电磁场期末复习资料
- 格式:pptx
- 大小:359.36 KB
- 文档页数:20
电磁场与电磁波期末考试复习资料11.圆柱坐标系中单位矢量 , 。
2.对于矢量A ,若 ,则=+•y x a y x a x )(2 ,=⨯x z a y a x 2 。
3.给定两个矢量z y x a a a A 32-+=,z y a a B +-=4,则矢量A 的单位矢量为 ,矢量B A ⋅= 。
4.已知直角坐标系中点P 1(5,-2,1),P 2(3,1,2),则P1的位置矢量为 ,P1到P2的距离矢量为 。
5.已知球坐标系中单位矢量 。
6.在两半无限大导电平面组成的直角劈形中间放置一点电荷,此时点电荷的镜像电荷个数为 。
7.点电荷q 在自由空间任一点r 处电场强度为 。
8.静电场中导体内的电场为 ,电场强度与电位函数的关系为 。
9.高斯散度定理的积分式为 ,它广泛的用于将一个封闭面积分变成等价的体积分,或者将一个体积分变成等价的封闭面积分。
10.已知任意一个矢量场A ,则其旋度的散度为 。
11.真空中静电场的基本方程的微分形式为 、 、 。
12.分析恒定磁场时,在无界真空中,两个基本场变量为 ,它们之间的关系为 。
13.斯托克斯定理为 ,它表明矢量场A 的旋度沿曲面S 的方向分量的面积分等于该矢量沿围绕此面积曲线边界的线积分。
14.任意一个标量场u ,则其梯度的旋度为 。
15.对于某一矢量 ,它的散度定义式为 ,用哈密顿算子表示为 。
16.介质中静电场的基本方程的积分式为 , , 。
17.介质中恒定磁场的基本方程的微分形式为 、 、 。
18.介质中恒定磁场的基本方程的积分式为 , , 。
19.静电场中两种介质分界面的边界条件是 , 。
20.在无限大的导体平面上方d 处放一点电荷q ,则其镜像电荷电量为 ,位置位于 ;如果一个点电荷置于两平行导体中间,则此点电荷有 镜像电荷。
21.矢量场223z a yz a y x a A z y x ++=在点P(1,1,0)的散度为 。
22.一个半径为a 的接地导体球,一点电荷q 位于距球心d 处,则其镜像电荷带电量为 ,位置位于 ;当点电荷q 向无限远处运动时,其镜像电荷向 运动。
电磁场电磁波复习重点第一章矢量分析1、矢量的基本运算标量:一个只用大小描述的物理量。
矢量:一个既有大小又有方向特性的物理量,常用黑体字母或带箭头的字母表示。
2、叉乘点乘的物理意义会计算3、通量源旋量源的特点通量源:正负无旋度源:是矢量,产生的矢量场具有涡旋性质,穿过一曲面的旋度源等于(或正比于)沿此曲面边界的闭合回路的环量,在给定点上,这种源的(面)密度等于(或正比于)矢量场在该点的旋度。
4、通量、环流的定义及其与场的关系通量:在矢量场F中,任取一面积元矢量dS,矢量F与面元矢量dS的标量积F.dS定义为矢量F穿过面元矢量dS的通量。
如果曲面 S 是闭合的,则规定曲面的法向矢量由闭合曲面内指向外;环流:矢量场F沿场中的一条闭合路径C的曲线积分称为矢量场F沿闭合路径C的环流。
如果矢量场的任意闭合回路的环流恒为零,称该矢量场为无旋场,又称为保守场。
如果矢量场对于任何闭合曲线的环流不为零,称该矢量场为有旋矢量场,能够激发有旋矢量场的源称为旋涡源。
电流是磁场的旋涡源。
5、高斯定理、stokes定理静电静场高斯定理:从散度的定义出发,可以得到矢量场在空间任意闭合曲面的通量等于该闭合曲面所包含体积中矢量场的散度的体积分,即散度定理是闭合曲面积分与体积分之间的一个变换关系,在电磁理论中有着广泛的应用。
Stokes定理:从旋度的定义出发,可以得到矢量场沿任意闭合曲线的环流等于矢量场的旋度在该闭合曲线所围的曲面的通量,即斯托克斯定理是闭合曲线积分与曲面积分之间的一个变换关系式,也在电磁理论中有广泛的应用。
6、亥姆霍兹定理若矢量场在无限空间中处处单值,且其导数连续有界,源分布在有限区域中,则当矢量场的散度及旋度给定后,该矢量场可表示为亥姆霍兹定理表明:在无界空间区域,矢量场可由其散度及旋度确定。
第二章电磁场的基本规律1、库伦定律(大小、方向)说明:1)大小与两电荷的电荷量成正比,与两电荷距离的平方成反比;2)方向沿q1 和q2 连线方向,同性电荷相排斥,异性电荷相吸引;3)满足牛顿第三定律。
电磁场与电磁波总结第一章一、矢量代数 A ∙B =AB cos θA B⨯=ABe AB sin θ A ∙(B ⨯C ) = B ∙(C ⨯A ) = C ∙(A ⨯B )()()()C A C C A B C B A ⋅-⋅=⨯⨯二、三种正交坐标系 1. 直角坐标系 矢量线元x y z =++le e e d x y z矢量面元=++Se e e x y z d dxdy dzdx dxdy体积元d V = dx dy dz 单位矢量的关系⨯=e e e x y z ⨯=e e e y z x ⨯=e e e z x y2. 圆柱形坐标系 矢量线元=++l e e e z d d d dz ρϕρρϕl 矢量面元=+e e z dS d dz d d ρρϕρρϕ体积元dz d d dVϕρρ=单位矢量的关系⨯=⨯⨯=e e e e e =e e e e zz z ρϕϕρρϕ3. 球坐标系 矢量线元d l = e r d r e θr d θ + e ϕr sin θ d ϕ 矢量面元d S = e r r 2sin θ d θ d ϕ体积元ϕθθd drd r dVsin 2=单位矢量的关系⨯=⨯⨯=e e e e e =e e e e r rr θϕθϕϕθ三、矢量场的散度和旋度1. 通量与散度=⋅⎰A S Sd Φ 0lim∆→⋅=∇⋅=∆⎰A S A A Sv d div v2. 环流量与旋度=⋅⎰A l ld Γ maxn 0rot =lim∆→⋅∆⎰A lA e lS d S3. 计算公式∂∂∂∇=++∂∂∂⋅A y x zA A A x y z11()zA A A zϕρρρρρϕ∂∂∂∇=++∂∂∂⋅A 22111()(sin )sin sin ∂∂∂∇=++∂∂∂⋅A r A r A A r r r r ϕθθθθθϕxy z ∂∂∂∇⨯=∂∂∂e e e A x y zx y z A A A1z zz A A A ρϕρϕρρϕρ∂∂∂∇⨯=∂∂∂e e e A21sin sin rr zr rA r A r A ρϕθθθϕθ∂∂∂∇⨯=∂∂∂e e e A4. 矢量场的高斯定理(散度定理)与斯托克斯定理⋅=∇⋅⎰⎰A S A SV d dV⋅=∇⨯⋅⎰⎰A l A S lSd d四、标量场的梯度 1. 方向导数与梯度 标量函数u 的梯度是矢量,其方向为u 变化率最大的方向00()()lim∆→-∂=∂∆l P u M u M u llcos cos cos ∂∂∂∂=++∂∂∂∂P uu u ulx y zαβγ cos ∇⋅=∇e l u u θ grad ∂∂∂∂==+∂∂∂∂e e e +e n x y zu u u uu n x y z2. 计算公式∂∂∂∇=++∂∂∂e e e xy z u u uu x y z1∂∂∂∇=++∂∂∂e e e z u u uu zρϕρρϕ 11sin ∂∂∂∇=++∂∂∂e e e ru u uu r r r zθϕθθ 五、无散场与无旋场1. 无散场()0∇⋅∇⨯=A =∇⨯F A A 为无散场F 的矢量位 2. 无旋场 ()0∇⨯∇=u -u =∇F u 为无旋场F 的标量位六、拉普拉斯运算算子 1. 直角坐标系22222222222222222222222222222222∂∂∂∇=++∇=∇+∇+∇∂∂∂∂∂∂∂∂∂∂∂∂∇=++∇=++∇=++∂∂∂∂∂∂∂∂∂A e e e x x y y z zy y y x x x z z z x y z u u u u A A A x y zA A A A A A A A A A A A x y z x y z x y z,,2. 圆柱坐标系22222222222222111212⎛⎫∂∂∂∂∇=++ ⎪∂∂∂∂⎝⎭∂∂⎛⎫⎛⎫∇=∇--+∇-++∇ ⎪ ⎪∂∂⎝⎭⎝⎭A e e e z z u u uu z A A A A A A A ϕρρρρϕϕϕρρρρρϕρρϕρρϕ3. 球坐标系22222222111sin sin sin ⎛⎫∂∂∂∂∂⎛⎫∇=++ ⎪ ⎪∂∂∂∂∂⎝⎭⎝⎭u u uu r r r r r r θθθϕθϕ⎪⎪⎭⎫⎝⎛∂∂+-∂∂+∇+⎪⎪⎭⎫⎝⎛∂∂--∂∂+∇+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂---∇=∇ϕθθθϕθϕθθθθϕθθθθϕϕϕϕθθθϕθθA r A r A r A A r A r A r A A r A r A r A r A r r r r r 222222222222222222sin cos 2sin 1sin 2sin cos 2sin 12sin 22cot 22e e e A 七、亥姆霍兹定理如果矢量场F 在无限区域中处处是单值的,且其导数连续有界,则当矢量场的散度、旋度和边界条件(即矢量场在有限区域V’边界上的分布)给定后,该矢量场F 唯一确定为()()()=-∇+∇⨯F r r A r φ其中1()()4''∇⋅'='-⎰F r r r r V dV φπ 1()()4''∇⨯'='-⎰F r A r r r V dV π第二章一、麦克斯韦方程组 1. 静电场 真空中:001d ==VqdV ρεε⋅⎰⎰SE S (高斯定理) 0∇⋅=E ρε (高斯定理微分形式)d 0⋅=⎰lE l 0∇⨯=E (无旋场)场强计算:3'1'()(')'4'V dV ρπε-=-⎰r r E r r r r介质中:d ⋅=⎰D S Sqd 0⋅=⎰lE l ∇⋅=D ρ 0∇⨯=E极化:0=+D E P ε e 00(1)=+==D E EE r χεεεε电介质中高斯定律的微分形式表明电介质内任一点电位移矢量的散度等于该点自由电荷体密度,即D 的通量源是自由电荷,电位移线始于正自由电荷终于负自由电荷。
工程电磁场_复习资料工程电磁场复习资料一、电磁场的基本概念1、电磁场:是由电场和磁场两种矢量场组成的一种物理场。
2、电磁场的性质:电磁场具有能量、动量和惯性等性质,这些性质可以从麦克斯韦方程组中得到描述。
3、电磁场的波动性:电磁场以波的形式传播,这种波动性表现为电场和磁场在空间中的传播。
4、电磁感应:当导体处于变化的磁场中时,导体内部会产生感应电流,这种现象称为电磁感应。
二、麦克斯韦方程组麦克斯韦方程组是描述电磁场的基本方程组,包括四个基本方程:1、安培环路定律:描述磁场与电流之间的关系。
2、法拉第电磁感应定律:描述电磁感应现象。
3、麦克斯韦方程组的一般形式:描述了电场和磁场在空间中的传播。
4、高斯定律:描述了电荷在空间中的分布。
三、电磁场的边界条件电磁场在两种不同媒质的分界面上会发生反射和折射等现象,这些现象可以用边界条件来描述。
边界条件包括:1、电场强度和磁场强度在分界面上的连续性。
2、电位移矢量和磁感应强度在分界面上的连续性。
3、分界面上没有电荷堆积。
四、电磁场的能量和动量电磁场具有能量和动量,这些量可以用以下公式计算:1、电磁场的能量密度:W=1/2(E^2+B^2)2、电磁场的动量密度:P=E×B3、电磁场的能量流密度:S=E×H五、电磁场的波动性电磁场以波的形式传播,这种波动性可以用波动方程来描述。
波动方程的一般形式为:∇×E=ρ/ε,∇×H=J/εc^2,其中ρ和J分别为电荷密度和电流密度,ε为真空中的介电常数,c为光速。
六、电磁场的散射和衍射当电磁波遇到障碍物时,会发生散射现象;当电磁波通过孔洞或缝隙时,会发生衍射现象。
这些现象可以用费马原理和基尔霍夫公式来描述。
管理学复习资料马工程版一、管理学概述1、管理学定义:管理学是一门研究管理活动及其规律的科学,旨在探索如何有效地组织、协调和控制人的行为,以实现组织目标。
2、管理学的发展历程:管理学作为一门独立的学科,经历了古典管理理论、行为科学理论、现代管理理论等多个发展阶段。
电磁场与电磁波复习资料填空题1.梯度的物理意义为,等值面、方向导数与梯度的关系是。
2.用方向余弦γβαcos ,cos ,cos 写出直角坐标系中单位矢量l e的表达式。
3.某二维标量函数x y u -=2,则其梯度u ∇=,梯度在正x 方向的投影为。
4.自由空间中一点电荷位于()4,1,3-S ,场点位于()3,2,2-P ,则点电荷的位置矢量为,场点的位置矢量为,点电荷到场点的距离矢量R为。
5.矢量场z e y e x eA z y x ˆˆˆ++=,其散度为,矢量场A在点()2,2,1处的大小为。
6.直角坐标系下方向导数lu∂∂的数学表达式 ,梯度的表达式为 ,任意标量的梯度的旋度恒为 ,任意矢量的旋度的散度恒为 。
7.矢量散度在直角坐标系的表达式为 ,在圆柱坐标系的表达式为 ,在球坐标系的表达式为 。
8.矢量微分运算符∇在直角坐标系、圆柱坐标系和球坐标系的表达式分别为 , , 。
9.高斯散度定理数学表达式为 ,斯托克斯定理数学表达式为 。
10.矢量通量的定义为 ,散度的定义为 ,环流的定义为 ,旋度的定义为 。
11.矢量的旋度在直角坐标系下的表达式为 。
12.矢量场F为无旋场的条件为,该矢量场是由 源所产生。
13.矢量场F为无散场的条件为,该矢量场是由源所产生。
14.电流连续性方程的微分形式为 。
15.在国际单位制中,电场强度的单位是 ,电位移的单位是 ,磁场强度的单位是 ,磁感应强度的单位是 ,介电常数的单位是 ,磁导率的单位是 ,电导率的单位是 。
16.在自由空间中,点电荷产生的电场强度与其电荷量成 比,与场点到源点的距离平方成 比。
17.从宏观效应来看,物质对电磁场的响应可分为 , , 三种现象。
18.线性且各向同性媒质的本构关系方程是: , , 。
19.麦克斯韦方程组的微分形式是: , , , 。
20.麦克斯韦方程组的积分形式是: , , , 。
21.求解时变电磁场或解释一切宏观电磁现象的理论依据是 。
电磁场与电磁波复习资料电磁场与电磁波期末复习资料第⼀章⼀、在直线坐标系中,过空间任意⼀点P (X 0,Y 0,Z 0)的三个互相正交的坐标单位⽮量e x ,e y ,e z 分别是x ,y ,和z 增加的⽅向,且遵循右⼿螺旋法则:e x ×e y =e z 、e y ×e z =e x ,e z ×e x =e y⼆、A 与B 的点积为:A ·B = (e x A x +e Y A y +e z A z )·(e x B x +e y B y +e z B z ) = A X B X + A Y B Y +A Z B Z三、A 与B 的叉积为:A XB = (e x Ax+e y A y +e z A z ) X (e x B x +e y B y +e z B z )=e x (A y B Z -A Z B Y ) + e y (A Z B X - A X B Z ) + e z (A X B Y - A Y B X )= x e y z xy xYZ e e A A Az B B B ?? ? ?四、场的⼀个重要属性是他占有⼀个空间,他把物理状态作为空间和时间的函数来描述,⽽且,在此空间区域中,除了有限个点或某些表⾯外,该函数是处处连续的。
若物理状态与时间⽆关,则为静态场;反之,则为动态场或时变场。
五、直⾓坐标系中梯度的表达式为:x y z u u zgrad u e e e x y y=++ 六、哈密顿算符“?”,在直⾓坐标系中: xy z e e e x y z=++??? 七、哈密顿算符?表⽰标量场的梯度u : ()xy z grad u e e e u u x y z=++=? 例 1.3.1已知R = ,R = |R|。
证明:(1)RR R ?=;(2)31()R R R=- ;(3)()'()f R f R ?=-?。
其中:xy z e e e x y z =++???表⽰对x 、y 、z 的运算,''''x y z e e e x y z=++,表⽰对x ’、y ’、z 的运算。
一名词解释1.体电流密度:以体密度ρ分布的电荷,按速度v作匀速运动时,形成体电流密度向量。
2. 简述跨步电压的定义及其产生的条件。
答:地面上的行走的人的两足间的电压,称为跨步电压。
在电力系统接地体附近,由于接地电阻的存在,当有电流在土壤中流动时,使地面上的行走的人的两足间产生跨步电压静电场:相对观察者静止且量值不随时间变化的电荷所产生的电场。
1.介质放在电场中产生的物理现象是(极化)2.电偶极子:相距很近的两个符号相反而量值相等的电荷。
3.根据亥姆霍兹定理,一个矢量场由它的散度和旋度唯一地确定。
4.静电场中,场强大处,电位一定高:高低不定5.下图所示平板电容器的电位?1.煤质的磁化:将煤质放在外磁场中,外磁场对煤质分子磁矩将有转矩作用,使得分子磁矩的排列比较有序化,煤质内总的磁矩不再等于零,而呈现磁性的现象,称为煤质的磁化。
2.自感、互感与哪些因素有关?答:自感、互感均与本身回路的形状、尺寸、大小、材料及周围煤质的特性有关。
互感还与两回路的相互位置有关。
3.毕奥—沙伐定律揭示了哪些物理量之间的关系?答:揭示了电流密度和磁感应强度之间的联系,同时也说明了恒定的电流能够产生磁场.4、电场强度(Electric Field Intensity ) E表示单位正电荷在电场中所受到的力(F ), 它是空间坐标的矢量函数, 定义式给出了E 的大小、方向与单位。
5.理解电磁感应定律和全电流定律的物理含义麦克斯韦方程的物理含义:变化的电场可以产生磁场,变化的磁场可以产生电场全电流定律——麦克斯韦第一方程, 表明传导电流和变化的电场都能产生磁场;电磁感应定律——麦克斯韦第二方程, 表明电荷和变化的磁场都能产生电场静态场和恒定场是时变场的两种特殊形式电场线会终止磁场线不会终止、磁场线必须要有两极而电场线只要有电荷就行6、什么是辐射?电磁波从波源出发,以有限速度 在媒质中向四面八方传播,一部分电磁波能量脱离波源而单独在空间波动,不再返回波源,这种现象称为辐射7、辐射电阻表示天线辐射电磁能量的能力,它和哪些因素有关?辐射电阻的大小与天线的尺寸、形状及工作波长有关为什么发射高频时用的天线往往比较短?当天线的长度为无线电信号波长的1/4时,天线的发射和接收转换效率最高。
电磁场复习要点(考试题型:填空15空×2分,单选10题×2分,计算50分)第一章 矢量分析一、重要公式、概念、结论1. 掌握矢量的基本运算(加减运算、乘法运算等)。
2. 梯度、散度、旋度的基本性质,及在直角坐标系下的计算公式。
梯度:xy z u u uu x y z∂∂∂∇=++∂∂∂e e e 散度:y x zA A A x y z∂∂∂∇⋅=++∂∂∂A 旋度:3. 两个重要的恒等式: ()0u ∇⨯∇=,()0∇⋅∇⨯=A4. 亥姆霍兹定理揭示了:研究一个矢量场,必须研究它的散度和旋度,才能确定该矢量场的性质。
5.二、计算:两个矢量的加减法、点乘、叉乘运算以及矢量的散度、旋度的计算。
第二章 电磁场的基本规律 一、重要公式、概念、结论1.电荷和电流是产生电磁场的源量。
2.从宏观效应看,物质对电磁场的响应可分为极化、磁化和传导三种现象。
3. 静电场的基本方程:s lD D ds QE E dl ρ∇•=•=∇⨯=•=⎰⎰表明:静电场是有散无旋场。
电介质的本构关系: 0r D E E εεε== (记忆0ε的值)xyzy y z x z x x y z x yzA A A A A A x y z y z z x x y A A A ∂∂⎫⎫⎛⎛∂∂∂∂∂∂∂⎫⎛∇⨯==-+-+- ⎪⎪⎪ ∂∂∂∂∂∂∂∂∂⎝⎭⎝⎝⎭⎭e e e A e e e4. 恒定磁场的基本方程:l sH J H dl I B B ds ∇⨯=•=∇•=•=⎰⎰ 磁介质的本构关系:0r B H H μμμ== (记忆0μ的值)5. 相同场源条件下,均匀电介质中的电场强度为真空中电场强度值的倍r1ε。
6. 相同场源条件下,均匀磁介质中的磁感应强度是真空中磁感应强度的r μ倍。
7. 电场强度的单位是V/m ;磁感应强度B 的单位是T (特斯拉),或Wb/m 2 8. 电磁感应定律表明:变化的磁场可以激发电场。
电磁场与波知识要点第一章和第二章公式:1.电荷密度:V S l dq dV dq dS dq dl ρρρ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩体电荷密度:面电荷密度:线电荷密度:2.电流密度:3.电流连续性方程:(S V dq d J dS dV dtdt d J dt ρρ⎧⋅=-=-⎪⎪⎨⎪∇⋅=-⎪⎩⎰⎰ 可由高斯定理得)(P37)(单位时间从闭合曲面内流出的电荷等于V 内减少的电荷)(对恒定电流,其电荷密度在空间上的分布是不随时间变化的,则0J ∇⋅=,故恒定电流场是无散场)4.库仑力:5.点电荷电场:(P40)6.电场的电势:'11(4nii iq r C C r r ϕπε==+-∑()根据定义的零电势点来确定)7.比奥—萨伐尔定理:()'03'(4Idl r r B Idl r rμπ⨯-=-⎰电流元)(P46)8.磁场的磁矢位:'4VViJ A dV C r r μπ=+-⎰9.高斯定理:01S V q E dS dV ρεε⋅==⎰⎰ 内自.特别地,对于静电荷:(P44)V n V S n S di J e dS di J e v dl ρρ⎧=⋅=⋅⎪⎪⎨⎪=⋅=⋅⎪⎩体电流密度:面电流密度:0(0E E E dl ρ∇⋅=∇⨯=⋅=⎰说明静电荷产生的场是保守场)()'3'14ni i i iq q F r r r r πε==--∑()'3'114n i i i iq E r r r r πε==--∑10.有介质的高斯定理:(P53)利用高斯定理求电场通常只用于对称分布的问题中,关键是选择高斯面:(1).所求电场的点应该在高斯面上;(2).高斯面必须为封闭曲面;(3).在整个或分段高斯面上,或是恒定的。
11.安培环路定理:0B dl I μ⋅=⎰ 内自0B Jμ∇⨯=⋅(P4812.修正后的安培环路定律:DH J t∂∇⨯=+∂传(全电流定律)(p68)13.电位移矢量:14.磁场强度:0r B H MB H μμμ=-=15.极化强度矢量:0limi V p P V∆→=∆∑(电偶极矩:(z z p e qde =+从-到),极化强度矢量表示单位体积中电偶极矩的矢量和,反映了物质在电场下被极化的强弱。
第一章矢量分析①A A Ae =②cos A B A Bθ⋅=⋅③A 在B 上的分量B AB A B A COS BA θ⋅==④e xyz x y z xyzA B e e A A AB B B⨯=⑤A B A B⨯=-⨯ ,()A B C A B A C⨯+=⨯+⨯ ,()()()A B C B C A C A B ⋅⨯=⋅⨯=⋅⨯(标量三重积),()()()A B C B A C C A B ⨯⨯=⋅-⋅⑥ 标量函数的梯度xy z u u u ux y ze e e ∂∂∂∇=++∂∂∂⑦ 求矢量的散度=y x z A xyzA A A ∂∂∂∇⋅++∂∂∂散度定理:矢量场的散度在体积V 上的体积分等于在矢量场在限定该体积的闭合曲面S 上的面积分,即VSFdV F d S ∇⋅=⋅⎰⎰,散度定理是矢量场中的体积分与闭合曲面积分之间的一个变换关系。
⑧ 给定一矢量函数和两个点,求沿某一曲线积分E dl ⋅⎰,x y CCE dl E dx E dy ⋅=+⎰⎰积分与路径无关就是保守场。
⑨ 如何判断一个矢量是否可以由一个标量函数的梯度表示或者由一个矢量函数的旋度表示?如果0A ∇⋅= 0A ∇⨯=,则既可以由一个标量函数的梯度表示,也可以由一个矢量函数的旋度表示;如果0A ∇⋅≠,则该矢量可以由一个标量函数的梯度表示;如果0A ∇⨯≠,则该矢量可以由一个矢量函数的旋度表示。
矢量的源分布为A ∇⋅ A ∇⨯.⑩ 证明()0u ∇⨯∇=和()0A ∇⋅∇⨯=证明:解 (1)对于任意闭合曲线C 为边界的任意曲面S ,由斯托克斯定理有()d d dSCCuu u l l ∂∇⨯∇=∇==∂⎰⎰⎰S l 由于曲面S 是任意的,故有()0u ∇⨯∇=(2)对于任意闭合曲面S 为边界的体积τ,由散度定理有12()d ()d ()d ()d SS S ττ∇∇⨯=∇⨯=∇⨯+∇⨯⎰⎰⎰⎰A A S A S A S 其中1S 和2S 如题1.27图所示。
1、电场和磁场中的本构关系。
2、写出库仑定律的积分形式。
3、写出毕奥-萨伐尔定律的积分形式。
4、自由空间中高斯定理的微分形式。
5、自由空间中高斯定理的积分形式。
6、电流连续性方程的积分形式。
7、在静电场和恒定电场的比拟法中各量的对应关系。
8、法拉第电磁感应定律的微分、积分表示。
9、用电场强度或电位移矢量表示位移电流的公式。
10、磁场能瞬时密度的公式。
11、实数形式的坡印廷矢量的公式。
12、均匀无耗的传输线方程。
13、均匀无耗的传输线方程的解(负载端电压电流为U 2,I 2)14、均匀无耗导线,已知特性阻抗为Z 0,负载为Z L ,反射系数的公式15、用网络的分析方法可以简化对微波元器件的分析,其中将器件等效为什么,将波导等效为什么?16、根据亥姆霍兹定理,只要确定了电磁场的散度和旋度和边界条件就可以确定电磁场,其中和散度和旋度对应的量分别是什么?17、矩形波导传播的电磁波类型是什么?18、对于GJ-100的矩形波导(a ×b=22.86×10.16mm)的最大截止波长。
19、如图,这是两段等效电路,计算它对应的A 矩阵。
20、已知磁场的磁感应强度为235x e z e H y x +=,它的旋度为:( )A. y z e x e 56+B. 0C.y z e x e 56-D. y z e x e 56--21、球心在原点,半径为a 的球形理想导体外有一个点电荷q ,位置为r ,计算它的镜像的电量和位置。
22、哪种微波传输线存在截止频率。
23、写出麦克斯韦方程组的微分和积分形式。
24、写出自由空间中波动方程的形式25、简述均匀平面波在理想介质中传播的性质26、简述法兰盘的工作原理(并画出简图)27、简述分支定向耦合器的原理28、简述单支接阻抗匹配的原理29、简述四分之一波长阻抗匹配器的原理30、简述谐振腔原理31、简述微波带通滤波器的原理并画出其原理图32、求在空气中均匀带电圆盘轴线上的E 。
电磁场原理期末复习提纲期末复习提纲I 基本概念和理论1. 基本概念(1)何谓标量场?何谓⽮量场?(2)“ ”算符的微分特性和⽮量特性?(3)电场强度是怎样定义的?其物理意义如何?(4)电位的定义式和它的物理意义。
电位和电场强度之间的积分和微分关系。
(5)什麽是介质的极化?介质极化的影响怎样⽤等效极化电荷的分布来表⽰?(6)电位移⽮量是怎样定义的?它的物理意义?(7)特别注意泊松⽅程和拉普拉斯⽅程的适⽤范围。
(8)从唯⼀性定理来理解:按照间接求解⽅法来计算静电场问题,为什麽要特别强调有效区域问题?(9)什麽叫静电独⽴系统?(10)恒定电场中的⼏种媒质分界⾯衔接条件与静电场中有何不同?(11)毕奥---沙阀定律的应⽤条件?磁场计算能否运⽤叠加原理?(12)正确理解安培环路定律的涵义,运⽤其积分形式求解磁场问题切实注意积分路径的选择。
(13)为什麽要引⼊磁⽮量位?其定义式如何?(14)什麽是媒质的磁化?媒质磁化的影响怎样⽤等效磁化电流的分布来表⽰?(15)正确认识电、磁场的分布和电、磁场能量的分布之间的关系。
(16)正确理解Maxwell⽅程组中各个⽅程的物理意义,深刻认识电场和磁场之间相互依存、相互制约、不可分割,⽽成为⼀个整体的两个⽅⾯。
(17)什麽叫推⼴的电磁感应定律?什麽叫全电流定律?全电流是指哪⼏种电流?(18)坡印廷定理和坡印廷⽮量的物理意义是什麽?深刻理解坡印廷⽮量反映的电磁能流密度概念。
(19)深刻理解动态位解答所揭⽰的时变电磁场的波动性,以及场点电场、磁场的场量滞后于波源变化的推迟性。
(20)如何看待时空组合变量??-v R t 所描述的波动?(21)电能是如何沿着输电导线传播的?(22)何谓电准静态电磁场?按什麽条件来判别是电准静态电磁场?(23)何谓磁准静态电磁场?按什麽条件来判别是磁准静态电磁场?(24)在时变电磁场中什麽叫良导体?什麽叫似稳条件?(25)何谓集肤效应?何谓去磁效应?何谓邻近效应?它们分别与哪些因素相关?(26)什麽是涡流?涡流会产⽣什麽样的影响?如何减⼩这种影响?(27)什麽叫均匀平⾯电磁波?它的主要特征是什麽?(28)均匀平⾯电磁波在理想介质中的传播特性?(29)均匀平⾯电磁波在导电媒质中的传播特性?(30)什麽是⾊散现象?什麽是⾊散媒质?(31)对于有电磁波传播的导体,什么叫做低损耗介质?什么叫做良导体?(32)什么叫导⾏电磁波?为什么空⼼⾦属导波管内不可能存在TEM 波?(33) TM 波的最低模式为什么是TM 11?(34)什么叫截⽌频率f c ?什么叫截⽌波长λc ?什么叫波导⾊散?(35)为什么称TE 10波为矩形波导的主模?(36)什么叫波阻抗?什么叫本征阻抗?(37)电磁辐射的定义,电磁辐射的机理是什么?(38)单元偶极⼦的近区场概念,近区场的特点。