件,乙进52件时,最大的利润是1520元.9.某种商品的标价为400元/件,经过两次降价后的价格为324元/件,并且两次降价的百分率相同.(1)求该种商品每次降价的百分率;(2)若该种商品进价为300元/件,两次降价共售出此种商品100件,为使两次降价销售的总利润不少于3210元.问第一次降价后至少要售出该种商品多少件?【解答】解:(1)设该种商品每次降价的百分率为x%,依题意得:400×(1﹣x%)2=324,解得:x=10,或x=190(舍去).答:该种商品每次降价的百分率为10%.(2)设第一次降价后售出该种商品m件,则第二次降价后售出该种商品件,第一次降价后的单件利润为:400×(1﹣10%)﹣300=60(元/件);第二次降价后的单件利润为:324﹣300=24(元/件).依题意得:60m+24×=36m+2400≥3210,解得:m≥22.5.∴m≥23.答:为使两次降价销售的总利润不少于3210元.第一次降价后至少要售出该种商品23件.10.由于雾霾天气频发,市场上防护口罩出现热销,某医药公司每月固定生产甲、乙两种型号的防雾霾口罩共20万只,且所有产品当月全部售出,原料成本、销售单价及工人生产提成如表:甲乙原料成本128销售单价1812生产提成10.8(1)若该公司五月份的销售收入为300万元,求甲、乙两种型号的产品分别是多少万只?(2)公司实行计件工资制,即工人每生产一只口罩获得一定金额的提成,如果公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元,应怎样安排甲、乙两种型号的产量,可使该月公司所获利润最大?并求出最大利润(利润=销售收入﹣投入总成本)【解答】解:(1)设甲型号的产品有x万只,则乙型号的产品有(20﹣x)万只,根据题意得:18x+12(20﹣x)=300,解得:x=10,则20﹣x=20﹣10=10,则甲、乙两种型号的产品分别为10万只,10万只;(2)设安排甲型号产品生产y万只,则乙型号产品生产(20﹣y)万只,根据题意得:13y+8.8(20﹣y)≤239,解得:y≤15,根据题意得:利润W=(18﹣12﹣1)y+(12﹣8﹣0.8)(20﹣y)=1.8y+64,当y=15时,W最大,最大值为91万元.11.旅游公司在景区内配置了50辆观光车共游客租赁使用,假定每辆观光车一天内最多只能出租一次,且每辆车的日租金x(元)是5的倍数.发现每天的营运规律如下:当x不超过100元时,观光车能全部租出;当x超过100元时,每辆车的日租金每增加5元,租出去的观光车就会减少1辆.已知所有观光车每天的管理费是1100元.(1)优惠活动期间,为使观光车全部租出且每天的净收入为正,则每辆车的日租金至少应为多少元?(注:净收入=租车收入﹣管理费)(2)当每辆车的日租金为多少元时,每天的净收入最多?【解答】解:(1)由题意知,若观光车能全部租出,则0<x≤100,由50x﹣1100>0,解得x>22,又∵x是5的倍数,∴每辆车的日租金至少应为25元;(2)设每辆车的净收入为y元,当0<x≤100时,y=50x﹣1100,1随x的增大而增大,∵y1的最大值为50×100﹣1100=3900;∴当x=100时,y1当x>100时,y=(50﹣)x﹣11002=﹣x2+70x﹣1100=﹣(x﹣175)2+5025,的最大值为5025,当x=175时,y25025>3900,故当每辆车的日租金为175元时,每天的净收入最多是5025元.12.随着人们“节能环保,绿色出行”意识的增强,越来越多的人喜欢骑自行车出行,也给自行车商家带来商机.某自行车行经营的A型自行车去年销售总额为8万元.今年该型自行车每辆售价预计比去年降低200元.若该型车的销售数量与去年相同,那么今年的销售总额将比去年减少10%,求:(1)A型自行车去年每辆售价多少元?(2)该车行今年计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍.已知,A型车和B型车的进货价格分别为1500元和1800元,计划B型车销售价格为2400元,应如何组织进货才能使这批自行车销售获利最多?【解答】解:(1)设去年A型车每辆售价x元,则今年售价每辆为(x﹣200)元,由题意,得=,解得:x=2000.经检验,x=2000是原方程的根.答:去年A 型车每辆售价为2000元;(2)设今年新进A 型车a 辆,则B 型车(60﹣a)辆,获利y 元,由题意,得y=a+(60﹣a),y=﹣300a+36000.∵B 型车的进货数量不超过A 型车数量的两倍,∴60﹣a≤2a,∴a≥20.∵y=﹣300a+36000.∴k=﹣300<0,∴y 随a 的增大而减小.∴a=20时,y 最大=30000元.∴B 型车的数量为:60﹣20=40辆.∴当新进A 型车20辆,B 型车40辆时,这批车获利最大.13.学生在素质教育基地进行社会实践活动,帮助农民伯伯采摘了黄瓜和茄子共40kg,了解到这些蔬菜的种植成本共42元,还了解到如下信息:(1)请问采摘的黄瓜和茄子各多少千克?(2)这些采摘的黄瓜和茄子可赚多少元?解:(1)设采摘黄瓜x 千克,采摘茄子y 千克,根据题意,得黄瓜的种植成本是1元/kg,售价是1.5元/kg ;茄子的种植成本是1.2元/kg,售价是2元/kg .+y=40+1.2y=42.=30=10.答:采摘黄瓜30千克,采摘茄子10千克.(2)30×(1.5-1)+10×(2-1.2)=23(元).答:采摘的黄瓜和茄子可赚23元.14.某一公路的道路维修工程,准备从甲、乙两个工程队选一个队单独完成.根据两队每天的工程费用和每天完成的工程量可知,若由两队合做此项维修工程,6天可以完成,共需工程费用385200元,若单独完成此项维修工程,甲队比乙队少用5天,每天的工程费用甲队比乙队多4000元,从节省资金的角度考虑,应该选择哪个工程队?【解答】解:设甲队单独完成此项工程需要x天,乙队单独完成需要(x+5)天.依据题意可列方程:+=,解得:x1=10,x2=﹣3(舍去).经检验:x=10是原方程的解.设甲队每天的工程费为y元.依据题意可列方程:6y+6(y﹣4000)=385200,解得:y=34100.甲队完成此项工程费用为34100×10=341000元.乙队完成此项工程费用为30100×15=451500元.答:从节省资金的角度考虑,应该选择甲工程队.15.我市为全面推进“十个全覆盖”工作,绿化提质改造工程如火如荼地进行,某施工队计划购买甲、乙两种树苗共600棵对某标段道路进行绿化改造,已知甲种树苗每棵100元,乙种树苗每棵200元.(1)若购买两种树苗的总金额为70000元,求需购买甲、乙两种树苗各多少棵?(2)若购买甲种树苗的金额不少于购买乙种树苗的金额,至少应购买甲种树苗多少棵?【解答】解:(1)设购买甲种树苗x棵,购买乙种树苗y棵,由题意,得,解得:,答:购买甲种树苗500棵,则购买乙种树苗100棵;(2)设应购买甲种树苗a棵,则购买乙种树苗(100﹣a)棵,由题意,得100a≥200(600﹣a),解得:a≥400.答:至少应购买甲种树苗400棵16.倡导健康生活,推进全民健身,某社区要购进A,B两种型号的健身器材若干套,A,B两种型号健身器材的购买单价分别为每套310元,460元,且每种型号健身器材必须整套购买.(1)若购买A,B两种型号的健身器材共50套,且恰好支出20000元,求A,B 两种型号健身器材各购买多少套?(2)若购买A,B两种型号的健身器材共50套,且支出不超过18000元,求A 种型号健身器材至少要购买多少套?【解答】解:(1)设购买A种型号健身器材x套,B型器材健身器材y套,根据题意,得:,解得:,答:购买A种型号健身器材20套,B型器材健身器材30套.(3)设购买A型号健身器材m套,根据题意,得:310m+460(50﹣m)≤18000,解得:m≥33,∵m为整数,∴m的最小值为34,答:A种型号健身器材至少要购买34套.17.学校准备购进一批节能灯,已知1只A型节能灯和3只B型节能灯共需26元;3只A型节能灯和2只B型节能灯共需29元.(1)求一只A型节能灯和一只B型节能灯的售价各是多少元;(2)学校准备购进这两种型号的节能灯共50只,并且A型节能灯的数量不多于B型节能灯数量的3倍,请设计出最省钱的购买方案,并说明理由.【解答】解:(1)设一只A型节能灯的售价是x元,一只B型节能灯的售价是y元,根据题意,得:,解得:,答:一只A型节能灯的售价是5元,一只B型节能灯的售价是7元;(2)设购进A型节能灯m只,总费用为W元,根据题意,得:W=5m+7(50﹣m)=﹣2m+350,∵﹣2<0,。
平均数,中位数,众数,方差一、选择题1.(浙江省衢州市)为参加电脑汉字输入比赛,甲和乙两位同学进行了 6 次测试,成绩如下表:甲和乙两位同学 6 次测试成绩 ( 每分钟输入汉字个数 ) 及部分统计数据表有四位同学在进一步算得乙测试成绩的方差后分别作出了以下判断,其中说法正确的是( )A、甲的方差大于乙的方差,所以甲的成绩比较稳定;B、甲的方差小于乙的方差,所以甲的成绩比较稳定;C、乙的方差小于甲的方差,所以乙的成绩比较稳定;D、乙的方差大于甲的方差,所以乙的成绩比较稳定;答案: C2.(淅江金华)金华火腿闻名遐迩。
某火腿公司有甲、乙、丙三台切割包装机,同时分别装质量为500 克的火腿心片。
现从它们分装的火腿心片中各随机抽取10盒,经称量并计算得到质量的方差如表所示,你认为包装质量最稳定的切割包装机是()A、甲B、乙C、丙 D 、不能确定答案: A3.(浙江义乌 )国家实行一系列惠农政策后,农村居民收入大幅度增加.下表是2003 年至 2007 年我市农村居民年人均收入情况(单位:元),则这几年我市农村居民年人均收入的中位数是()A.6969 元B.7735 元C.8810 元D.10255元答案: B4.(湖南益阳)某班第一小组 7 名同学的毕业升学体育测试成绩 (满分 30 分 )依次为: 25,23,25,23,27,30,25,这组数据的中位数和众数分别是A. 23,25B. 23,23C. 25,23D. 25,25答案: D5.(浙江省绍兴市 )在一次射击测试中,甲、乙、丙、丁的平均环数均相同,而方差分别为 8.7,6.5, 9.1, 7.7,则这四人中,射击成绩最稳定的是()A.甲B.乙C.丙D.丁答案: B6.(四川巴中市)下列命题是真命题的是()A.对于给定的一组数据,它的平均数一定只有一个B.对于给定的一组数据,它的中位数可以不只一个C.对于给定的一组数据,它的众数一定只有一个D.对于给定的一组数据,它的极差就等于方差答案: A7.(四川巴中市)用计算器计算数据13.49,13.53,14.07,13.51,13.84,13.98,14.67,14.80,14.61,14.60,14.41,14.31,14.38,14.02,14.17 的平均数约为 () A. 14.15B.14.16C.14.17D.14.20答案: B8.(陕西省)在“爱的奉献”抗震救灾大型募捐活动中,文艺工作者积极向灾区捐款.其中 8 位工作者的捐款分别是 5 万, 10 万, 10 万, 10 万, 20 万, 20 万,50 万, 100 万.这组数据的众数和中位数分别是()A.20 万, 15 万B.10 万,20 万C.10 万,15 万D.20万,10万答案: C9.(北京)众志成城,抗震救灾.某小组7 名同学积极捐出自己的零花钱支援灾区,他们捐款的数额分别是(单位:元):50,20,50,30, 50,25,135.这组数据的众数和中位数分别是()A.50,20B. 50,30C.50,50D.135,50答案: C10.(湖北鄂州)数据的众数为,则这组数据的方差是()A. 2B.C.D.答案: B11.(浙江省嘉兴市)已知甲、乙两组数据的平均数分别是,,方差分别是,,比较这两组数据,下列说法正确的是()A.甲组数据较好B.乙组数据较好C.甲组数据的极差较大D.乙组数据的波动较小答案:D12.(山东省枣庄市)小华五次跳远的成绩如下(单位:m): 3.9, 4.1, 3.9, 3.8, 4.2.关于这组数据,下列说法错误的是()A.极差是 0.4B.众数是 3.9C.中位数是 3.98D.平均数是 3.98答案: B13.(山东济南)“迎奥运,我为先” 联欢会上,班长准备了若干张相同的卡片,上面写的是联欢会上同学们要回答的问题 . 联欢会开始后,班长问小明:你能设计一个方案,估计联欢会共准备了多少张卡片?小明用20 张空白卡片(与写有问题的卡片相同),和全部写有问题的卡片洗匀,从中随机抽取10 张,发现有2 张空白卡片,马上正确估计出了写有问题卡片的数目,小明估计的数目是()A.60 张B.80 张C.90张D.110答案: B14.(湖北黄石)若一组数据2, 4,, 6,8 的平均数是 6,则这组数据的方差是()A.B.8C.D.40答案: B15.( 湖南益阳 )某班第一小组7名同学的毕业升学体育测试成绩(满分 30 分)依次为: 25,23,25,23,27,30,25,这组数据的中位数和众数分别是 ( )A. 23,25B. 23,23C. 25,23D. 25,25答案: D16.( 重庆 )数据2,1,0,3,4的平均数是()A、0B、1C、 2D、3答案: C17.( 08 厦门市)某鞋店试销一种新款女鞋,销售情况如下表所示:鞋店经理最关心的是,哪种型号的鞋销量最大.对他来说,下列统计量中最重要的是()A.平均数B.众数C.中位数D.方差答案: C18.(08 乌兰察布市)十名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12,设其平均数为,中位数为,众数为,则有()A.B.C.D.答案: B19.(08 绵阳市)某校初三·一班 6 名女生的体重(单位:kg)为:353638 404242 则这组数据的中位数等于().A.38B.39C.40D.42答案: B20.(浙江金华)金华火腿闻名遐迩。
2022-2023学年浙教版九年级数学上册第二次阶段性(第1—4章)综合训练题(附答案)一.选择题(共10小题,每题3分,满分30分)1.若=,则的值为()A.B.C.D.2.已知一个扇形的弧长为π,半径是3,则这个扇形的面积为()A.πB.C.D.3π3.如图,在△ABC中,点D,E分别在边AB,AC上,且==,则三角形ADE 周长与三角形ABC的周长比是()A.1:B.1:2C.1:3D.1:44.数学课上,老师让学生尺规作图画Rt△ABC,使其斜边AB=c,一条直角边BC=a.小明的作法如图所示,你认为这种作法中判断∠ACB是直角的依据是()A.勾股定理B.直径所对的圆周角是直角C.勾股定理的逆定理D.90°的圆周角所对的弦是直径5.如图,在正五边形ABCDE中,记∠BCD=x°,∠ACB=y°,则等于()A.B.2C.3D.46.若点A(﹣1,y1),B(2,y2),C(3,y3)在二次函数y=(x﹣2)2+3的图象上,则y1、y2、y3的大小关系是()A.y3<y2<y1B.y2<y3<y1C.y1<y3<y2D.y1<y2<y3 7.校园里一片小小的树叶,也蕴含着“黄金分割”,如图,P为AB的黄金分割点(AP>PB),如果AB的长度为10cm,那么AP的长度为()cm.A.﹣1B.2﹣2C.5﹣5D.10﹣10 8.已知二次函数y=ax2+bx+c(a≠0)图象上部分点的坐标(x,y)的对应值如表所示:x…04…y…0.37﹣10.37…则方程ax2+bx+1.37=0的根是()A.0或4B.或4﹣C.1或5D.无实根9.如图,由边长为1的正方形组成的6×5网格中,一块含45°的三角板ABC的斜边AB 始终经过格点N,AC始终经过格点M,点A在MN下方运动,格点P到A的距离最小值为()A.1B.C.﹣1D.2﹣210.如图,△ABC中,点D为边BC上的点,点E、F分别是边AB、AC上两点,且EF∥BC,若AE:EB=m,BD:DC=n,则()A.m>1,n>1,则2S△AEF>S△ABD B.m<1,n<1,则2S△AEF>S△ABDC.m>1,n<1,则2S△AEF<S△ABD D.m<1,n>1,则2S△AEF<S△ABD二.填空题。
(D )(C )(B )(A )南西东北九年级数学上期期末题型综合训练2一、选择:1、已知等腰梯形的底角是600,两底边分别是4cm 和16cm ,则它的腰长为( )A.3cmB.6cmC.12cmD.63cm2、在△ABC 中,∠C=900,cosA=53,AB=15,则AC 的长是( ) A 、3 B 、6 C 、9 D 、123、一个口袋中有4个白球,1个红球,7个黄球,搅匀后随机从袋中摸出1个球,则摸出的球是白球的概率是( )A 、41B 、31C 、127D 、744、一件产品原来每件的成本是100元,由于连续两次降低成本,现在的成本是81元,则平均每次降低成本 ( )A 、8.5%B 、9%C 、9.5%D 、10%5、在△ABC ,∠B=450,∠C=300, BC 边上的高AD 为3,则ABC 的长是( )A 、3+3B 、2+6C 、3+33D 、2+3二、填空:(每题3分,共15分)6、一块四周镶有宽度相等的花边的地毯如下图,它的长为8m ,宽为5m .地毯中央长方形图案的面积为18m 2,那么花边有多宽?设花边的宽为x, 则可得方程为_________________________.7、某地区为估计该地区黄羊的只数,先捕捉20只黄羊给它们分别作上记号然后放还,带有标记的黄羊完全混合于黄羊群后,第二次捕捉40只黄羊,发现其中有2只有标记.从而估计这个地区有黄羊 只.8、如下图:(A)(B)(C)(D)是一天中四个不同时刻的木杆在地面上的影子,将它们按时间先后顺序进行排列,为 ;三.解答题9、020000230cos 445tan 30cos 30tan 60--Sin10、如图,□ABCD 中,AE 、CF 分别是∠BAD 和∠BCD 的角平分线,根据现有的图形,请添加一个条件,使四边形AECF 为菱形,则添加的一个条件可以是 ,写出证明过程。
(只需写出一个条件即可,图中不能再添加别的“点”和“线”).11、如图,一次函数b ax y +=的图像与反比例函数x ky =的图像交于M 、N 两点。
2020年九年级数学典型中考压轴题综合专项训练:一次函数一.选择题(共10小题)1.如图,直线y=﹣x+2与x轴、y轴分别交于A、B两点,把△AOB绕点A顺时针旋转60°后得到△AO′B′,则点B′的坐标是()A.(4,2)B.(2,4)C.(,3)D.(2+2,2)2.如图,△ABC顶点坐标分别为A(1,0)、B(4,0)、C(1,4),将△ABC沿x轴向右平移,当点C落在直线y=2x﹣6上时,线段BC扫过的面积为()A.4B.8C.D.163.如图,一次函数y=﹣x+3的图象分别与x轴、y轴交于点A、B,以线段AB为边在第一象限内作等腰Rt△ABC,∠BAC=90°.则过B、C两点直线的解析式为()A.y=x+3B.y=x+3C.y=x+3D.y=x+34.如图,在平面直角坐标系xOy中,菱形ABCD的顶点A的坐标为(2,0),点B的坐标为(0,1),点C在第一象限,对角线BD与x轴平行.直线y=x+4与x轴、y轴分别交于点E,F.将菱形ABCD沿x轴向左平移k个单位,当点C落在△EOF的内部时(不包括三角形的边),k的值可能是()A.2B.3C.4D.55.如图,点B,C分别在直线y=2x和直线y=kx上,A,D是x轴上两点,若四边形ABCD 是长方形,且AB:AD=1:2,则k的值是()A.B.C.D.6.如图,在平面直角坐标系中,点C的坐标为(0,4),动点A以每秒1个单位长的速度,从点O出发沿x轴的正方向运动,M是线段AC的中点.将线段AM以点A为中心,沿顺时针方向旋转90°,得到线段AB.过点B作x轴的垂线,垂足为E,过点C作y轴的垂线,交直线BE于点D,运动时间为t秒.当S△BCD=时,t的值为()A.2或2+3B.2或2+3C.3或3+5D.3或3+57.八个边长为1的正方形如图摆放在平面直角坐标系中,经过P点的一条直线l将这八个正方形分成面积相等的两部分,则该直线l的解析式为()A.y=x+B.y=x+C.y=x+D.y=x+8.如图,点M(﹣3,4),点P从O点出发,沿射线OM方向1个单位/秒匀速运动,运动的过程中以P为对称中心,O为一个顶点作正方形OABC,当正方形面积为128时,点A 坐标是()A.(,)B.(,11)C.(2,2)D.(,)9.如图,直线AB:y=﹣x+9交y轴于A,交x轴于B,x轴上一点C(﹣1,0),D为y 轴上一动点,把线段BD绕B点逆时针旋转120°得到线段BE,连接CE,CD,则当CE 长度最小时,线段CD的长为()A.B.C.2D.510.如图,直角坐标系xOy中,A(0,5),直线x=﹣5与x轴交于点D,直线y=﹣x﹣与x轴及直线x=﹣5分别交于点C,E,点B,E关于x轴对称,连接AB.①C(﹣13,0),E(﹣5,﹣3);②直线AB的解析式为:y=x+5;③设面积的和S=S△CDE+S四边形ABDO,则S=32;④在求面积的和S=S△CDE+S四边形ABDO时,琪琪有个想法:“将△CDE沿x轴翻折到△CDB的位置,而△CDB与四边形ABDO拼接后可看成△AOC,即S=S△CDE+S四边形ABDO =S△AOC”.其中正确的结论个数是()A.1个B.2个C.3个D.4个二.填空题(共10小题)11.已知平面直角坐标系中,O为坐标原点,点A坐标为(0,8),点B坐标为(4,0),点E是直线y=x+4上的一个动点,若∠EAB=∠ABO,则点E的坐标为.12.如图,点M是直线y=2x+3上的动点,过点M作MN垂直于x轴于点N,y轴上是否存在点P,使△MNP为等腰直角三角形,请写出符合条件的点P的坐标.13.如图,一次函数y=﹣x+1的图象与x轴,y轴分别交于点A,B,点C在y轴的正半轴上,且OC=3.在直线AB上有一点P,若满足∠CPB>∠ACB,则点P横坐标x的取值范围是.14.如图,在平面直角坐标系中,四边形ABCO是正方形,点B的坐标为(4,4),直线y =mx﹣2恰好把正方形ABCO的面积分成相等的两部分,则m=.15.如图,平面直角坐标系中,已知点P(2,2),C为y轴正半轴上一点,连接PC,线段PC绕点P顺时针旋转90°至线段PD,过点D作直线AB⊥x轴,垂足为B,直线AB与直线OP交于点A,且BD=4AD,直线CD与直线OP交于点Q,则点Q的坐标为.16.如图,在平面直角坐标系中,点A的坐标是(0,2),点B的坐标是(2,0),连结AB,点P是线段AB上的一个动点(包括两端点),直线y=﹣x上有一动点Q,连结OP,PQ,已知△OPQ的面积为,则点Q的坐标为.17.如图,点A、B的坐标分别为(0,2),(3,4),点P为x轴上的一点,若点B关于直线AP的对称点B′恰好落在x轴上,则点P的坐标为.18.平面直角坐标系中,直线y=﹣x﹣1与x轴和y轴分别交于B、C两点,与直线x=4交于点D,直线x=4与x轴交于点A,点M(3,0),点E为直线x=4上一动点,点F 为直线y=﹣x﹣1上一动点,ME+EF最小值为,此时点F的坐标为.19.如图,平面直角坐标系中,已知直线y=x上一点P(1,1),C为y轴上一点,连接PC,以PC为边做等腰直角三角形PCD,∠CPD=90°,PC=PD,过点D作线段AB⊥x轴,垂足为B,直线AB与直线y=x交于点A,且BD=2AD,连接CD,直线CD与直线y=x交于点Q,则Q点的坐标是.20.如图,将一块等腰直角三角板ABC放置在平面直角坐标系中,∠ACB=90°,AC=BC,点A在y轴的正半轴上,点C在x轴的负半轴上,点B在第二象限,AC所在直线的函数表达式是y=2x+4,若保持AC的长不变,当点A在y轴的正半轴滑动,点C随之在x 轴的负半轴上滑动,则在滑动过程中,点B与原点O的最大距离是.三.解答题(共10小题)21.如图,直线l与x轴、y轴分别交于点A(3,0)、点B(0,2),以线段AB为直角边在第一象限内作等腰直角三角形ABC,∠BAC=90°,点P(1,a)为坐标系中的一个动点.(1)请直接写出直线l的表达式;(2)求出△ABC的面积;(3)当△ABC与△ABP面积相等时,求实数a的值.22.如图,在平面直角坐标系中,直线AB分别交x轴、y轴于点A(a,0)点,B(0,b),且a、b满足a2﹣4a+4+|2a﹣b|=0,点P在直线AB的左侧,且∠APB=45°.(1)求a、b的值;(2)若点P在x轴上,求点P的坐标;(3)若△ABP为直角三角形,求点P的坐标.23.在平面直角坐标系中,直线AB与x轴交于点A,与y轴交于点B,与直线OC:y1=x 交于点C.(1)当直线AB解析式为y2=﹣x+10时,如图1.①求点C的坐标;②根据图象求出当x满足什么条件时﹣x+10<x.(2)如图2,作∠AOC的平分线ON,若AB⊥ON,垂足为E,△OAC的面积为9,且OA=6.P,Q分别为线段OA、OE上的动点,连接AQ与PQ,试探索AQ+PQ是否存在最小值?若存在,求出这个最小值:若不存在,说明理由.24.如图1,已知直线y=2x+4与y轴,x轴分别交于A,B两点,以B为直角顶点在第二象限作等腰Rt△ABC(1)求点C的坐标,并求出直线AC的关系式;(2)如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,若AD=AC,求证BE=DE;(3)如图3,在(1)的条件下,直线AC交x轴于点M,P(﹣,a)是线段BC上一点,在x轴上是否存在一点N,使△BPN面积等于△BCM面积的一半?若存在,请求出点N的坐标;若不存在,请说明理由.25.如图(a),直线l1:y=kx+b经过点A、B,OA=OB=3,直线12:y=x﹣2交y轴于点C,且与直线l1交于点D,连接OD.(1)求直线11的表达式;(2)求△OCD的面积;(3)如图(b),点P是直线11上的一动点;连接CP交线段OD于点E,当△COE与△DEP的面积相等时,求点P的坐标.26.如图,在平面直角坐标系中,直线y=﹣x+8与x轴和y轴分别交于点B和点C,与直线OA相交于点A(3,4).(1)求点B和点C的坐标;(2)求△OAC的面积;(3)在线段OA或射线AC上是否存在点M,使△OMC的面积是△OAC的面积的?若存在,求出点M的坐标,若不存在,说明理由;(4)若点N是线段OC上一点,若将△BCN沿直线BN折叠,点C恰好落在x轴负半轴上的点D处,求BN所在直线的函数关系式.27.如图,直线y=kx+b与x轴,y轴分别交于点A,点B,点A的坐标为(﹣2,0),且2OA=OB.(1)求直线AB解析式;(2)如图,将△AOB向右平移6个单位长度,得到△A1O1B1,求线段OB1的长;(3)求(2)中△AOB扫过的面积.28.定义:在平面直角坐标系中,对于任意两点A(a,b),B(c,d),若点T(x,y)满足x=,y=,那么称点T是点A和B的融合点.例如:M(﹣1,8),N(4,﹣2),则点T(1,2)是点M和N的融合点.如图,已知点D(3,0),点E是直线y =x+2上任意一点,点T(x,y)是点D和E的融合点.(1)若点E的纵坐标是6,则点T的坐标为;(2)求点T(x,y)的纵坐标y与横坐标x的函数关系式:(3)若直线ET交x轴于点H,当△DTH为直角三角形时,求点E的坐标.29.如图1,在平面直角坐标系xOy中,直线y=kx+8分别交x轴,y轴于A、B两点,已知A点坐标(6,0),点C在直线AB上,横坐标为3,点D是x轴正半轴上的一个动点,连结CD,以CD为直角边在右侧构造一个等腰Rt△CDE,且∠CDE=90°.(1)求直线AB的解析式以及C点坐标;(2)设点D的横坐标为m,试用含m的代数式表示点E的坐标;(3)如图2,连结OC,OE,请直接写出使得△OCE周长最小时,点E的坐标.30.在平面直角坐标系xOy中,直线l1:y=k1x+6与x轴、y轴分别交于A、B两点,且OB =OA,直线l2:y=k2x+b经过点C(,1),与x轴、y轴、直线AB分别交于点E、F、D三点.(1)求直线l1的解析式;(2)如图1,连接CB,当CD⊥AB时,求点D的坐标和△BCD的面积;(3)如图2,当点D在直线AB上运动时,在坐标轴上是否存在点Q,使△QCD是以CD为底边的等腰直角三角形?若存在,请直接写出点Q的坐标,若不存在,请说明理由.参考答案一.选择题(共10小题)1.【解答】解:在y=﹣x+2中令x=0,解得:y=2;令y=0,解得:x=2.则OA=2,OB=2.∴在直角△ABO中,AB==4,∠BAO=30°,又∵∠BAB′=60°,∴∠OAB′=90°,∴B′的坐标是(2,4).故选:B.2.【解答】解:如图所示,当△ABC向右平移到△DEF位置时,四边形BCFE为平行四边形,C点与F点重合,此时C在直线y=2x﹣6上,∵C(1,4),∴FD=CA=4,将y=4代入y=2x﹣6中得:x=5,即OD=5,∵A(1,0),即OA=1,∴AD=CF=OD﹣OA=5﹣1=4,则线段BC扫过的面积S=S平行四边形BCFE=CF•FD=16.故选:D.3.【解答】解:∵一次函数y=﹣x+3中,令x=0得:y=3;令y=0,解得x=4,∴B的坐标是(0,3),A的坐标是(4,0).如图,作CD⊥x轴于点D.∵∠BAC=90°,∴∠OAB+∠CAD=90°,又∵∠CAD+∠ACD=90°,∴∠ACD=∠BAO.在△ABO与△CAD中,,∴△ABO≌△CAD(AAS),∴OB=AD=3,OA=CD=4,OD=OA+AD=7.则C的坐标是(7,4).设直线BC的解析式是y=kx+b,根据题意得:,解得,∴直线BC的解析式是y=x+3.故选:A.4.【解答】解:连接AC,BD,交于点Q,过C作y轴垂线,交y轴于点M,交直线EF于点N,如图所示,∵菱形ABCD的顶点A的坐标为(2,0),点B的坐标为(0,1),点C在第一象限,对角线BD与x轴平行,∴CQ=AQ=1,CM=2,即AC=2AQ=2,∴C(2,2),当C与M重合时,k=CM=2;当C与N重合时,把y=2代入y=x+4中得:x=﹣2,即k=CN=CM+MN=4,∴当点C落在△EOF的内部时(不包括三角形的边),k的范围为2<k<4,则k的值可能是3,故选:B.5.【解答】解:设长方形的AB边的长为a,则BC边的长度为2a,B点的纵坐标是a,把点B的纵坐标代入直线y=2x的解析式得:x=,则点B的坐标为(,a),点C的坐标为(+2a,a),把点C的坐标代入y=kx中得,a=k(+2a),解得:k=.故选:B.6.【解答】解:根据题意得:∠BAC=90°,∴∠CAO+∠BAE=90°,∵BE⊥x轴,∴∠AEB=90°=∠AOC,∴∠ABE+∠BAE=90°,∴∠CAO=∠ABE.∴△CAO∽△ABE.∴=,∵M是AC的中点,AB=AM,∴CA=2AB,∴=,∴BE=t,AE=2.分两种情况:①当0<t<8时,如图1所示:S=CD•BD=(2+t)(4﹣)=解得:t1=t2=3.②当t>8时,如图2所示,S=CD•BD=(2+t)(﹣4)=.解得:t1=3+5,t2=3﹣5(不合题意,舍去).综上所述:当t=3或3+5时,S=;故选:D.7.【解答】解:直线l和八个正方形的最上面交点为P,过P作PB⊥OB于B,过P作PC ⊥OC于C,∵正方形的边长为1,∴OB=3,∵经过P点的一条直线l将这八个正方形分成面积相等的两部分,∴三角形ABP面积是8÷2+1=5,∴BP•AB=5,∴AB=2.5,∴OA=3﹣2.5=0.5,由此可知直线l经过(0,0.5),(4,3)设直线方程为y=kx+b,则,解得.∴直线l解析式为y=x+.故选:A.8.【解答】解:作AD⊥x轴于D,CE⊥x轴于E,设直线OM的解析式为y=kx,直线AC的解析式为y=k′x+b,∵点M(﹣3,4),∴4=﹣3k,∴k=﹣,∵四边形ABCO是正方形,∴直线AC⊥直线OM,∴k′为,∵四边形ABCO是正方形,∴OA=OC,∠AOC=90°,∴∠AOD+∠COE=90°,∵∠AOD+∠OAD=90°∴∠COE=∠OAD,在△COE和△OAD中,∴△COE≌△OAD(AAS),∴CE=OD,OE=AD,设A(a,b),则C(﹣b,a),设直线AC的解析式为y=mx+n,∴解得m=,∴=,整理得,b=7a,∵正方形面积为128,∴OA2=128,在RT△AOD中,AD2+OD2=OA2,即(7a)2+a2=128,解得,a=,∴b=7a=7×=,∴A(,),故选:D.9.【解答】解:如图,设D(0,m).由题意:B(5,0).在BD的下方作等边三角形△BDQ,延长DQ到M,使得QM=DQ,连接BM,DE,DE 交BQ于点N,作MH⊥x轴于H.∵△BDQ是等边三角形,∴∠DQB=∠DBQ=60°,∵QM=BQ,∴∠QMB=∠QBM,∵∠DQB=∠QMB+∠BQM,∴∠QMB=∠QBM=30°,∴∠DBM=90°,∴BM=BD,∵∠DBO+∠ODB=90°,∠DBO+∠MBH=90°,∴∠MBH=∠BDO,∵∠DOB=∠MHB=90°,∴△DOB∽△BHM,∴===,∵OD=m,OB=5,∴BH=m,MH=5,∴M(5﹣m,﹣5),∵MQ=DQ,∴Q(,),∵∠DBE=120°,∴∠DBN=∠EBN=60°,∴DE⊥BQ,DN=NE,QN=BN,∴N(,),E(,),∴CE2=()2+()2=m2﹣6m+91,∴当m=﹣=3时,CE的值最小,此时D(0,3),∴CD==2,故选:C.10.【解答】解:∵在直线y=﹣x﹣中,令y=0,则有0=﹣x﹣,∴x=﹣13,∴C(﹣13,0),令x=﹣5,则有y=﹣×(﹣5)﹣=﹣3,∴E(﹣5,﹣3),故①正确;∵点B,E关于x轴对称,∴B(﹣5,3),∵A(0,5),∴设直线AB的解析式为y=kx+5,∴﹣5k+5=3,∴k=,∴直线AB的解析式为y=x+5.故②错误;由①知,E(﹣5,﹣3),∴DE=3,∵C(﹣13,0),∴CD=﹣5﹣(﹣13)=8,∴S△CDE=CD×DE=12,由题意知,OA=5,OD=5,BD=3,∴S四边形ABDO=(BD+OA)×OD=20,∴S=S△CDE+S四边形ABDO=12+20=32,故③正确;④由③知,S=32,在△AOC中,OA=5,OC=13,∴S△AOC=OA×OC=32.5,∴S△CDE+S四边形ABDO=12+20≠S△AOC.故④错误.综上所述,正确的结论有2个.故选:B.二.填空题(共10小题)11.【解答】解:当点E在y轴右侧时,如图1,连接AE,∵∠EAB=∠ABO,∴AE∥OB,∵A(0,8),∴E点纵坐标为8,又E点在直线y=x+4上,把y=8代入可求得x=4,∴E点坐标为(4,8);当点E在y轴左侧时,过A、E作直线交x轴于点C,如图2,设E点坐标为(a,a+4),设直线AE的解析式为y=kx+b,把A、E坐标代入可得,解得,∴直线AE的解析式为y=x+8,令y=0可得x+8=0,解得x=,∴C点坐标为(,0),∴AC2=OC2+OA2,即AC2=()2+82,∵B(4,0),∴BC2=(4﹣)2=()2﹣+16,∵∠EAB=∠ABO,∴AC=BC,∴AC2=BC2,即()2+82=()2﹣+16,解得a=﹣12,则a+4=﹣8,∴E点坐标为(﹣12,﹣8).方法二:设C(m,0),∵∠ACB=∠CBA,∴AC=BC,∴(4﹣m)2=m2+82,解得m=﹣6,∴直线AE的解析式为y=x+8,由,解得.∴E(﹣12,﹣8).综上可知,E点坐标为(4,8)或(﹣12,﹣8).故答案为:(4,8)或(﹣12,﹣8).12.【解答】解:当M运动到(﹣1,1)时,ON=1,MN=1,∵MN⊥x轴,所以由ON=MN可知,(0,0)和(0,1)就是符合条件的两个P点;又∵当M运动到第三象限时,要MN=MP,且PM⊥MN,设点M(x,2x+3),则有﹣x=﹣(2x+3),解得x=﹣3,所以点P坐标为(0,﹣3).如若MN为斜边时,则∠ONP=45°,所以ON=OP,设点M(x,2x+3),则有﹣x=﹣(2x+3),化简得﹣2x=﹣2x﹣3,这方程无解,所以这时不存在符合条件的P点;又∵当点M′在第二象限,M′N′为斜边时,这时N′P=M′P,∠M′N′P=45°,设点M′(x,2x+3),则OP=ON′,而OP=M′N′,∴有﹣x=(2x+3),解得x=﹣,这时点P的坐标为(0,).综上,符合条件的点P坐标是(0,0),(0,),(0,﹣3),(0,1).故答案为:(0,0),(0,1),(0,),(0,﹣3).13.【解答】解:如图所示:过点P1作P1E⊥x轴于点E,∵一次函数y=﹣x+1的图象与x轴,y轴分别交于点A,B,点C在y轴的正半轴上,且OC=3,∴AO=BO=1,则BC=2,AC=,AB=,当∠CP1B=∠ACB时,又∵∠CAB=∠CAP1,∴△CAB∽△P1AC,∴=,则=,解得:AP1=5,则AE=P1E=5,故P1(﹣4,5),当∠CPB>∠ACB时,则点P横坐标x满足:﹣4<x,同理可得:当∠CP2B=∠ACB时,又∵∠ABC=∠P2BC,∴△CAB∽△P2CB,∴=,则=,解得:BP2=2,可得P2(2,﹣1),故当∠CPB>∠ACB时,则点P横坐标x满足:2>x,综上所述:﹣4<x<2且x≠0.故答案为:﹣4<x<2且x≠0.14.【解答】解:∵直线y=mx﹣2恰好把正方形ABCO的面积分成相等的两部分∴直线必经过正方形的中心∵点B的坐标为(4,4)∴中心为(2,2),代入直线中得:2=2m﹣2,m=215.【解答】解:过点P作PE⊥OC于E,EP的延长线交AB于F.∵AB⊥OB,∴∠OBF=∠EOB=∠FEO=90°,∴四边形EOBF是矩形,∵P(2,2),∴OE=PE=BF=2,∵∠CPD=90°,∴∠CPE+∠DPF=90°,∠ECP+∠CPE=90°,∴∠ECP=∠DPF,在△CPE和△PDF中,,∴△CPE≌△PDF(AAS),∴DF=PE=2,∴BD=BF+DF=4,∵BD=4AD,∴AD=1,AB=OB=5,∴CE=PF=3,∴D(5,4),C(0,5),设直线CD的解析式为y=kx+b则有,解得,∴直线CD的解析式为y=﹣x+5,由解得,∴点Q的坐标为(,).故答案为(,).16.【解答】解:方法一:∵点Q在直线y=﹣x上,∴设点Q的坐标为(m,﹣m).∵点A的坐标是(0,2),点B的坐标是(2,0),∴△AOB为等腰直角三角形,点O(0,0)到AB的距离h=OA=.设直线AB的解析式为y=kx+b,∵点A(0,2),点B(2,0)在直线AB上,∴有,解得.即直线AB的解析式为y=﹣x+2,∵直线y=﹣x+2与y=﹣x平行,∴点P到底OQ的距离为(平行线间距离处处相等).∵△OPQ的面积S△OPQ=OQ•h=OQ=,∴OQ=2.由两点间的距离公式可知OQ==2,解得:m=±,∴点Q的坐标为(,﹣)或(﹣,).故答案为:(,﹣)或(﹣,).方法二:当P点与A重合时,则△OPQ底OP为2,∵△OPQ的面积为,∴△OPQ的高为,即点Q的横坐标为﹣,∵点Q在直线y=﹣x上,∴点Q的坐标为(﹣,);当P点与B重合时,同理可求出点Q的坐标为(,﹣).综上即可得出点Q的坐标为(,﹣)或(﹣,).17.【解答】方法一:解:设直线AB的解析式为:y=kx+b,把A(0,2),B(3,4)代入得:,解得:k=,b=2,∴直线AB的解析式为:y=x+2;∵点B与B′关于直线AP对称,设B′坐标为(a,0)∴线段BB′的中点坐标为(,2)∵线段BB′的中点在直线AP上,且A点坐标为(0,2)∴A点为线段BB′的中点,即A、B、B′三点共线∴AP⊥AB,∴设直线AP的解析式为:y=﹣x+c,把点A(0,2)代入得:c=2,∴直线AP的解析式为:y=﹣x+2,当y=0时,﹣x+2=0,解得:x=,∴点P的坐标为:();故答案为:().方法二:解:如图,连接AB、AB′∵A(0,2),B(3,4)∴AB==∵点B与B′关于直线AP对称∴AB′=AB=,在Rt△AOB′中,B′O==3∴B′点坐标为(﹣3,0)设直线BB′方程为y=kx+b将B(3,4),B′(﹣3,0)代入得:,解得k=,b=2∴直线BB′的解析式为:y=x+2,∴直线AP的解析式为:y=﹣x+2,当y AP=0时,﹣x+2=0,解得:x=,∴点P的坐标为:();故答案为:().18.【解答】解:①如图,作M点关于直线x=4的对称点M′,然后作M′F⊥直线y=﹣x﹣1于F,交直线x =4于E,此时ME+EF有最小值,最小值为M′F;∵y=﹣x﹣1与x轴和y轴分别交于B、C两点,令x=0,可得y=﹣1,令y=0,可得x=﹣2,∴B(﹣2,0),C(0,﹣1),∴OB=2,OC=1,∴BC==,∵M(3,0),∴M′(5,0),∴BM′=5+2=7,∵M′F⊥直线BC,∴∠BFM′=90°=∠BOC,∵∠OBC=∠FBM′∴△BOC∽△BFM′,∴,即,解得:M′F=,∴ME+EF的最小值为;②∵直线M′F与直线y=﹣x﹣1互相垂直,∴直线M′F与直线y=﹣x﹣1的k互为负倒数,∴设直线M′F的关系式为:y=2x+b,将M′(5,0),代入y=2x+b,可得:b=﹣10,∴直线M′F的关系式为:y=2x﹣10,将直线y=2x﹣10与直线y=﹣x﹣1联立方程组得:,解得:,∴点F的坐标为(,﹣).故答案为:;(,﹣).19.【解答】解:解:过P作MN⊥y轴,交y轴于M,交AB于N,过D作DH⊥y轴,交y轴于H,∠CMP=∠DNP=∠CPD=90°,∴∠MCP+∠CPM=90°,∠MPC+∠DPN=90°,∴∠MCP=∠DPN,∵P(1,1),∴OM=BN=1,PM=1,在△MCP和△NPD中,∴△MCP≌△NPD(AAS),∴DN=PM,PN=CM,∵BD=2AD,∴设AD=a,BD=2a,∵P(1,1),∴BN=2a﹣1,则2a﹣1=1,∴a=1,即BD=2.∵直线y=x,∴AB=OB=3,∴点D(3,2)∴PC=PD===,在Rt△MCP中,由勾股定理得:CM===2,则C的坐标是(0,3),设直线CD的解析式是y=kx+3,把D(3,2)代入得:k=﹣,即直线CD的解析式是y=﹣x+3,∴组成方程组解得:∴点Q(,),故答案为:(,).20.【解答】解:当x=0时,y=2x+4=4,∴A(0,4);当y=2x+4=0时,x=﹣2,∴C(﹣2,0).∴OA=4,OC=2,∴AC==2.如图所示.过点B作BD⊥x轴于点D.∵∠ACO+∠ACB+∠BCD=180°,∠ACO+∠CAO=90°,∠ACB=90°,∴∠CAO=∠BCD.在△AOC和△CDB中,,∴△AOC≌△CDB(AAS),∴CD=AO=4,DB=OC=2,OD=OC+CD=6,∴点B的坐标为(﹣6,2).如图所示.取AC的中点E,连接BE,OE,OB,∵∠AOC=90°,AC=2,∴OE=CE=AC=,∵BC⊥AC,BC=2,∴BE==5,若点O,E,B不在一条直线上,则OB<OE+BE=5+.若点O,E,B在一条直线上,则OB=OE+BE=5+,∴当O,E,B三点在一条直线上时,OB取得最大值,最大值为5+,故答案为:5+.三.解答题(共10小题)21.【解答】解:(1)将点A、B的坐标代入一次函数表达式:y=kx+b得:,解得:,故直线l的表达式为:;(2)在Rt△ABC中,由勾股定理得:AB2=OA2+OB2=32+22=13∵△ABC为等腰直角三角形,∴S△ABC=AB2=;(3)连接BP,PO,P A,则:①若点P在第一象限时,如图1:∵S△ABO=3,S△APO=a,S△BOP=1,∴S△ABP=S△BOP+S△APO﹣S△ABO=,即,解得;②若点P在第四象限时,如图2:∵S△ABO=3,S△APO=﹣a,S△BOP=1,∴S△ABP=S△BOP+S△APO﹣S△ABO=,即,解得a=﹣3;故:当△ABC与△ABP面积相等时,实数a的值为或﹣3.22.【解答】解:(1)∵a2﹣4a+4+|2a+b|=0,∴(a﹣2)2+|2a+b|=0,∴a=2,b=4.(2)由(1)知,b=4,∴B(0,4).∴OB=4.∵点P在直线AB的左侧,且在x轴上,∠APB=45°∴OP=OB=4,∴B(4,0).(3)由(1)知a=﹣2,b=4,∴A(2,0),B(0,4)∴OA=2,OB=4,∵△ABP是直角三角形,且∠APB=45°,∴只有∠ABP=90°或∠BAP=90°,如图,①当∠ABP=90°时,∵∠BAP=45°,∴∠APB=∠BAP=45°.∴AB=PB.过点P作PC⊥OB于C,∴∠BPC+∠CBP=90°,∵∠CBP+∠ABO=90°,∴∠ABO=∠BPC.在△AOB和△BCP中,∠AOB=∠BCP=90°,∠ABO=∠BPC,AB=PB,∴△AOB≌△BCP(AAS).∴PC=OB=4,BC=OA=2.∴OC=OB﹣BC=2.∴P(﹣4,2).②当∠BAP=90°时,过点P'作P'D⊥OA于D,同①的方法得,△ADP'≌△BOA(AAS).∴DP'=OA=2,AD=OB=4.∴OD=AD﹣OA=2.∴P'(﹣2,2)).即:满足条件的点P(﹣4,2)或(﹣2,﹣2).23.【解答】解:(1)①由題意,,解得:,所以C(4,4).②观察图象可知x>4时,直线AB位于直线OC的下方,即x>4时,﹣x+10<x.(2)由题意,在OC上截取OM=OP,连结MQ,∵ON平分∠AOC,∴∠AOQ=∠COQ,又OQ=OQ.∴△POQ≌△MOQ(SAS),∴PQ=MQ,∴AQ+PQ=AQ+MQ,当A、Q、M在同一直銭上,且AM⊥OC吋,AQ+MQ最小,即AQ+PQ存在最小値;∴AB⊥ON,∴∠AEO=∠CEO,∴△AEO≌△CEO(ASA),∴OC=OA=6,∵△OAC的面积为9,∴OC•AM=9,∴AM=3,∴AQ+PQ存在最小值,最小值为3.24.【解答】解:(1)如图1,作CQ⊥x轴,垂足为Q,∵∠OBA+∠OAB=90°,∠OBA+∠QBC=90°,∴∠OAB=∠QBC,又∵AB=BC,∠AOB=∠Q=90°,∴△ABO≌△BCQ(AAS),∴BQ=AO=4,OQ=BQ+BO=6,CQ=OB=2,∴C(﹣6,2),由A(0,4),C(﹣6,2)可知,直线AC:y=x+4;(2)如图2,作CH⊥x轴于H,DF⊥x轴于F,DG⊥y轴于G,∵AC=AD,AB⊥CB,∴BC=BD,∴△BCH≌△BDF(AAS),∴BF=BH=4,∴OF=OB=2,∴DG=OB,∴△BOE≌△DGE(AAS),∴BE=DE;(3)如图3,直线BC:y=﹣x﹣1,P(﹣,k)是线段BC上一点,∴P(﹣,),由y=x+4知M(﹣12,0),∴BM=10,则S△BCM=10.设点N(n,0),则BN=|n+2|,假设存在点N使直线PN平分△BCM的面积,则BN•y C=×10,n=或﹣,故点N的坐标为:(,0)或(﹣,0).25.【解答】解:(1)OA=OB=3,则点A、B的坐标分别为:(3,0)、(0,3),将点A、B的坐标代入一次函数表达式:y=kx+b得:,解得:,故直线11的表达式为:y=﹣x+3…①;(2)联立l1、l2的表达式得:,解得:,故点D(2,1);△OCD的面积=×OA•y D=3×1=;(3)△COE与△DEP的面积相等,则S△CDO=S△CDE+S△OCE=S△PED+S△CED=S△PCD,则点P、O到CD的距离相等,故OP所在的直线与CD平行,则直线OP的表达式为:y=x…②,联立①②并解得:x=,则点P(,).26.【解答】解:(1)设y=0,则x=6;设点x=0,则y=6,故点B的坐标为(6,0),点C的坐标为(0,8);(2)S△OAC=×CO×x A=×8×3=12;(3)存在点M使S△OMC=S△OAC,设M的坐标为(x,y);OA的解析式是y=mx,则3m=4,解得:,则直线OA的解析式是:,∵当S△OMC=S△OAC时,即,又∵OC=8,∴,当M在线段OA上时,x>0,所以时,y=1,则M的坐标是;当M在射线上时,则y=7,则M的坐标是;则y=9,则M的坐标是,综上所述:M的坐标是:或或;(4)在Rt△OBC中,∠COB=90°,OB=6,OC=8,∴,∵△BCN沿直线BN折叠后,所得三角形为△BDN,∴CN=DN,BD=BC=10,∴OD=4在Rt△ODN中,设ON=x,则DN=8﹣x,∴42+x2=(8﹣x)2∴x=3,故点N(0,3),设直线AM的解析式为y=kx+b(k≠0)代入A(6,0),N(0,3)得:,解得,∴直线AM的解析式为.27.【解答】解:(1)∵点A的坐标为(﹣2,0),∴OA=2,∵OB=2OA=4,∴B(0,4),把A(﹣2,0)和B(0,4)代入y=kx+b中得:,解得:,∴直线AB解析式为:y=2x+4;(2)∵∠AOB=90°,∴∠AO1B1=90°,由平移得:OO1=6,O1B1=OB=4,由勾股定理得:OB1==2,即线段OB1的长是2;(3)△AOB扫过的面积=+4×6=28.28.【解答】解:(1)∵点E是直线y=x+2上一点,点E的纵坐标是6,∴x+2=6,解得,x=4,∴点E的坐标是(4,6),∵点T(x,y)是点D和E的融合点,∴x==,y==2,∴点T的坐标为(,2),故答案为:(,2);(2)设点E的坐标为(a,a+2),∵点T(x,y)是点D和E的融合点,∴x=,y=,解得,a=3x﹣3,a=3y﹣2,∴3x﹣3=3y﹣2,整理得,y=x﹣;(3)设点E的坐标为(a,a+2),则点T的坐标为(,),当∠THD=90°时,点E与点T的横坐标相同,∴=a,解得,a=,此时点E的坐标为(,),当∠TDH=90°时,点T与点D的横坐标相同,∴=3,解得,a=6,此时点E的坐标为(6,8),当∠DTH=90°时,该情况不存在,综上所述,当△DTH为直角三角形时,点E的坐标为(,)或(6,8).29.【解答】解:(1)把A(6,0)代入y=kx+8中,得6k+8=0,解得:,∴,把x=3代入,得y=4,∴C(3,4);(2)作CF⊥x轴于点F,EG⊥x轴于点G,∵△CDE是等腰直角三角形,∴CD=DE,∠CDE=90°,∴∠CDF=90°﹣∠EDG=∠DEG,且∠CFD=∠DGE=90°,∴△CDF≌△DEG(AAS)∴CF=DG=4,DF=EG=3﹣m,∴OG=4+m,∴E(4+m,m﹣3);(3)点E(4+m,m﹣3),则点E在直线l:y=x﹣7上,设:直线l交y轴于点H(0,﹣7),过点O作直线l的对称点O′,∵直线l的倾斜角为45°,则HO′∥x轴,则点O′(7,﹣7),连接CO′交直线l于点E′,则点E′为所求点,OC是常数,△OCE周长=OC+CE+OE=OC+OE′+CE′=OC+CE′+O′E′=OC+CO′为最小,由点C、O′的坐标得,直线CO′的表达式为:y=﹣x+联立,解得:,故:.30.【解答】解:(1)y=k1x+6,当x=0时,y=6,∴OB=6,∵OB=OA,∴OA=2,∴A(﹣2,0),把A(﹣2,0)代入:y=k1x+6中得:﹣2k1+6=0,k1=,∴直线l1的解析式为:y=x+6;(2)如图1,过C作CH⊥x轴于H,∵C(,1),∴OH=,CH=1,Rt△ABO中,AB==4,∴AB=2OA,∴∠OBA=30°,∠OAB=60°,∵CD⊥AB,∴∠ADE=90°,∴∠AED=30°,∴EH=,∴OE=OH+EH=2,∴E(2,0),把E(2,0)和C(,1)代入y=k2x+b中得:,解得:,∴直线l2:y=﹣x+2,∴F(0,2)即BF=6﹣2=4,则,解得,∴D(﹣,3),∴S△BCD=BF(x C﹣x D)==4;(3)分四种情况:①当Q在y轴的正半轴上时,如图2,过D作DM⊥y轴于M,过C作CN⊥y轴于N,∵△QCD是以CD为底边的等腰直角三角形,∴∠CQD=90°,CQ=DQ,∴∠DMQ=∠CNQ=90°,∴∠MDQ=∠CQN,∴△DMQ≌△QNC(AAS),∴DM=QN,QM=CN=,设D(m,m+6)(m<0),则Q(0,﹣m+1),∴OQ=QN+ON=OM+QM,即﹣m+1=m+6+,m==1﹣2,∴Q(0,2);②当Q在x轴的负半轴上时,如图3,过D作DM⊥x轴于M,过C作CN⊥x轴于N,同理得:△DMQ≌△QNC(AAS),∴DM=QN,QM=CN=1,设D(m,m+6)(m<0),则Q(m+1,0),∴OQ=QN﹣ON=OM﹣QM,即m+6﹣=﹣m﹣1,m=5﹣4,∴Q(6﹣4,0);③当Q在x轴的负半轴上时,如图4,过D作DM⊥x轴于M,过C作CN⊥x轴于N,同理得:△DMQ≌△QNC(AAS),∴DM=QN,QM=CN=1,设D(m,m+6)(m<0),则Q(m﹣1,0),∴OQ=QN﹣ON=OM+QM,即﹣m﹣6﹣=﹣m+1,m=﹣4﹣5,∴Q(﹣4﹣6,0);④当Q在y轴的负半轴上时,如图5,过D作DM⊥y轴于M,过C作CN⊥y轴于N,同理得:△DMQ≌△QNC(AAS),∴DM=QN,QM=CN=,设D(m,m+6)(m<0),则Q(0,m+1),∴OQ=QN﹣ON=OM+QM,即﹣m﹣6+=﹣m﹣1,m=﹣2﹣1,∴Q(0,﹣2);综上,存在点Q,使△QCD是以CD为底边的等腰直角三角形,点Q的坐标是(0,±2)或(6﹣4,0)或(﹣4﹣6,0).。
B C D F A E 九年级数学上期期末1—23题型综合训练1
一、选择:
1、图中所示几何体的俯视图是 ( )
2、在△ABC 中,若∠A :∠B :∠C=1:2:3,则a :b :c 为( )
A 、1:2:3
B 、1:3:2
C 、1:3:3
D 、1:2:3
3、如图, AB=CD,DE=AF,CF=BE, ∠AFB=800, ∠CDE=600,那么∠ABC 等于( ) A .800 B .600 C .400 D .200
4、已知反比例函数的图像经过(-3,1),则此反比例函数的图像( ) A 、 一三象限 B 、二四象限 C 、一四象限 D 、二三象限
5、函数y =-x+1与x y 1
- 在同一坐标系内的图象可以是( )
A 、41
B 、31
C 、127
D 、74
二、填空:(每题3分,共15分)
6、如图4,□ABCD 中,对角线AC 、BD 交于点O ,请你写出其中的一对全等三角形_________________.
7、如图5,在△ABC 中,∠C=900,AD 平分∠CAB ,BC=8cm ,BD=5cm ,那么点D 到直线AB 的距离是______________. 8、如图6,E 、F 、G 、H 分别是四边形ABCD 四条边的中点,要使四边形EFGH 为矩形,四边形ABCD 应具备的条件是______________________, 三.解答题 9、(1)解方程:3x 2+8x-3=0 10、正比例函数y =mx 和反比例函数y =x k 的图象相交于A 、B 两点,已知A 点的横坐标是1,点B 的坐标是—3, (1)求A 、B 两点的坐标 (2)写出这两个函数的表达式。
11、如图:E 、F 是平行四边形ABCD 的对角线AC 上两点,且AE=CF ,求证:四边形DEBF 是平行四边形 12、如图A 、B 两座城市相距100Km ,现计划在这两座城市之间修筑一条高速公路(即线段AB )经测量,森林保护区中心P 点在A 城市的北偏东300方向B 城市的北偏西450方向上,已知森林保护区的范围在以P 为圆心,50 Km 为半径的圆形区域内,试问:计划修筑的这条高速公路会不会穿越保护区?为什么? 主视方 A B C D
密 封 线 禁 止 答 题 图5 C B D A A C B D 图4 图6 D
C
B A
H G
F
E
x y O (A ) y O (B ) y O (C ) x y
O (D )
(D )(C )(B )(A )南
西东北
九年级数学上期期末1—23题型综合训练2
一、选择:
1、已知等腰梯形的底角是600,两底边分别是4cm 和16cm ,则它的腰长为( )
A.3cm
B.6cm
C.12cm
D.63cm
2、在△ABC 中,∠C=900,cosA=53
,AB=15,则AC 的长是( )
A 、3
B 、6
C 、9
D 、12
3、一个口袋中有4个白球,1个红球,7个黄球,搅匀后随机从袋中摸出1个球,则摸出的球是白球的概率是( )
A 、41
B 、31
C 、127
D 、74
4、一件产品原来每件的成本是100元,由于连续两次降低成本,现在的成本是81元,则平均每次降低成本 ( )
A 、8.5%
B 、9%
C 、9.5%
D 、10%
5、在△ABC ,∠B=450,∠C=300, BC 边上的高AD 为3,则ABC 的长是( )
A 、3+3
B 、2+6
C 、3+33
D 、2+3
二、填空:(每题3分,共15分)
6、一块四周镶有宽度相等的花边的地毯如下图,它的长为8m ,宽为5m .地毯中央长方形图案的面积为18m 2,那么花边有多宽?设花边的宽为x, 则可得方程为_________________________.
7、某地区为估计该地区黄羊的只数,先捕捉20只黄羊给它们分别作上记号然后放还,带有标记的黄羊完全混合于黄羊群后,第二次捕捉40只黄羊,发现其中有2只有标记.从而估计这个地区有黄羊 只.
8、如下图:(A)(B)(C)(D)是一天中四个不同时刻的木杆在地面上的影子,将它们按时间先后顺序进行排列,为 ;
三.解答题 9、020000230cos 445tan 30cos 30tan 60--Sin 10、如图,□ABCD 中,AE 、CF 分别是∠BAD 和∠BCD 的角平分线,根据现有的图形,请添加一个条件,使四边形AECF 为菱形,则添加的一个条件可以是 ,写出证明过程。
(只需写出一个条件即可,图中不能再添加别的“点”和“线”). 11、如图,一次函数b ax y +=的图像与反比例函数x k y =的图像交于M 、N 两点。
(1)利用图中条件,求反比例函数和一次函数的解析式; (2)根据图像写出使反比例函数的值大于一次函数的值的x (3)连接OM 、ON ,求三角形OMN 的面积。
y M (2,m ) N (-1,-4) x O A B C D E F。