九年级数学: 圆周角圆心角综合练习题
- 格式:doc
- 大小:165.62 KB
- 文档页数:5
初三数学圆周角和圆心角的关系试题1.已知,如图,∠BAC的对角∠BAD=100°,则∠BOC=_______度.【答案】160°【解析】由∠BAD=100°可得∠BAC的度数,再根据圆周角定理即可求得结果.∵∠BAD=100°∴∠BAC=80°∴∠BOC=160°.【考点】邻补角定理,圆周角定理点评:本题是圆周角定理的基础应用题,在中考中比较常见,一般以选择题、填空题形式出现,属于基础题,难度不大.2.如图,AB是⊙O的直径, ,∠A=25°,则∠BOD的度数为________.【答案】50°【解析】圆周角定理:同弧或等弧所对的圆周角相等,均等于所对圆心角的一半.∵,∠A=25°∴∠BOD=50°.【考点】圆周角定理点评:本题是圆周角定理的基础应用题,在中考中比较常见,一般以选择题、填空题形式出现,属于基础题,难度不大.3.如图,AB是半圆O的直径,AC="AD,OC=2,∠CAB=30°," 则点O到CD的距离OE=____.【答案】【解析】由AC=AD,∠CAB=30°可得∠CDO的度数,即可得到∠EOD、∠COE的度数,判断出△COE的形状再结合勾股定理即可求得结果.∵AC=AD,∠CAB=30°,OA=OC∴∠CDO=75°,∠COD=60°∴∠EOD=15°∴∠COE=45°∴△COE为等腰直角三角形∵OC=2∴OE=.【考点】三角形内角和定理,勾股定理点评:特殊三角形的性质的应用是初中数学平面图形中极为重要的知识点,与各个知识点结合极为容易,是中考中的热点,在各种题型中均有出现,需多加关注.4.如图,A、B、C、D四个点在同一个圆上,四边形ABCD的对角线把四个内角分成的八个角中,相等的角有( )A.2对B.3对C.4对D.5对【答案】C【解析】圆周角定理:同弧或等弧所对的圆周角相等,均等于所对圆心角的一半.相等的角有∠ADB=∠ACB,∠BAC=∠BDC,∠CAD=∠CBD,∠ACD=∠ABC4对,故选C.【考点】圆周角定理点评:本题是圆周角定理的基础应用题,在中考中比较常见,一般以选择题、填空题形式出现,属于基础题,难度不大.5.如图,D是弧AC的中点,则图中与∠ABD相等的角的个数是( )A.4个B.3个C.2个D.1个【答案】B【解析】圆周角定理:同弧或等弧所对的圆周角相等,均等于所对圆心角的一半.∵D是弧AC的中点∴∠ABD=∠ACD=∠CBD=∠CAD故选B.【考点】圆周角定理点评:本题是圆周角定理的基础应用题,在中考中比较常见,一般以选择题、填空题形式出现,属于基础题,难度不大.6.如图, ,则∠A+∠B等于( )A.100°B.80°C.50°D.40°【答案】C【解析】连接CO并延长交圆于点D,根据圆周角定理即可得到结果.连接CO并延长交圆于点D由图可得∠A+∠B=∠AOD+∠BOD=∠AOB=50°故选C.【考点】圆周角定理点评:辅助线问题是初中数学学习中的难点,能否根据具体情况正确作出恰当的辅助线往往能够体现一个学生对图形的理解能力,因而这类问题在中考中比较常见,在各种题型中均有出现,一般难度较大,需多加关注.7.在半径为R的圆中有一条长度为R的弦,则该弦所对的圆周角的度数是( )A.30°B.30°或150°C.60°D.60°或120°【答案】B【解析】根据圆的性质可得这条弦与半径围成的三角形为等边三角形,再根据圆周角定理即可求得结果.由题意得这条弦与半径围成的三角形为等边三角形则该弦所对的圆周角的度数是30°或150°故选B.【考点】圆周角定理点评:特殊三角形的性质的应用是初中数学平面图形中极为重要的知识点,与各个知识点结合极为容易,是中考中的热点,在各种题型中均有出现,需多加关注.8.如图,⊙O的直径AB=8cm,∠CBD=30°,求弦DC的长.【答案】4cm【解析】连接OC、OD,根据圆周角定理可得∠COD=60°,即可得到△COD是等边三角形,根据等边三角形的性质即可求得结果.连接OC、OD,则OC=OD=4cm,∠COD=60°,故△COD是等边三角形,从而CD=4cm.【考点】圆周角定理,等边三角形的判定和性质点评:辅助线问题是初中数学学习中的难点,能否根据具体情况正确作出恰当的辅助线往往能够体现一个学生对图形的理解能力,因而这类问题在中考中比较常见,在各种题型中均有出现,一般难度较大,需多加关注.9.如图,AB为半圆O的直径,弦AD、BC相交于点P,若CD=3,AB=4,求tan∠BPD的值【答案】【解析】连接BD, 根据圆周角定理可得∠ADB=90°,证得△PCD ∽△PAB,根据相似三角形的性质结合余弦的定义可得∠BPD的余弦值,再结合勾股定理即可求得结果.连接BD,∵AB是直径,∴∠ADB=90°.∵∠C=∠A,∠D=∠B,∴△PCD ∽△PAB,∴.在Rt△PBD中,cos∠BPD==,设PD=3x,PB=4x,则BD=,∴tan∠BPD=.【考点】圆周角定理,相似三角形的判定和性质,勾股定理,三角函数点评:本题综合性强,知识点较多,因而这类问题在中考中比较常见,在各种题型中均有出现,一般难度较大,需多加关注.10.在足球比赛场上,甲、乙两名队员互相配合向对方球门MN进攻.当甲带球部到A点时,乙随后冲到B点,如图所示,此时甲是自己直接射门好,还是迅速将球回传给乙,让乙射门好呢?为什么?(不考虑其他因素)【答案】让乙射门较好【解析】根据圆周角定理结合三角形外角的性质分析即可得到结论.迅速回传乙,让乙射门较好,在不考虑其他因素的情况下, 如果两个点到球门的距离相差不大,要确定较好的射门位置,关键看这两个点各自对球门MN的张角的大小,当张角越大时,射中的机会就越大,如图所示,则∠A<MCN=∠B,即∠B>∠A, 从而B处对MN的张角较大,在B处射门射中的机会大些.【考点】圆周角定理,三角形外角的性质点评:本题是圆周角定理的基础应用题,在中考中比较常见,一般以选择题、填空题形式出现,属于基础题,难度不大.。
九年级上册数学弧、弦、圆心角和圆周角练习及答案1.下列说法中,正确的是()A.等弦所对的弧相等B.等弧所对的弦相等C.圆心角相等,所对的弦相等D.弦相等所对的圆心角相等2.如图24-1-24,已知CD为⊙O的直径,过点D的弦DE平行于半径OA,若∠D的度数是50°,则∠C的度数为()A.50°B.40°C.30°D.25°图24-1-24 图24-1-253.如图24-1-25,已知AB是⊙O的直径,BC=CD=DE,∠BOC=40°,那么∠AOE =()A.40°B.50°C.60°D.120°4.如图24-1-26所示,A,B,C,D是圆上的点,∠1=68°,∠A=40°.则∠D=______.图24-1-26 图24-1-275.在半径为5 cm的⊙O中,60°的圆心角所对的弦长为________cm.6.如图24-1-27,AB为⊙O的直径,点C,D在⊙O上.若∠AOD=30°,则∠BCD的度数是________.7.如图24-1-28,在⊙O中,AB=AC,∠B=50°.求∠A的度数.图24-1-288.一个圆形人工湖如图24-1-29所示,弦AB是湖上的一座桥,已知桥AB长100 m,测得圆周角∠ACB=45°,则这个人工湖的直径AD为()图24-1-29 A .50 2 m B .100 2 m C .150 2 m D .200 2 m9.如图24-1-30,已知AB 是⊙O 的直径,AC 是弦,过点O 作OD ⊥AC 于点D ,连接BC .(1)求证:OD =12BC ; (2)若∠BAC =40°,求∠AOC 的度数.图24-1-3010.如图24-1-31,AB 是⊙O 的直径,点C 是BD 的中点,CE ⊥AB 于点E ,BD 交CE 于点F .(1)求证:CF =BF ;(2)若CD =6, AC =8,求⊙O 的半径及CE 的长.图24-1-31答案:1.B 2.D 3.C4.28° 5.5 6.105°7.解:∵AB =CD ,∴AB =AC .∴∠B =∠C .又∵∠B =50°,∴∠C =50°.∵∠A +∠B +∠C =180°,∴∠A =180°-(∠B +∠C )=80°.8.B9.(1)证明:∵OD ⊥AC ,∴AD =CD .∵AB 是⊙O 的直径,∴OA =OB .∴OD 是△ABC 的中位线.∴OD =12BC . (2)解:连接OC ,∵OA =OC ,∠BAC =40°,∴∠OCA =40°.∴∠AOC =180°-(40°+40°)=100°.10.(1)证明:如图D32,∵AB 是⊙O 的直径,图D32∴∠ACB =90°.又∵CE ⊥AB ,∴∠CEB =90°.∴∠A +∠B =90°,∠2+∠B =90°.∴∠A =∠2.又∵C 是弧BD 的中点,∴∠1=∠A .∴∠1=∠2. ∴ CF =BF . (2)解:由(1)可知:CD =BC ,∴CD =BC =6.又∵在Rt △ACB 中,AC =8,∴AB =10,即⊙O 的半径为5.S △ACB =AC ·BC 2=CE ·AB 2,∴CE =245.。
浙教版九年级数学同步试卷圆心角圆周角( 3 241 C AB O BAC 20° BOC ( )A20°°C40°D50°2 R R ( ) A3Q°B60°C30° 150°D60° 120°3 AOB 100° ACB ( )A130°B120°C100° D80°4 ABCD A=85° DCE ( )A75°R85°C70° D 5B O A D 80°O AB= BC=2 DA60°B120°C135°D150°6 AB O C AC 2BC()A AC 2BCB AB=2BC C AB=2ACD BC=2AC7A BC D8A BC D(324 )9 A B C O O R AB AC R BAC10、如图,点A, B, C 在⊙ O上,∠ A=25°,∠ B= 20°,则∠ AOB=。
11.如图,⊙ O的直径 AB和弦 CD的延伸线订交于点P,∠ AOC=64°,∠ BOD= 16°,则∠ APC的度数为..b5E2RGbCAP12、如图,点A、 B、 C 在⊙ 0 上,当 AC均分∠ 0CB时,能得出结论:(写出随意两个) 。
13.等腰直角三角形外接圆半径为3,则这个三角形三边的长为14、假如一个三角形的外心是这个三角形两条中线的交点,那么这个三角形的形状是15、弦 BC分⊙O为 l : 3两部分,⊙ 0的直径等于4,则 BC=。
16、如图圆中弦AB、 CD订交于点E,,则∠ AEC=三、解答题 (17 , 18 每题 5 分, 19— 25 每题 6 分,共 52 分 )17.如图,在△ABC中, BD、是两条高。
九年级数学圆心角圆周角专项练习题一、单选题1.如图,⊙O中,半径OC⊙弦AB于点D,点E在⊙O上,⊙E=22.5°⊙AB=4,则半径OB等于()AB.2C.D.32.如图,△ABC的顶点A、B、C均在⊙O上,若∠ABC+∠AOC=75°,则∠OAC的大小是()A.25°B.50°C.65°D.75°3.如图,在⊙O中,AB是直径,CD是弦,AB⊥CD,垂足为E,连接CO,AD,∠BAD=20°,则下列说法中正确的是()A.AD=2OB B.CE=EO C.∠OCE=40°D.∠BOC=2∠BAD 4.在半径为1的弦所对的弧的度数为()A.90B.145C.90或270D.270或145 5.如图,ABC是O的内接三角形,,30AB BC BAC=∠=︒,AD是直径,8AD=,则AC的长为()A.4B.CD.6.下列说法正确的有()①不在同一条直线上的三点确定一个圆;②平分弦的直径垂直于弦;③在同圆或等圆中,如果两条弦相等,那么他们所对的圆周角相等;④圆内接平行四边形是矩形.A.1个B.2个C.3个D.4个二、填空题7.如图,△ABC内接于☉O,∠CAB=30°,∠CBA=45°,CD⊥AB于点D,若☉O 的半径为2,则CD的长为_____8.如图,已知点C是⊙O的直径AB上的一点,过点C作弦DE,使CD=CO.若AD 的度数为35°,则BE的度数是_____.9.如图,AB是⊙O的直径,CD是弦,若∠ABC=63°,则∠D的度数是__.10.如图,在⊙O中,AB=2CD,那么AB________2CD(填“>,<或=”)三、解答题11.如图,已知A⊙B⊙C⊙D是⊙O上的四点,延长DC⊙AB相交于点E.若BC=BE.求证:△ADE是等腰三角形.12.如图,AB是⊙O的一条弦,OD⊥AB,垂足为C,交⊙O于点D,点E在⊙O上.(1)若∠AOD=52°,求∠DEB的度数;(2)若AB=24,CD=8,求⊙O的半径长.13.如图,在ABC中,AC BC,D是AB上一点,⊙O经过点A、C、D,交BC于点E,过点D作//DF BC,交⊙O于点F,求证:(1)四边形DBCF是平行四边形(2)AF EF15.如图,是一个高速公路的隧道的横截面,若它的形状是以O为圆心的圆的一部分,路面AB=12米,拱高CD=9米,求圆的半。
初三数学《圆心角与圆周角》综合练习题圆心角与圆周角:
圆心角是指顶点在圆心的角,而圆周角则指顶点在圆上的角,二者注意区分。
重要结论:
①同弧(同弦)所对的圆周角是圆心角的一半(即?)
②直径所对的圆周角是直角,即90o
解题思路:
结合垂径定理、圆心角和圆周角的转化关系,加上以前学过的直角三角形性质、三角形的外角性质和角平分线的性质,去解决具体题目,注意分析过程中灵活运用相关知识点。
练习题:
注意:先分析题目条件,然后找出角与角之间的关系,标注在图上,逐个分析,结合相关知识点,很容易解答。
要多联系,才能熟练运用。
圆周角和圆心角的关系同步习题一.选择题1.如图,四边形ABCD内接于⊙O,连接OA,OC,若∠AOC:∠ADC=2:3,则∠ABC 的度数为()A.30°B.40°C.45°D.50°2.已知:如图,⊙O的两条弦AE、BC相交于点D,连接AC、BE,若∠ACB=50°,则下列结论中正确的是()A.∠AOB=50°B.∠ADB=50°C.∠AEB=30°D.∠AEB=50°3.如图,A、B、C是⊙O上的点,且∠ACB=140°.在这个图中,画出下列度数的圆周角:40°,50°,90°,140°,仅用无刻度的直尺能画出的有()A.1个B.2个C.3个D.4个4.如图,AB是⊙O的直径,CD是⊙O的弦,∠ACD=30°,AD=,下列说法错误的是()A.∠B=30°B.∠BAD=60°C.BD=2D.AB=25.如图,AB为半圆O的直径,C是的中点,D是的中点,在上取一点M,上取一点N,使得∠AMN=110°,则下列说法正确的是()A.点N在上,且NC>ND B.点N在上,且NC<NDC.点N在上,且ND>NB D.点N在上,且ND<NB6.如图,AB是⊙O的弦,OC⊥AB交⊙O于点C,点D是⊙O上一点,∠ADC=25°,则∠BOC的度数为()A.30°B.40°C.50°D.60°7.如图,⊙O的直径AB⊥CD弦,∠1=2∠2,则tan D=()A.B.C.2D.8.如图,在△ABC中,以BC为直径的⊙O,交AB的延长线于点D,交AC于点E,连结OD,OE,若∠DOE=α,则∠A的度数为()A.αB.90°﹣αC.D.90°﹣9.如图,四边形ABCD内接于⊙O,AB为直径,AD=CD,过点D作DE⊥AB于点E,连接AC交DE于点F.若sin∠CAB=,DF=5,则AB的长为()A.10B.12C.16D.2010.如图,AB是⊙O的直径,EF,EB是⊙O的弦,且EF=EB,EF与AB交于点C,连接OF,若∠AOF=40°,则∠OFE的度数是()A.30°B.20°C.40°D.35°二.填空题11.四边形ABCD是⊙O的内接四边形,∠A:∠C=4:1,则∠A=°.12.如图,已知点E为圆外的一点,EA交圆于点B,EC交圆于点D,若=80°,=30°,则∠BED=度.13.如图,在扇形AOB中,点C、D在上,连接AD、BC交于点E,若∠AOB=120°,的度数为50°,则∠AEB=°.14.如图,AB是⊙O的直径,AC、BC是⊙O的弦,直径DE⊥AC于点P.若点D在优弧上,AB=10,BC=4,则DP=.15.如图,点A、B、C在⊙O上,D是的中点,CD交OB于点E.若∠AOB=120°,∠OBC=50°,则∠OEC的度数为°.三.解答题16.如图,AB是⊙O的直径,C、D、E是⊙O上的点,AD=CD,∠E=68°,求∠ABC 的度数.17.如图,⊙O的半径为2,点A为⊙O上一点,OD⊥弦BC于D,如果∠BAC=60°.求OD的长和∠OCB度数.18.已知AB是⊙O的直径.(Ⅰ)如图①,==,∠MON=35°,求∠AON的大小;(Ⅱ)如图②,E,F是⊙O上的两个点,AD⊥EF于点D,若∠DAE=20°,求∠BAF 的大小.参考答案一.选择题1.解:设∠AOC=2x°,∠ADC=3x°,∵圆心角∠AOC和圆周角∠ABC都对着,∴∠ABC=AOC=x°,∵四边形ABCD是⊙O的内接四边形,∴∠ADC+∠ABC=180°,∴3x+x=180,解得:x=45,即∠ABC=45°,故选:C.2.解:∵∠ACB=50°,∴∠AEB=∠ACB=50°,∠AOB=2∠ACB=100°,∠ADB=∠ACB+∠CAD>∠ACB=50°,故选项A、B、C不正确,只有选项D正确,故选:D.3.解:作直径AD,连接BD、AB,如图,∵∠ACB+∠D=180°,∴∠D=180°﹣140°=40°,∵AD为直径,∴∠ABD=90°,∴∠BAD=90°﹣∠D=50°;在上取一点E,连接AE、BE,∴∠AEB=∠ACB=140°.故选:D.4.解:∵AB是⊙O的直径,∴∠ADB=90°,∵∠B=∠ACD=30°,∴∠BAD=90°﹣∠B=90°﹣30°=60°,故选项A、B不符合题意,在Rt△ADB中,BD=AD=3,AB=2AD=2,故选项C符合题意,选项D不符合题意,故选:C.5.解:连接MD,OD、ON、BD,如图,∵C是的中点,D是的中点,∴∠BOD=×90°=45°,∵OB=OD,∴∠OBD=∠ODB=(180°﹣45°)=67.5°,∴∠AMD=180°﹣∠ABD=180°﹣67.5°=112.5°,∵∠AMN=110°,∴点N在上,∵∠DMN=∠AMD﹣∠AMN=2.5°,∴∠DON=2∠DMN=2×2.5°=5°,∴∠BON=40°,∴>,∴BN>DN.故选:D.6.解:∵OC⊥AB,∴,∴∠AOC=∠BOC,∵∠ADC=25°,∴∠AOC=50°,∴∠BOC=50°,故选:C.7.解:设CD交AB于H.∵OB=OC,∴∠2=∠3,∵AB⊥CD,∴∠1+∠2+∠3=90°,CH=HD,∵∠1=2∠2,∴4∠3=90°,∴∠3=22.5°,∴∠1=45°,∴CH=OH,设DH=CH=a,则a,BH=a+a,∴tan D===1+,故选:D.8.解:连接CD,∵BC为⊙O的直径,∴∠BDC=90°,∴∠A+∠ACD=90°,∵∠DOE=α,∴∠DCE=α,∴∠A=90°﹣α.故选:D.9.解:连接BD,如图,∵AB为直径,∴∠ADB=∠ACB=90°,∵AD=CD,∴∠DAC=∠DCA,而∠DCA=∠ABD,∴∠DAC=∠ABD,∵DE⊥AB,∴∠ABD+∠BDE=90°,而∠ADE+∠BDE=90°,∴∠ABD=∠ADE,∴∠ADE=∠DAC,∴FD=F A=5,在Rt△AEF中,∵sin∠CAB=,∴EF=3,∴AE==4,DE=5+3=8,∵∠ADE=∠DBE,∠AED=∠BED,∴△ADE∽△DBE,∴DE:BE=AE:DE,即8:BE=4:8,∴BE=16,∴AB=4+16=20.故选:D.10.解:如图,连接BF,OE.∵EF=EB,OE=OE,OF=OB,∴△OEF≌△OEB(SSS),∴∠OFE=∠OBE,∵OE=OB=0F,∴∠OEF=∠OFE=∠OEB=∠OBE,∠OFB=∠OBF,∵∠ABF=∠AOF=20°,∴∠OFB=∠OBE=20°,∵∠OFB+∠OBF+∠OFE+∠OBE+∠BEF=180°,∴4∠EFO+40°=180°,∴∠OFE=35°,故选:D.二.填空题11.解:设∠A=4x°,∠C=x°,∵四边形ABCD是⊙O的内接四边形,∴∠A+∠C=180°,∴4x+x=180,解得:x=36,即∠A=144°,故答案为:144.12.解:连接AD、OA、OC、OB、OD,如图所示:∵=80°,=30°,∴∠AOC=80°,∠BOD=30°,∴∠BAD=∠BOD=15°,∠ADC=∠AOC=40°,∴∠BED=∠ADC﹣∠BAD=40°﹣15°=25°,故答案为:25.13.解:作所对的圆周角∠APB,连接OC、OD、BD,如图,∵∠APB=∠AOB=×120°=60°,∴∠ADB=180°﹣∠APB=180°﹣60°=120°,∵的度数为50°,∴∠COD=50°,∴∠CBD=∠COD=25°,∵∠AEB=∠EDB+∠EBD,∴∠AEB=120°+25°=145°.故答案为145.14.解:∵AB是⊙O的直径,AB=10,∴∠C=90°,OA=OD=5,∴AC===2,∵DE⊥AC,∴AP=CP=AC=,∴OP===2,∴DP=OD+OP=5+2=7,故答案为:7.15.解:连接OD,∵D是的中点,∠AOB=120°,∴∠BOD=∠AOD=∠AOB=60°,由圆周角定理得,∠BCD=∠BOD=30°,∴∠OEC=∠BCD+∠OBC=80°,故答案为:80.三.解答题16.解:连接DB,如图所示:∵∠E=68°,∴∠A=68°,∵AB是⊙O的直径,∴∠ADB=90°,∴∠ABD=90°﹣∠A=90°﹣68°=22°,∵AD=CD,∴,∴∠DBC=∠DBA=22°,∴∠ABC=∠DBC+∠DBA=22°+22°=44°.17.解:∵∠BAC=60°,∴∠BOC=2∠BAC=120°,∵OB=OC,∴∠OBC=∠OCB=(180°﹣120°)=30°,∵OD⊥弦BC,∴∠BDO=90°,∴OD=OB=1.18.解:(I)∵==,∠MON=35°,∴∠MON=∠MOC=∠BOC=35°,∴∠AON=180°﹣∠MON﹣∠MOC﹣∠BOC=180°﹣35°﹣35°﹣35°=75°;(II)连接BF,∵AD⊥直线l,∴∠ADE=90°,∵∠DAE=20°,∴∠AEF=∠ADE+∠DAE=110°,∵A、E、F、B四点共圆,∴∠ABF+∠AEF=180°,∴∠ABF=70°,∵AB是⊙O的直径,∴∠AFB=90°,∴∠BAF=180°﹣∠AFB﹣∠ABF=20°.。
3.4圆周角和圆心角之间的关系同步练习一.选择题1.如图,AB是⊙O的直径,AC是弦,若∠ACO=30°,则sin∠COB的等于()A.B.C.D.2.⊙O中,∠AOB=100°,若C是上一点,则∠ACB等于()A.80°B.100°C.120°D.130°3.如图,==,AD为⊙O的弦,∠BAD=50°,则∠AED等于()A.50°B.60°C.70°D.75°4.如图,圆心为C、直径为MN的半圆上有不同的两点A、B,在CN上有一点P,∠CBP =∠CAP=10°,若的度数是40°,则的度数是()A.10°B.15°C.20°D.25°5.AB为半圆O的直径,弦AD,BC相交于点P,若CD=3,AB=4,则tan∠BPD等于()A.B.C.D.6.如图所示,AB是直径,点E是弧AB中点,弦CD∥AB且平分OE,连AD,∠BAD度数为()A.45°B.30°C.15°D.107.如图,AB是圆O的直径,点C是半圆O上不同于A,B的一点,点D为弧AC的中点,连结OD,BD,AC,设∠CAB=β,∠BDO=α,则()A.α=βB.α+2β=90°C.2α+β=90°D.α+β=45°8.如图,已知A、B、C、D、E是⊙O上的五个点,圆心O在AD上,∠BCD=110°,则∠AEB的度数为()A.70°B.35°C.40°D.20°9.如图,⊙O中,若OA⊥BC、∠AOB=66°,则∠ADC的度数为()A.33°B.56°C.57°D.66°10.如图,四边形ABCD内接于⊙O,AC为⊙O的直径,D为弧AC的中点,过点D作DE ∥AC,交BC的延长线于点E.若⊙O的半径为5,AB=8,则CE的长为()A.4B.C.D.二.填空题11.如图所示,⊙O的直径CD过弦EF的中点G,∠GEO=46°,则∠DCF=.12.如图,AD是⊙O的直径,若∠B=40°,则∠DAC的度数为.13.如图,⊙O的半径为2.弦AB=2,点P为优弧AB上一动点,AC⊥AP交直线PB于点C,则△ABC的最大面积是.14.如图,四边形ABCD是平行四边形,⊙O经过点A,C,D,与BC交于点E,连接AE,若∠D=70°,则∠BAE=°.15.如图,在Rt△ABC中,∠ACB=90°,AC=10,BC=8,点D是BC上一点,BC=3CD,点P是线段AC上一个动点,以PD为直径作⊙O,点M为的中点,连接AM,则AM 的最小值为.三.解答题16.如图,以△ABC的一边为直径的半圆与其它两边AC、BC分别交于点D、E,=.(1)求证;AC=AB;(2)若BC=8,BA=6,求CD的长.17.如图,在⊙O中.(1)若=,∠ACB=80°,求∠BOC的度数;(2)若⊙O的半径为13,且BC=10,求点O到BC的距离.18.如图,⊙O的直径AB=12,半径OC⊥AB,D为弧BC上一动点(不包括B、C两点),DE⊥OC,DF⊥AB,垂足分别为E.F.(1)求EF的长.(2)若点E为OC的中点,①求弧CD的度数.②若点P为直径AB上一动点,直接写出PC+PD的最小值.参考答案一.选择题1.解:∵OA=OC,∠ACO=30°,∴∠OAC=∠ACO=30°,∵∠COB是△AOC的外角,∴∠COB=∠ACO+∠OAC=60°,∴sin∠COB=sin60°=.故选:C.2.解:如图:在优弧上取点D,连接AD,BD,∵⊙O中,∠AOB=100°,∴∠ADB=∠AOB=50°,∵四边形ACBD是⊙O的内接四边形,∴∠ACB=180°﹣∠ADB=130°.故选:D.3.解:连接OA,OB,OC,OD,∵∠BAD=50°,==,∴∠BOD=2∠BAD=100°,∵==,∴AOB=∠BOC=∠COD=∠BOD=50°,∴∠AOD=∠AOB+∠BOC+∠COD=150°,∴∠AED=∠AOD=75°.故选:D.4.解:∵的度数是40°,∴∠ACM=40°∵∠CBP=∠CAP=10°,∴A、C、P、B四点共圆,∴∠ACM=∠ABP=40°,∵∠CPB=10°,∴∠ABC=40°﹣10°=30°,∵AC=BC,∴∠CAB=∠ABC=30°,∴∠ACB=120°,∴∠BCN=180°﹣∠ACM﹣∠ACB=20°,∴的度数是20°.故选:C.5.解:连接BD.则∠CDA=∠ABC.(同圆中同弧AC所对的圆周角相等)同理∠DCB=∠DAB,所以△PCD∽△P AB,==.∵AB直径,∴∠ADB=90°.∴∠PDB=∠ADB=90°,在Rt△PDB中,cos∠DPB==,∴sin∠DPB=.(sin2∠DPB+cos2∠DPB=1)tan∠BPD==.故选:A.6.解:设CD与OE交于P,则连接OC,∵CD∥AB且平分OE,∴OP=•OC,∴sin∠PCO=,∴∠PCO=30°,又∵CD∥AB,∴∠COA=∠PCO=30°,∴∠BAD=∠BOD=15°.故选:C.7.解:如图,设AC与DO交点为E,如图,∵OD=OB,∴∠OBD=∠BDO=α,∴∠DOA=2∠OBD=2α,又∵D为中点,AB为⊙O直径,∴OD⊥AC,∴∠EAO+∠EOA=90°,即2α+β=90°.故选:C.8.解:如图,连接DE,数学∵四边形BCDE是⊙O的内接四边形,∴∠BCD+∠BED=180°,∵∠BCD=110°,∴∠BED=70°,∵AD是⊙O的直径,∴∠AED=90°,∴∠AEB=∠AED﹣∠BED=90°﹣70°=20°,故选:D.9.解:如图,连接OC,OB.∵OA⊥BC,∴=,∴∠AOC=∠AOB=66°,∴∠ADC=∠AOC=33°,数学故选:A.10.解:∵⊙O的半径为5,∴AC=10,∴AD=CD=5,∵AC为⊙O的直径,∴∠ABC=90°,∵AB=8,∴BC=6,∵∠BAD=∠DCE,∵∠ABD=∠CDE=45°,∴△ABD∽△CDE,∴,∴,∴CE=,故选:B.二.填空题11.解:∵CD是直径,EG=GF,∴CD⊥EF,∴=,∴∠CDF=∠EOD,∵∠OGE=90°,∠GEO=46°,∴∠EOD=44°,∴∠DCF=22°.故答案为:22°.12.解:连接CD.∵AD是直径,∴∠ACD=90°,∵∠D=∠B=40°,∴∠DAC=90°﹣40°=50°.故答案为50°.13.解:连结OA、OB,作△ABC的外接圆D,如图1,∵OA=OB=2,AB=2,∴△OAB为等边三角形,∴∠AOB=60°,∴∠APB=∠AOB=30°,∵AC⊥AP,∴∠C=60°,∵AB=2,要使△ABC的最大面积,则点C到AB的距离最大,∵∠ACB=60°,点C在⊙D上,∴∠ADB=120°,如图2,当点C优弧AB的中点时,点C到AB的距离最大,此时△ABC为等边三角形,且面积为AB2=,∴△ABC的最大面积为.故答案为:.14.解:∵四边形ABCD是平行四边形,∠D=70°,∴∠DCB=(180°﹣∠D)=110°,∵四边形AECD是圆内接四边形,∴∠AEB=∠D=70°,∠B=180°﹣∠BCD=70°∴∠BAE=180°﹣70°﹣70°=40°,故答案为:4015.解:如图,连接OM,CM,过点A作AT⊥CM交CM的延长线于T.∵=,∴OM⊥PD,∴∠MOD=90°,∴∠MCD=∠MOD=45°,∵∠ACB=90°,∴∠ACT=45°,∵AT⊥CT,∴∠ATC=90°,∵AC=10,∴AT=AC•sin45°=5,∵AM≥AT,∴AM≥5,∴AM的最小值为5,故答案为5.三.解答题16.(1)证明:∵=,∴∠CAE=∠BAE,∵AB为直径,∴∠AEB=90°,∵∠ABE+∠BAE=90°,∠C+∠CAE=90°,∴∠ABC=∠C,∴AC=AB;(2)解:∵∠CAE=∠CBD,∠ACE=∠BCD,∴△CAE∽△CBD,∴=,即=,∴CD=.17.解:(1)∵=,∴∠ABC=∠ACB=80°,∴∠A=180°﹣80°﹣80°=20°,∴∠BOC=2∠A=40°;(2)作OH⊥BC于H,如图,则BH=CH=BC=5,在Rt△OBH中,OH===12,即点O到BC的距离为12.18.解:(1)连接OD,∵⊙O的直径AB=12,∴圆的半径为12÷2=6,∵OC⊥AB,DE⊥OC,DF⊥AB,∴四边形OFDE是矩形,∴EF=OD=6;(2)①∵点E为OC的中点,∴OE=OC=OD,∴∠EDO=30°,∴∠DOE=60°,∴弧CD的度数为60°;②延长CO交⊙O于G,l连接DG交AB于P,则PC+PD的最小值=DG,∵∠G=∠COD=30°,∵EG=9,数学∴DG===6,∴PC+PD的最小值为6.。
2022-2023学年浙教版九年级数学上册《3.4圆心角、3.5圆周角》优生辅导综合练习题(附答案)一.选择题1.如图,AB为⊙O的直径,点C,D在⊙O上,若∠ADC=130°,则∠BAC的度数为()A.25°B.30°C.40°D.50°2.如图,在⊙O中,=,∠AOB=40°,则∠ADC的度数是()A.40°B.30°C.20°D.15°3.如图,C,D是⊙O上直径AB两侧的两点,设∠ABC=15°,则∠BDC=()A.85°B.75°C.70°D.65°4.如图,AB是⊙O的直径,∠D=32°,则∠AOC等于()A.158°B.58°C.64°D.116°5.如图,△ABC的两顶点A,B在⊙O上,点C在圆外,∠C=46°,边AC交⊙O于点D,DE∥BC经过圆心交⊙O于点E,则的度数为()A.44°B.80°C.88°D.92°6.一副学生三角板放在一个圈里恰好如图所示,顶点D在圆圈外,其他几个顶点都在圆圈上,圆圈和AD交于点E,已知AC=8cm,则这个圆圈上的弦CE长是()A.6cm B.6cm C.4cm D.cm 二.填空题7.如图,AB为⊙O的直径,点C、D在⊙O上.若∠ACD=50°,则∠BAD的大小为°.8.如图所示,在△ABC中,AB=AC,以AB为直径作半圆O,交BC于点D,交AC于点E.若∠BAC=44°,BD=2,则弧AE的度数是,DC的长为.9.如图,在△ABC中,∠ACB=90°,∠A=30°,AB=4,以点B为圆心,BC长为半径画弧,交边AB于点D,则CD的长为.10.在半径为r的圆中,长度为r的弦所对的圆周角的度数是.11.如图,在⊙O中,∠BAC=15°,∠ADC=20°,则∠ABO的度数为.12.如图,A,B,C,D都是⊙O上的点,OA⊥BC,垂足为E,若∠OBC=20°,则∠ADC 等于度.13.如图,矩形ABCD中,AB=6,以点D为圆心,CD长为半径的圆弧与以BC为直径的半圆O相交于点E,若的度数为60°,则直径BC长为.14.如图,边长为2的正方形ABCD的顶点A、B在一个半径为2的圆上,顶点C、D在该圆内.将正方形ABCD绕点A逆时针旋转,当点D第一次落在圆上时,点C旋转到C′,则∠C′AB=°.15.如图,OA、OB是⊙O的半径且OA=OB=1,AB=,在⊙O上一点C,使BC=,则∠BAC的度数为.三.解答题16.如图,在下列4×4(边长为1)的网格中,已知△ABC的三个顶点A,B,C在格点上,请分别按不同要求在网格中描出一个格点D,并写出点D的坐标.(1)将△ABC绕点C顺时针旋转90°,画出旋转后所得的三角形,点A旋转后落点为D;(2)经过A,B,C三点有一条抛物线,请找到点D,使点D也落在这条抛物线上;(3)经过A,B,C三点有一个圆,请找到一个横坐标为2的点D,使点D也落在这个圆上,①点D的坐标为;②点D的坐标为;③点D的坐标为.17.如图,在⊙O中,B,C是的三等分点,弦AC,BD相交于点E.(1)求证:AC=BD;(2)连接CD,若∠BDC=25°,求∠BEC的度数.18.如图,AB是⊙O的直径,弦CD⊥AB于点M,连接CO,CB.(1)若AM=2,BM=8,求CD的长度;(2)若CO平分∠DCB,求证:CD=CB.19.如图所示,已知AB为⊙O的直径,CD是弦,且AB⊥CD于点E,连接AC、OC、BC.(1)求证:∠ACO=∠BCD;(2)若EB=8,CD=24,求⊙O的直径.20.如图,AB是⊙O的直径,点C,E都在⊙O上,OC⊥AB,=2,DE∥AB交OC 于点D,延长OC至点F,使FC=OC,连接EF.(1)求证:CD=OD.(2)若⊙O的直径是4,求EF的长.21.如图,AD为⊙O的直径,∠BAD=∠CAD,连接BC.点E在⊙O上,AB=BE,求证:(1)BC平分∠ACE;(2)AB∥CE.22.如图,AB是⊙O的直径,C是弧BD的中点,CE⊥AB,垂足为E,BD交CE于点F.(1)求证:CF=BF;(2)若AD=6,⊙O的半径为5,求BC的长.23.如图,AB为⊙O的直径,C,D为⊙O上不同于A,B的两点,且OC平分∠ACD,延长AC与DB交于点E,过点C作CF⊥OC交DE于点F.(1)求证:∠A=∠E.(2)若BF=5,,求⊙O的半径.24.如图,Rt△ABC中,AC=CB,点E,F分别是AC,BC上的点,△CEF的外接圆交AB 于点Q,D.(1)如图1,若点D为AB的中点,求证:∠DEF=∠B;(2)在(1)问的条件下:①如图2,连接CD,交EF于H,AC=4,若△EHD为等腰三角形,求CF的长度.②如图2,△AED与△ECF的面积之比是3:4,且ED=3,求△CED与△ECF的面积之比(直接写出答案).(3)如图3,连接CQ,CD,若AE+BF=EF,求证:∠QCD=45°.参考答案一.选择题1.解:∵四边形ABCD是圆内接四边形,∴∠ADC+∠B=180°,∵∠ADC=130°,∴∠B=180°﹣130°=50°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠BAC=90°﹣∠B=40°.故选:C.2.解:连接CO,如图:∵在⊙O中,=,∴∠AOC=∠AOB,∵∠AOB=40°,∴∠AOC=40°,∴∠ADC=∠AOC=20°,故选:C.3.解:∵AB是⊙O的直径,∴∠ACB=90°,∵∠ABC=15°,∴∠CAB=75°,∴∠BDC=∠CAB=75°,故选:B.4.解:∵∠D=32°,∴∠BOC=2∠D=64°,∴∠AOC=180°﹣64°=116°.故选:D.5.解:∵DE||BC,∴∠C=∠ADE=46°,∴的度数是92°,∴的度数为180°﹣92°=88°.故选:C.6.解:作AH⊥CE于H,如图,∠ACB=90°,∠ABC=∠BAC=45°,∠BAD=30°,∴∠BCE=∠BAD=30°,∴∠ACE=60°,在Rt△ACH中,CH=AC=×8=4cm,∴AH=CH=4cm,∵∠AEC=∠ABC=45°,∴AH=HE=4cm,∴CE=CH+HE=(4+4)cm.故选:C.二.填空题7.解:连接BD,∵BD是直径,∴∠ADB=90°,∵∠ABD和∠ACD所对的弧都是,∴∠ABD=∠ACD=50°,∴∠BAD=90°﹣∠ABD=90°﹣50°=40°,故答案为:40.8.解:连接OE,AD,∵OA=OE,∠BAC=44°,∴∠BAC=∠OEA=44°,∴∠AOE=92°,∴弧AE的度数是92°,∵AB为半圆O的直径,∴∠ADB=90°,∵AB=AC,∴AD是△ABC的中线,∴BD=CD,∵BD=2,∴CD=2.故答案为:92°,2.9.解:连接CD,∵∠ACB=90°,∠A=30°,AB=4,∴∠B=60°,BC=AB=2,∵以点B为圆心,BC长为半径画弧,交边AB于点D,∴△BCD是等边三角形,∴CD=BC=2,故答案为:2.10.解:如图,作OD⊥AB,垂足为D,则由垂径定理知,点D是AB的中点,∴AD=AB=r,∴∠AOD=45°,∴∠AOB=2∠AOD=90°,∴∠ACB=∠AOB=45°,∵A、C、B、E四点共圆,∴∠ACB+∠AEB=180°,∴∠AEB=135°,故答案为:45°或135°.11.解:连接AO,CO,则∠AOC=2∠ADC,∠BOC=2∠BAC,∴∠AOB=∠BOC+∠AOC=2∠BAC+2∠ADC=2×15°+2×20°=70°,∵OA=OB,∴∠ABO=(180°﹣∠AOB)=55°,故答案为:55°.12.解:∵OA⊥BC,∴∠OEB=90°,∵∠OBC=20°,∴∠AOB=90°﹣∠OBC=70°,∴的度数是70°,∵OA⊥BC,OA过圆心O,∴=,∴的度数是70°,∴圆周角∠ADC==35°,故答案为:35.13.解:如图,连接BE,EC.∵BC是直径,∴∠BEC=90°,∵的度数=60°,∴∠BCE=×60°=30°,∵四边形ABCD是矩形,∴AB=CD=6,∠DCB=90°,∴∠DCE=90°﹣30°=60°,∵DE=DC,∴△DEC是等边三角形,∴EC=CD=6,∴BC=4.故答案为:.14.解:如图,分别连接OA、OB、OD′、OC、OC′;∵OA=OB=AB,∴△OAB是等边三角形,∴∠OAB=60°;同理可得△OAD′为等边三角形,∴∠OAD′=60°,∴∠D′AB=60°+60°=120°;∵AC′为正方形AB′C′D′的对角线,∴∠D′AC′=45°,∴∠C′AB=∠D′AB﹣∠D′AC′=120°﹣45°=75°.故答案为75.15.解:如图,作OH⊥BC于H.连接AC.∵OH⊥BC,∴BH=CH=,∴∠OBH=30°,∵OA=OB=1,AB=,∴AB2=OA2+OB2,∴∠AOB=90°,∴∠ACB=∠AOB=45°,∵∠ABC=∠ABO+∠OBC=45°+30°=75°,∴∠BAC=180°﹣75°﹣45°=60°,作点C关于直线OB的对称点C′,连接AC′,BC′,CC′,∵∠OBC=∠OBC′=30°,∴∠CBC′=60°,∵BC=BC′,∴△BCC′是等边三角形,∴∠BCC′=60°,∴∠BAC′=180°﹣60°=120°,故答案为60°或120°.三.解答题16.解:(1)如图,点B的对应点为B′,点A的对应点为点D(4,2);故①答案为:(4,2);(2)抛物线的对称轴在BC的中垂线上,则点D、A关于函数对称轴对称,故点D(3,2),故②的答案为:(3,2);(3)AB中垂线的表达式为:y=x,BC的中垂线为:x=,则圆心O为:(,),设点D(2,m),则OD=OB,()2+()2=(2﹣)2+(m﹣)2,解得:m=0或3(舍去0),故点D(2,3);故③的答案为(2,3).17.(1)证明:∵B,C是的三等分点,∴==,∴+=+,∴=,∴AC=BD;(2)解:如图,连接CD,AD,∵∠BDC=25°,==,∴∠CAD=∠BDA=∠BDC=25°,∵∠AED+∠CAD+∠BDA=180°,∴∠AED=180°﹣∠CAD﹣∠BDA=130°,∴∠BEC=∠AED=130°.18.解:(1)∵AB是⊙O的直径,弦CD⊥AB,∴CM=DM,∵AM=2,BM=8,∴AB=10,∴OA=OC=5,在Rt△OCM中,OM2+CM2=OC2,∴CM==4,∴CD=8;(2)过点O作ON⊥BC,垂足为N,∵CO平分∠DCB,∴OM=ON,∴CB=CD.19.(1)证明:∵AB⊥CD,∴,∴∠A=∠BCD,∵OA=OC,∴∠A=∠ACO,∴∠ACO=∠BCD;(2)解:设⊙O的半径为r,则OC=r,OE=OA﹣BE=r﹣8,∵AB⊥CD,∴CE=DE=CD=×24=12,在Rt△OCE中,122+(r﹣8)2=r2,解得r=13,∴⊙O的直径=2r=26.20.(1)证明:连接OE、CE,如图,∵OC⊥AB,∴∠AOC=90°,∵=2,∴∠COE=2∠AOE,∴∠COE=60°,而OE=OC,∴△OCE为等边三角形,∵DE∥AB,OC⊥AB,∴DE⊥OC,∴CD=OD;(2)解:∵⊙O的直径是4,∴OE=OC=CF=2,CD=OD=1,在Rt△ODE中,DE==,在Rt△EFD中,EF===2.21.证明:(1)∵AB=BE,∴,∴∠ACB=∠BCE,∴BC平分∠ACE;(2)连接OC、OB,∵OA、OB、OC是⊙O半径,∴OA=OB=OC,∴∠OAB=∠OBA,∠OAC=∠OCA,∵∠BAD=∠CAD,∴∠ABO=∠ACO,∵OB=OC,∴∠OBC=∠OCB,∴∠OBA+∠OBC=∠OCA+∠OCB,∴∠ABC=∠ACB,∴AB=AC,∵AB=BE,∴AC=BE,∴,∴∠ABC=∠ECB,∴AB∥CE.22.(1)证明:连接AC,如图1所示:∵C是弧BD的中点,∴∠DBC=∠BAC,在ABC中,∠ACB=90°,CE⊥AB,∴∠BCE+∠ECA=∠BAC+∠ECA=90°,∴∠BCE=∠BAC,又C是弧BD的中点,∴∠DBC=∠CDB,∴∠BCE=∠DBC,∴CF=BF.(2)解:连接OC交BD于G,如图2所示:∵AB是O的直径,AB=2OC=10,∴∠ADB=90°,∴BD===8,∵C是弧BD的中点,∴OC⊥BD,DG=BG=BD=4,∵OA=OB,∴OG是△ABD的中位线,∴OG=AD=3,∴CG=OC﹣OG=5﹣3=2,在Rt△BCG中,由勾股定理得:BC===2.23.(1)证明:由题意∠ACO=∠A=∠D.∵OC平分∠ACD,∴∠ACO=∠OCD,∴∠OCD=∠D.∴OC∥DE,∴∠E=∠ACO,∴∠E=∠A.(2)解:∵,∴设BD=3x,OB=4x,由(1)得∠E=∠A=∠CDE,OC∥DE.∵CF⊥OC,∴CF⊥DE,∴EF=DF=3x+5.∴BE=3x+10,∵∠E=∠A,∴AB=BE,即3x+10=8x,解得x=2∴半径OB=4x=8.24.(1)证明:连接CD.在Rt△ABC中,∵AC=CB,∴∠A=∠B=45°,∵CD=DB,∴∠DCB=∠B=45°,∵∠DEF=∠DCB,∴∠DEF=∠B.(2)解:①如图2﹣1中,当EH=HD,可证四边形CFDE是正方形CF=2.如图2﹣2中,当EH=ED时,∠EDH=∠EHD=67.5°,∵∠EDF=∠CDB=90°,∴∠EDH=∠BDF=67.5°,∴∠BFD=180°﹣45°﹣67.5°=67.5°,∴∠BDF=∠BFD,∴BD=BF,∵AC=BC=4,∠ACB=90°,∴AB==4,∴BD=BF=2,∴CF=4﹣2.如图2﹣3中,当DA=FH时,点E于A重合,点H与C重合,CF=0.综上所述,满足条件的CF的值为0或2或4﹣2.②如图2﹣4中,作DM⊥AC于M,DN⊥BC于N,连接DF.∵CA=CB,AD=DB,∠ACB=90°,∴CD⊥AB,∠ACD=∠BCD=45°,CD=DA=DB∴DE=DF,∵∠ADC=∠EDF=90°,∴∠ADE=∠CDF,∴△ADE≌△CDF(SAS),∴AE=CF,S△ADE=S△CDF,∵DC平分∠ACB,DM⊥AC,DN⊥BC,∴DM=DN,可得四边形DMCN是正方形,∴DM=CM=CN=DN,∵====,∴可以假设DN=3k,EC=4k,则AC=BC=6k,AE=CF=2k,∴==.(3)证明:连接OD,OQ,作ER⊥AB,OH⊥AB,FK⊥AB.∵ER∥OH∥FK,EO=OF,∴RH=HK∴OH=(ER+FK),∵ER=AE,FK=FB,∴OH=(AE+BF)=EF=OE=OQ,∴∠OQD=∠ODQ=45°,∴∠QOD=90°,∴∠QCD=45°.。
轧东卡州北占业市传业学校胶南九年级数学<第
三节圆周角、圆心角>同步练习
教
一、圆心角定理:
圆周角定理:
1、如图,圆心角∠BOC=100°,那么圆周角∠BAC 的度数是
图1 图2 图2、如图,A 、B 、C 三点都在⊙O 上,点D 是AB 延长线上一点,∠AOC=140°, ∠CBD 的度数是
3、r=5的圆o 中,300
的圆周角所对的弦长为 4、圆o 中弦AB 等于半径,那么弦AB 所对的圆周角=
5、如图3、4
6、如图,∠AOB=100°,那么∠A+∠B 等于
图6 图7 图8 图9
7、如图8,A 、B 、C 、D 四个点在同一个圆上,四边形ABCD 的对角线把四个内角分成的八个角中,相等的角有( )
A.2对
B.3对
C.4对
D.5对
8、.如图9,D是AC的中点,那么图中与∠ABD相等的角的个数是( )
A.4个
B.3个
C.2个
D.1个
,∠A=25°,那么∠BOD的度数为________.
9、如图5,AB是⊙O的直径, BC BD。
圆的定义、垂径定理、弦、弧、圆心角、圆周角练习
1. 如下图,已知CD 是⊙O 的直径,过点D 的弦DE 平行于半径OA ,若∠D 的度数是50o ,则∠C 的
度数是( )
A )50o
B )40o
C )30o
D )25o
第1题图 第2题图 第4题图
2. 如上图,两正方形彼此相邻,且大正方形内接于半圆,若小正方形的面积为16cm 2,则该半圆的
半径为( ).
A ) (45)+ cm
B ) 9 cm
C ) 45cm
D ) 62cm 3. ⊙O 中,M 为
的中点,则下列结论正确的是( )
A .A
B >2AM B .AB =2AM
C .AB <2AM
D .AB 与2AM 的大小不能确定
4. 如上图,⊙C 过原点,且与两坐标轴分别交于点A ,点B ,点A 的坐标为(0,3),M 是第三象
限内上一点,,则⊙C 的半径为( ) A. 6 B. 5 C 3 D.
5. 如下图,P 为⊙O 的弦AB 上的点,PA =6,PB =2,⊙O 的半径为5,则OP =______.
第5题图 第6题图 第7题图
6. 如上图,扇形的半径是cm 2,圆心角是︒40,点C 为弧AB 的中点,点P 在直线OB 上,则PC
PA +的最小值为 cm 7. 如图,在半径为5的⊙O 中,弦AB=6,点C 是优弧上一点(不与A 、B 重合),则的值
为 .
8. 圆的一条弦长等于它的半径,求这条弦所对的圆周角的度数为: .
OB BMO ∠=12032AB cos C
9. 如图,点A 、B 、C 、D 在⊙O 上,O 点在∠D 的内部,四边形OABC 为平行四边形,则∠OAD+∠
OCD=________°.
第9题图 第10题图 第11题图
10. 如图,点D 为边AC 上一点,点O 为边AB 上一点,AD =DO .以O 为圆心,OD 长为半径作半圆,交
AC 于另一点E ,交AB 于点F ,G ,连接EF .若∠BAC =22º,则∠EFG =_____.
11. 如图,以原点O 为圆心的圆交x 轴于点A 、B 两点,交y 轴的正半轴于点C ,D 为第一象限内⊙O
上的一点,若∠DAB = 20°,则∠OCD = _____________.
12. 已知:如图,AB 是⊙O 的直径,CD 是⊙O 的弦,AB ,CD 的延长线交于E ,若AB =2DE ,∠E =18°,
求∠C 及∠AOC 的度数.
13. 已知:如图,AB 是⊙O 的直径,弦CD 交AB 于E 点,BE =1,AE =5,∠AEC =30°,求CD 的长.
14. 如图,AB 为⊙O 的弦,C 、D 为弦AB 上两点, 且OC=OD ,延长OC 、OD 分别交⊙O 于E 、F ,
证明:AE=BF.
F
E D
O
B
A
C
15.已知:如图,P是∠AOB的角平分线OC上的一点,⊙P与OA相交于E,F点,与OB相交于G,H点,试确定线段EF与GH之间的大小关系,并证明你的结论.
16.已知:⊙O的半径OA=1,弦AB、AC的长分别为2,3,求∠BAC的度数.
17.已知:⊙O的半径为25cm,弦AB=40cm,弦CD=48cm,AB∥CD.
求这两条平行弦AB,CD之间的距离.
18.已知:△ABC的三个顶点在⊙O 上,AB=AC,圆心O到BC的距离为3cm,圆的半径为7cm,
求:AB的长.
19.⊙O的直径为10,弦AB=8,连接弦AB的中点C与⊙O上一动点M作线段CM,求线段CM的范围.
.20.如图,已知圆O的直径AB垂直于弦CD于点E,连接CO并延长交AD于点F,且CF AD
1)证明:E 是OB 的中点; 2)若8AB =,求CD 的长.
21. 如图,射线PG 平分∠EPF ,O 为射线PG 上一点,以O 为圆心,10为半径作⊙O ,分别与∠EPF
两边相交于A 、B 和C 、D ,连结OA ,此时有OA ∥PE . 1)求证:AP =AO ;
2)若弦AB =12,求tan∠OPB 的值;
3)若以图中已标明的点(即P 、A 、B 、C 、D 、O )构造四边形,则能构成菱形的四个点为
,能构成等腰梯形的四个点为 或 或 .
22. 如图,内接于⊙O ,过点的直线交⊙O 于点,交的延长线于点,且AB 2=AP ·AD
(1) 求证:;
(2) 如果,⊙O 的半径为1,且P 为弧AC 的中点,求AD 的长.
23. 如图,内接于⊙O ,过点的直线交⊙O 于点,交的延长线于点,且AB 2=AP ·AD
ABC △A P BC D AB AC =60ABC ∠=ABC △A P BC D O
P D
C B A
(1)求证:;
(2)如果,⊙O的半径为1,且P为弧AC的中点,求AD的长.
24.如图,F是以O为圆心,BC为直径的半圆上任意一点,A是BF的中点,AD⊥BC于D,
a)求证:AD =1
2
BF.
AB AC
=
60
ABC
∠=
B。