集成光波导制造技术
- 格式:ppt
- 大小:2.84 MB
- 文档页数:52
集成光波导型(AWG )以光集成技术为基础的平面波导型波分复用器件,具有一切平面波导的优点,如几何尺寸小、重复性好(可批量生产)、可在掩膜过程中实现复杂的支路结构、与光纤容易对准等。
目前集成波导型的波分复用器件有多种实现方案,其中以龙骨型的平面波导应用最多。
它由二个星形耦合器与M 个非耦合波导构成,不等长的耦合波导形成光栅而具分光作用,两端的星形耦合器由平面设置的二个共焦阵列波导组成。
如图3.2.2所示。
(1).AWG 的优点 ①.分辨率较高。
②.高隔离度 ③.易大批量生产。
因为具有高分辨率和高隔离度,所以复用通道的数量达32个以上;再加上便于大批量生产,所以AWG 型的波分复用器件在16通道以上的WDM 系统中得到了非常广泛的应用。
(2).AWG 的缺点插入衰耗较大,一般为6~11dB 。
带内的响应度不够平坦。
4.光栅型光栅型波分复用器件属于角色散器件。
当光入射到光栅上,由于光栅的角色散作用可以使不同波长的光信号以不同的角度出射,[url=/]魔兽sf[/url]然后可再用自聚焦透镜把光信号会聚到不同的光纤中输出,如图3.2.3所示。
(1).光栅型波分复用器件优点 ①.高分辨率3.2.2图:AWG 波分复用器件其通道间隔可以达到30GH Z以下。
②.高隔离度其相邻复用光通道的隔离度可大于40 dB。
③.插入衰耗低大批量生产可达到3~6dB,且不随复用通道数量的增加而增加。
④.具有双向功能,即用一个光栅可以实现分波与合波功能。
因此它可以用于单纤双向的WDM系统之中。
正因为具有很高的分辨率和隔离度,所以它允许复用通道的数量达132个之多,故光栅型的波分复用器件在16通道以上的WDM系统中得到了应用。
(2).光栅型波分复用器件的缺点①.温度特性欠佳其温度系数约为14pm /°C。
因此要想保证它的中心工作波长稳定,在实际应用中必须加温度控制措施。
②.制造工艺复杂,价格较贵。
5.光纤布喇格光栅型(FBG)利用紫外线光干涉的方法可以在光纤芯中形成所谓布喇格光栅。
生长硅基siox集成光波导材料概述说明以及解释1. 引言1.1 概述生长硅基SiOx集成光波导材料是一种在光通信领域应用广泛的材料。
它具有优秀的光学性能和可靠的物理特性,因此被广泛用于集成光学器件和集成光电子设备中。
本文将对生长硅基SiOx集成光波导材料进行全面的概述,包括其生长方法、材料特性以及在光通信领域的应用。
1.2 文章结构本文主要分为五个部分。
首先,在引言部分,我们将概述生长硅基SiOx集成光波导材料的研究背景和意义。
接着,在第二部分,我们将详细介绍生长硅基SiOx 集成光波导材料的方法以及其相关特性。
然后,在第三部分,我们将对生长硅基SiOx材料的发展历程、在光通信领域的应用以及其未来前景进行概述说明。
接下来,在第四部分,我们将解释在生长硅基SiOx集成光波导过程中所面临的挑战,并提出相应的解决方案和技术创新。
最后,在第五部分,我们将总结本文的主要观点,并对未来发展提出展望和建议。
1.3 目的本文的目的是全面介绍生长硅基SiOx集成光波导材料以及其在光通信领域中的应用。
通过对该材料的概述说明和解释挑战与解决方案,读者可以更好地理解该材料的特性和优势,并了解到在光通信领域中进一步推动其应用所需采取的策略。
这将有助于促进该材料在光学器件领域的发展,并为未来开发更高性能、更可靠的集成光电子设备奠定基础。
2. 生长硅基siox集成光波导材料2.1 生长方法:生长硅基siox集成光波导材料通常采用化学气相沉积(CVD)方法。
CVD是一种常用的生长方法,通过控制气相中气体的流量和反应温度,使其在硅基衬底上形成薄膜。
在CVD过程中,通常使用有机金属前驱物(如TES、TEOS等)作为硅源。
这些前驱物被分解后,在衬底表面沉积出富含硅的薄膜。
同时,通过加入适当的掺杂剂(如Be、P等)可以实现杂质掺杂,以调节siox材料的性能。
2.2 硅基siox材料特性:生长硅基siox集成光波导材料具有多种特性。
首先,它具有极高的折射率,使其能够有效地限制光信号在波导内部传播,并提供较高的耦合效率。
光波导量产工艺光波导是一种用于光通信和集成光学器件的关键技术。
光波导量产工艺是指大规模制造光波导器件的工艺流程和方法。
在这篇文档中,我将详细介绍光波导量产工艺的步骤和注意事项。
光波导量产工艺是通过将光波导材料和器件进行一系列的制作步骤,实现大规模制造的过程。
光波导器件主要由光波导芯片和外部封装组成。
光波导量产工艺的主要步骤包括:芯片设计、材料选择、制备工艺、封装和测试。
二、芯片设计1. 确定应用需求:根据波导器件的具体应用需求,例如光通信、生物传感等,确定波导器件的结构、尺寸、曲率等参数。
2. 设计光波导布图:使用光波导设计软件,根据应用需求进行布图设计,包括波导芯片的位置、宽度等。
3. 优化光波导参数:通过仿真软件模拟光波导的传输性能,优化芯片的形状和参数。
三、材料选择1. 选择基材:根据光波导器件的需求,选择适合的基材,如硅、氮化硅等。
2. 选择光波导材料:根据芯片设计,选择合适的光波导材料,如光纤、掺铒光纤等。
3. 获得材料并准备:从供应商处获得所需材料,并按照要求进行清洗、切割和研磨等处理。
四、制备工艺1. 制备基板:将选择的基材进行清洗,并进行干燥和去除表面杂质。
2. 制备光波导:使用光刻技术和薄膜沉积技术,将设计好的光波导布图转移到基材上。
3. 电子束曝光:使用电子束曝光仪器对波导芯片进行微细加工和曝光。
4. 膨胀:利用热处理技术,控制材料的膨胀系数,保证波导的整体结构稳定。
5. 晶圆切割:对制备好的基板进行切割,得到单个光波导芯片。
1. 选择封装材料:根据应用需求选择合适的封装材料,如环氧树脂、光纤等。
2. 选定封装方式:根据芯片的性质和尺寸,选择合适的封装方式,如倒装封装、直插封装等。
3. 进行封装:将光波导芯片放置在封装材料中,并进行固化和热处理等工艺步骤。
4. 进行电气连接:将封装好的波导芯片与其他电路板或设备进行连接。
1. 光学性能测试:通过光学仪器进行波导器件的传输性能、反射损耗、耦合损耗等方面的测试。
光波导量产工艺
光波导量产工艺指的是将光波导器件进行大规模制造的工艺过程。
以下是常见的光波导量产工艺步骤:
1. 基片准备:选择合适的基片材料,如硅、玻璃等,并进行清洗和表面处理。
2. 涂覆光波导材料:将光波导材料涂覆在基片上,形成薄膜。
3. 光刻:使用光刻技术,在光波导材料上进行图案的定义和转移。
4. 刻蚀:通过化学刻蚀或物理刻蚀的方法,将光刻图案转移到光波导材料上。
5. 接入器件:在光波导器件上接入探针或其他电子元件,以便对光波导进行测试和调试。
6. 熔接/蒸镀:如果需要进行光波导器件之间的连接,则使用熔接或蒸镀技术,在器件之间形成良好的光传输通道。
7. 选划/封装:对光波导器件进行选择并封装,以保护器件免受环境的影响。
8. 测试和质量控制:对光波导器件进行性能测试,并进行质量控制,以确保量产的光波导器件符合规格要求。
以上是光波导量产的一般工艺流程,不同的光波导器件可能会有些许差异,具体操作方法还需参考具体的制造工艺。
同时,随着光波导技术的不断发展,新的量产工艺也在不断出现。
光子集成技术概论摘要:本文以光子学为基础,详细介绍了光子技术和光子集成的概念、主要应用领域、目前的研究热点及以光波导集成为基础的光子集成器件的研究进展。
关键词:光子光子晶体光子技术光子集成光波导光子集成(Photonic Integrated Circuit,PIC),也叫光子集成电路。
以介质波导为中心集成光器件的光波导型集成回路,即将若干光器件集成在一片基片上,构成一个整体,器件之间以半导体光波导连接,使其具有某些功能的光路。
如集成外腔单稳频激光器,光子开关阵列,光外差接收机和光发射机等。
一、光子集成(PIC)的理论基础光子集成技术的理论基础是光子学。
当前,支撑信息社会的两大微观信息载体是电子和光子,它们都是微观粒子。
光子是波色子,不带电、传播速度快,光束可互相穿越而不互相干扰,因而可大规模互联和并行传输,具有独特的优越性。
目前已研究开发和正在开发的光子技术主要领域有:激光技术和、光子计算机、光存储技术、光通信和全息光技术等。
与电子学器件相比,光子学器件中光子的运用不受回路分布延迟的影响(一般为10-9s),光在固体中传输速度为10-12cm/s左右,光子学器件的时间响应和容量要比电子学器件高得多。
目前实验室已能获得十几个飞秒的光子脉冲。
光子信息系统的运算速度要大大超出现有的电子信息系统。
光子信息系统的空间带宽和频率带宽都很大,光子学与光子技术使光纤通信的容量从原理上讲比微波通信大1万倍到10万倍以上,一路微波通道可以传送一路彩色电视或1千多路数字电话信号,而一根光纤则可以同时传送1千多万甚至1亿路电话。
目前已完成了从第一代0.85μm波段与多模光纤,到第二代1.3μm波段零色散与单模光纤,再到第三代1.55μm波段与低损耗色散位移单模光纤的换代发展。
利用光子学方式可以实现三维立体存储。
光存储信息容量大,可靠性强,存取速度快,成本低且应用范围广。
光盘、光卡的存储容量比磁盘、磁卡要高出200至20000倍,且不易磨损,不受外界磁场、温度影响,可靠性强。