高三数学第二轮专题复习系列(5)-- 平面向量
- 格式:doc
- 大小:1.54 MB
- 文档页数:27
2009年高考第二轮热点专题复习:平面向量考纲指要:重点考察向量的概念、向量的几何表示、向量的加减法、实数与向量的积、两个向量共线的充要条件、向量的坐标运算等。
考点扫描:1.向量的概念:①向量;②零向量;③单位向量;④平行向量(共线向量);⑤相等向量。
2.向量的运算:(1)向量加法;(2)向量的减法;(3)实数与向量的积。
3.基本定理:(1)两个向量共线定理;(2)平面向量的基本定理。
4.平面向量的坐标表示。
5.向量的数量积:(1)两个非零向量的夹角;(2)数量积的概念;(3)数量积的几何意义;(4)向量数量积的性质;(5)两个向量的数量积的坐标运算;(6)垂直:如果a 与b 的夹角为900则称a 与b 垂直,记作a ⊥b 。
6.向量的应用:(1)向量在几何中的应用;(2)向量在物理中的应用。
考题先知:例1. 已知二次函数f (x )=x 2-2x +6,设向量a =(sin x ,2),b =(2sin x ,21), c =(cos2x ,1),d =(1,2).当x ∈[0,π]时,不等式f (a·b )>f (c ·d )的解集为___________.解:a ·b =2sin 2x +1≥1, c ·d =cos 2x +1≥1 ,f (x )图象关于x =1对称,∴f (x )在(1,+∞)内单调递增. 由f (a ·b )>f (c ·d )⇒a ·b >c ·d ,即2sin 2x +1>2cos 2x +1,又∵x ∈[0,π] ,∴x ∈(434ππ,).故不等式的解集为(434ππ,).例2.求函数y =.分析:由于向量沟通了代数与几何的内在联系,因此本题利用向量的有关知识求函数的值域。
解:因为y =所以构造向量21(2p x =+,21(2q x =-,则y p q =-,而(1,0)p q -=, 所以1y p q p q =-<-=,得11y -<<,另一方面:≥得0y ≥,所以原函数的值域是[0,1).点评:在向量这部分内容的学习过程中,我们接触了不少含不等式结构的式子,如||||||||||||||||||a b a b a b a b a b a b a b +≥-+≤+⋅≤⋅≤⋅,;等。
专题:利用三点共线结论解平面向量知识梳理:三点共线定理 OC →= (1-t )OA →+tOB →的证明: 若OA →=a ,OB →=b 是平面内两不共线向量,对于平面内任一向量OC →=c ,存在一对实数λ,μ使c =λa +μb .证明A 、B 、C 三点共线的充要条件是λ+μ=1.证明:(必要性)若A ,B ,C 三点共线,则存在实数t ,使得AC →=tAB →, 即OC →-OA →=t (OB →-OA →)所以OC →= (1-t )OA →+tOB → 令λ=1-t ,μ=t ,则有c =λa +t b ,即λ+μ=1.(充分性)若λ+μ=1,则c =λa +(1-λ)b 即c -b =λ(a -b ) 即OC →-OB →=λ(OA →-OB →)即BC →=λBA →.所以A 、B 、C 三点共线.(思考:当t=21时,会发现A,B,C 是什么情况?)典型例题:例1:(全国高考)设D 为△ABC 所在平面内一点,BC →=3CD →,则( )A.AD →=-13AB →+43AC →B.AD →=13AB →-43AC →C.AD →=43AB →+13AC →D.AD →=-43AB →-13AC →例2:已知平面内的三点A ,B ,O 不共线,且AP →=λOA →+μOB →,则A ,P ,B 三点共线的一个必要不充分条件是( )A .λ=μB .|λ|=|μ|C .λ=-μD .λ=1-μ例3:如图所示,在△ABC 中,H 为BC 上异于B ,C 的任一点,M 为AH 的中点,若AM →=λAB →+μAC →,则λ+μ=________.例4:如图,在△ABC 中,点O 是BC 边的中点,过点O 的直线分别交直线AB ,AC 于不同的两点M,N ,若N nA C A M mA B A==,,则m+n 的值为_______.练习:1、已知等差数列{a n }的前n 项和为S n ,若3OA →=a 5OB →+a 9OC →,且A ,B ,C 三点共线,则S 13=________.2、[2021•江苏卷,10]设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC .若DE →=λ1AB →+λ2AC →(λ1,λ2为实数),则λ1+λ2的值为________.3、(2021华美)在△ABC 中,N 是AC 边上一点,且AN →=12NC →,P 是BN 上一点,若AP →=mAB →+29AC →,则实数m 的值为4、(2021·郑州质检)如图,在△ABC 中,N 为线段AC 上靠近A 的三等分点,点P 在BN 上且A P →=⎪⎭⎫ ⎝⎛+112m AB →+211B C →,则实数m 的值为________.5、(2021华美)A ,B ,C 是圆O 上不同的三点,线段CO 与线段AB 交于点D (点O 与点D 不重合),若OC →=λOA →+μOB →(λ,μ∈R ),则λ+μ的取值范围是__________.专题:利用三点共线结论解平面向量例1:[解析] 由BC →=3CD →知,B 、C 、D 三点共线,从四个选项知系数和为1的仅有A ,故选A.例2:解析 A ,P ,B 三点共线,即存在一个实数m ,使得AP →=mAB →,∵AP →=λOA →+μOB →,∴mAB →=λOA →+μOB →,即m (OB →-OA →)=λOA →+μOB →,∴(m -μ)OB →=(m +λ)OA →,∵A ,B ,O 三点不共线,∴m -μ=0,m +λ=0,即λ=-μ=-m ,∴A ,B ,P 三点共线的充要条件为λ=-μ,结合各选项知A ,B ,P 三点共线的一个必要不充分条件为|λ|=|μ|.故选B. 例3:解析 由于B ,H ,C 三点共线,可令AH →=xAB →+(1-x )AC →,又M 是AH 的中点, 所以AM →=12AH →=12xAB →+12(1-x )AC →.又AM →=λAB →+μAC →,所以λ+μ=12x +12(1-x )=12.例4:解析 解法一:AO →=12(AB →+AC →)=m 2AM →+n 2AN →.∵M ,O ,N 三点共线,∴m 2+n2=1.∴m +n =2.解法二:MN 绕O 旋转,当N 与C 重合时,M 与B 重合,此时m =n =1,∴m +n =2.练习:1、[解析] 由3OA →=a 5OB →+a 9OC →,得OA →=a 53OB →+a 93OC →因为A ,B ,C 三点共线,所以a 53+a 93=1,即a 5+a 9=3,所以S 13=13(a 1+a 13)2=13(a 5+a 9)2=392.所以S 13=3922、解析 DE →=DB →+BE →=12AB →+23BC →=12AB →+23(AC →-AB →)=-16AB →+23AC →,∵DE →=λ1AB →+λ2AC →,∴λ1=-16,λ2=23,故λ1+λ2=12.(提示,过A 作DE 平行线交BC 延长线于点F,利用B,C,F 共线)3、 答案1/34、 解析 设BP →=λBN →=λ(AN →-AB →)=λ⎝⎛⎭⎫13 AC →-AB →=-λAB →+λ3 AC →(0≤λ≤1), ∴A P →=AB →+B P →=(1-λ) AB →+λ3AC →. 又A P →=⎝⎛⎭⎫m +211AB →+211 BC →=⎝⎛⎭⎫m +211AB →+211(AC →-AB →)=mAB →+211AC →,∴⎩⎪⎨⎪⎧λ3=211,m =1-λ,解得⎩⎨⎧λ=611,m =511,∴m =511.5、【答案】(1,+∞) [设OC →=mOD →,则m >1,因为OC →=λOA →+μOB →,所以mOD →=λOA →+μOB →,即OD →=λm OA →+μm OB →, 又知A ,B ,D 三点共线,所以λm +μm=1,即λ+μ=m ,所以λ+μ>1。
高考数学二轮复习专题五 平面向量【重点知识回顾】向量是既有大小又有方向的量,从其定义可以看出向量既具有代数特征,又具有几何特征,因此我们要借助于向量可以将某些代数问题转化为几何问题,又可将某些几何问题转化为代数问题,在复习中要体会向量的数形结合桥梁作用。
能否理解和掌握平面向量的有关概念,如:共线向量、相等向量等,它关系到我们今后在解决一些相关问题时能否灵活应用的问题。
这就要求我们在复习中应首先立足课本,打好基础,形成清晰地知识结构,重点掌握相关概念、性质、运算公式 法则等,正确掌握这些是学好本专题的关键在解决关于向量问题时,一是要善于运用向量的平移、伸缩、合成、分解等变换,正确地进行向量的各种运算,进一步加深对“向量”这一二维性的量的本质的认识,并体会用向量处理问题的优越性。
二是向量的坐标运算体现了数与形互相转化和密切结合的思想,所以要通过向量法和坐标法的运用,进一步体会数形结合思想在解决数学问题上的作用。
在解决解斜三角形问题时,一方面要体会向量方法在解三角形方面的应用,另一方面要体会解斜三角形是重要的测量手段,通过学习提高解决实际问题的能力因此,在复习中,要注意分层复习,既要复习基础知识,又要把向量知识与其它知识,如:曲线,数列,函数,三角等进行横向联系,以体现向量的工具性 平面向量基本定理(向量的分解定理)的一组基底。
向量的坐标表示e e a →→→12,是平面内的两个不共线向量,为该平面任一向量,则存在唯一实数对、,使得,、叫做表示这一平面内所有向量λλλλ12112212a e e e e →→→→→=+表示。
. 平面向量的数量积数量积的几何意义:(2)数量积的运算法则i j x y →→,是一对互相垂直的单位向量,则有且只有一对实数,,使得()a x i y j x y a a x y →→→→→=+=,称,为向量的坐标,记作:,,即为向量的坐标()()()设,,,a x y b x y →→==1122()()()则,,,a b x y y y x y x y →→±=±=±±11121122()()λλλλa x y x y →==1111,,()()若,,,A x y B x y 1122()则,AB x x y y →=--2121()()||AB x x y y A B →=-+-212212,、两点间距离公式()··叫做向量与的数量积(或内积)。
平面向量一.向量有关概念:1.向量的概念:既有大小又有方向的量,注意向量和数量的区别。
向量常用有向线段来表示,注意不能说向量就是有向线段(向量可以平移)。
例:已知A (1,2),B (4,2),把向量按向量a =(-1,3)平移得到的向量是_____2.零向量:长度为0的向量叫零向量,记作:,注意零向量的方向是任意的;3.单位向量:长度为一个单位长度的向量叫做单位向量(与AB 共线的单位向量是||AB AB ±);4.相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性;5.平行向量(共线向量):方向相同或相反的非零向量a 、b 叫做平行向量,记作:a ∥b ,规定零向量和任何向量平行。
提醒:①相等向量一定是共线向量,但共线向量不一定相等; ②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线, 但两条直线平行不包含两条直线重合;③平行向量无传递性!(因为有0);④三点A B C 、、共线⇔ AB AC 、共线; 6.相反向量:长度相等方向相反的向量叫做相反向量。
的相反向量是-。
例:下列命题:(1)若a b =,则a b =。
(2)两个向量相等的充要条件是它们的起点相同,终点相同。
(3)若AB DC =,则ABCD 是平行四边形。
(4)若ABCD 是平行四边形,则AB DC =。
(5)若,a b b c ==,则a c =。
(6)若//,//a b b c ,则//a c 。
其中正确的是_______ 二.向量的表示方法:1.几何表示法:用带箭头的有向线段表示,如AB ,注意起点在前,终点在后; 2.符号表示法:用一个小写的英文字母来表示,如a ,b ,c 等;3.坐标表示法:在平面内建立直角坐标系,以与x 轴、y 轴方向相同的两个单位向量i ,为基底,则平面内的任一向量a 可表示为(),a xi y j x y =+=,称(),x y 为向量a 的坐标,a =(),x y 叫做向量a 的坐标表示。
数学高考复习名师精品教案第44课时:第五章 平面向量——平面向量小结课题:平面向量小结 一.复习目标:1.进一步熟练有关向量的运算和证明;能运用解三角形的知识解决有关应用问题,2.渗透数学建模的思想,切实培养分析和解决问题的能力. 三.课前预习:1.正方形PQRS 对角线交点为M ,坐标原点O 不在正方形内部,且(0,3)OP =,(4,0)OS --→=,则RM =( )()A 71(,22-- ()B 71(,)22 ()C (7,4) ()D 77(,222.下列条件中,ABC ∆是锐角三角形的是 ( )()A 1sin cos 5A A +=()B tan tan tan 0A B C ++>()C 0AB BC ⋅>()D 3,30b c B ===3.已知一个平行四边形ABCD 的顶点9(,7),(2,6)2A B --,对角线的交点为3(3,)2M ,则它的另外两个顶点的坐标为 .4.把函数cos y x =图象沿(2,1)()2b k k Z ππ=+∈ 平移,得到函数 的图象.5.在一幢20m 高的楼顶测得对面一塔吊顶的仰角为60 ,塔基的俯角为45 ,那么这座塔吊的高是 .四.例题分析:例1.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且310,2,cos 4a c C A A +===,求:(1)c a的值; (2)b 的值.例2.已知向量(2,sin ),(cos ,1)a b θθ=-= ,其中(,)22ππθ∈-.(1)若a b ⊥ ,求θ的值; (2)令c a b =- ,求||c的最大值.例3.已知向量(,)u x y = 与向量(,2)v x y x =- 的对应关系记作()v f u =, 求证:(1)对于任意向量a、b 及常数,m n 恒有()()()f ma nb mf a nf b +=+ ; (2)若(1,1)a =,(1,0)b = ,用坐标表示()f a 和()f b ; (3)求使()(,)f c p q = ,(,p q 为常数)的向量c的坐标.例4.如图所示,某城市有一条公路从正西方向AO 通过中心O 后转向东北方向OB ,现要修建一条铁路L ,L 在AO 上设一站A ,在OB 上设一站B ,铁路在AB 部DLLBO A分为直线段,现要求市中心O 与AB 距离为10km ,问把A ,B 分别设在公路上离中心O 多远处,才能使||AB 最短,并求出最短距离.五.课后作业:1.已知||||1,a b a == 与b 的夹角为90,23,4c a b d ka b =+=- ,c 与d 垂直,k 的值为( )()A 6- ()B 6 ()C 3 ()D 3-2.已知ABC ∆中,,,0AB a AC b a b ==⋅< ,154S ∆=,||3,||5a b == ,则a 与b 的夹角是( )()A 30 ()B 0150- ()C 0150 ()D 30 或01503.在直角坐标系中,O 为原点,点M 在单位圆上运动,(2,1)N -满足2OP OM ON=-的点P 的轨迹方程为 ( )()A 10x y +-= ()B 22(2)(1)4x y ++-= ()C 20x y += ()D 221x y +=4.已知O 为ABC ∆所在平面内一点,且满足()(2)0OB OC OB OC OA -⋅+-=,则 ABC∆的形状为 .5.已知ABC ∆中,若0120C ∠=,则222sin sin sin sin sin C B A BA--= .6.已知四点(3,12)A -,(3,4)B -,(5,4)C -,(5,8)D ,求AC 与BD 的交点P 的坐标,并求直线AC 分BD 所得的比入及P 分AC 所得的比μ.7.若(cos ,sin ),(cos ,sin ),a b ααββ== ,且|||ka b a kb +=-(0k >),(1)用k 表示数量积a b ⋅ ;(2)求a b ⋅ 的最小值,并求出此时a 与b的夹角.8.在ABC ∆中,角,,A B C 所对的边,,a b c ,cos b a C =,且ABC ∆的最大边长为12,最小角的正弦为12,(1)判断ABC ∆的形状;(2)求ABC ∆的面积.9.已知(3,4)OP =- ,OP 绕原点O 分别旋转090,120 到OQ 、OR 的位置,求点,Q R 的坐标.10.某人在静水中游泳,速度为/h,(1)如果他径直游向河对岸,水流速度为4/km h,他实际沿什么方向前进?速度大小为多少?(2)他必须朝哪个方向游,才能沿与水流垂直的方向前进?实际前进的速度大小为多少?。
平面向量综合问题参考答案与试题解析一.试题(共38小题)1.如图,在ABC ∆中,13AN NC =,P 是BN 上的一点,若211AP mAB AC =+,则实数m的值为( )A .911B .511C .211D .311【分析】由已知中ABC ∆中,13AN NC =,P 是BN 上的一点,设BP BN λ=后,我们易将AP表示为(1)4AB AC λλ-+的形式,根据平面向量的基本定理我们易构造关于λ,m 的方程组,解方程组后即可得到m 的值 【解答】解:P 是BN 上的一点,设BP BN λ=,由13AN NC =,则AP AB BP =+AB BN λ=+()AB AN AB λ=+-(1)AB AN λλ=-+(1)4AB AC λλ=-+211mAB AC =+1m λ∴=-,2411λ=解得811λ=,311m =故选:D .【点评】本题考查的知识点是面向量的基本定理及其意义,其中根据面向量的基本定理构造关于λ,m 的方程组,是解答本题的关键.2.在平行四边形ABCD 中,E 、F 分别是BC 、CD 的中点,DE 交AF 于H ,记AB 、BC 分别为a 、b ,则(AH = )A .2455a b -B .2455a b +C .2455a b -+D .2455a b --【分析】欲求出向量则AH ,关键是求出向量则AH 与向量AF 的线性.关系过点F 作BC 的平行线交DE 于G ,则G 是DE 的中点,利用相似三角形有知识即可得出它们的线性关系,从而解决问题. 【解答】解:过点F 作BC 的平行线交DE 于G , 则G 是DE 的中点,且1124GF EC BC ==14GF AD ∴=,则AHD GHF ∆∆∽ 从而14FH AH =,∴45AH AF =又12AF AD DF b a =+=+ ∴4124()5255AH b a a b =+=+ 故选:B .【点评】本题主要考查了向量加减混合运算及其几何意义、平行四边形的几何性质,属于基础题.3.如图所示,在凸四边形ABCD 中,对边BC ,AD 的延长线交于点E ,对边AB ,DC 的延长线交于点F ,若BC CE λ=,ED DA μ=,3(,0)AB BF λμ=>,则( )A .3144EB EF EA =+B .14λμ=C .11λμ+的最大值为1 D .49EC AD EB EA⋅-⋅ 【解答】解:对于A ,因为3AB BF =,所以3()EB EA EF EB -=-,整理得3144EB EF EA =+,故A 正确;对于B ,过点B 作//BG FD ,交AE 于点G ,则AF AD BF DG =,BC DG CE DE =,所以1AF BC ED AD DG ED BF CE DA DG DE DA⋅⋅=⋅⋅=,因为BC CE λ=,ED DA μ=,3AB BF =,所以4AF BF =,BCCEλ=,ED DA μ=, 所以41λμ=,所以14λμ=,故B 正确; 对于C ,由B 知,114()84λμλμλμ+=+=,当且仅当12λμ==时等号成立, 所以11λμ+的最小值为4,故C 错误;对于D ,因为BC CE λ=,ED DA μ=,所以(1)EB EC λ=+,(1)(1)EA DA AD μμ=+=-+, 所以111455(1)(1)9(1)(1)244EC AD EC AD EB EA EC AD λμλμλμλμ⋅⋅-===-=--++⋅-++⋅+++,当且仅当12λμ==时取等号,故D 正确. 故选:ABD .【点评】本题主要考查平面向量的线性运算,基本不等式的应用,考查转化思想与数形结合思想的应用,属于中档题.4.已知向量a e ≠,||1e =,满足对任意t R ∈,恒有||||a te a e --,则( )A .0a e ⋅=B .()0a a e ⋅-=C .()0e a e ⋅-=D .()()0a e a e +⋅-=【分析】由平面向量数量积运算可得22210t te a e a -⋅+⋅-=,对任意t R ∈恒成立,则2(2)4(21)0e a e a ⋅-⋅-,然后求解即可.【解答】解:由向量a e ≠,||1e =,满足对任意t R ∈,恒有||||a te a e --,则2222222a te a t e a e a e -⋅+=-⋅+,即22210t te a e a -⋅+⋅-=,由题意有2(2)4(21)0e a e a ⋅-⋅-,即2(1)0e a ⋅-,即1e a ⋅=,则()0e a e ⋅-=, 故选:C .【点评】本题考查了平面向量数量积运算,重点考查了不等式恒成立问题,属基础题.5.已知e 为单位向量,向量a 满足()(5)0a e a e -⋅-=,则||a e +的最大值为( ) A .4B .5C .6D .7【分析】设(1,0)e =,(,)a x y =,根据向量a 满足()(5)0a e a e -⋅-=,可得x ,y 的关系式,并得出x ,y 的取值范围,||(1)a e x +=+ 【解答】解:设(1,0)e =,(,)a x y =,则()(5)(1a e a e x -⋅-=-,)(5y x ⋅-,22)650y x x y =-++=,即22(3)4x y -+=,则15x ,22y -,所以||(1)a e x +=+=,当5x =6,即||a e +的最大值为6, 故选:C .【点评】本题考查了向量数量积的应用,将所求问题坐标化转化为函数的最值问题是解题关键.6.已知ABC ∆中,对任意t R ∈,||||BA tBC AC -,则ABC ∆是 以C 为直角的直角 三角形.【分析】两边平方后整理成关于t 的一元二次不等式恒成立,再利用判别式小于等于0,以及正弦定理可得.【解答】解:对任意t R ∈,||||BA tBC AC -,即22()|BA tBC AC-,即22222cos 0a t act B c b -+-,则△2222(2cos )4()0ac B a c b =--,化简得222cos 1b B c -,即222sin b B c ,即sin b B c,设ABC ∆外接圆的半径为R ,则由正弦定理可得2b bR c,得2c R ,得sin 1C ,又sin 1C ,sin 1C ∴=,2C π∴=.故答案为:以C 为直角的直角.【点评】本题考查了平面向量数量积的性质及其运算,属中档题. 7.已知ABC ∆,若对任意t R ∈,||||BA tBC AC -,则ABC ∆一定为( )A .锐角三角形B .钝角三角形C .直角三角形D .答案不确定【解答】解:令AM BA tBC =-,则根据向量的减法的几何意义可得M 在BC 上, 由||||BA tBC AC -对一切实数t 都成立可得:||||AM AC ,AC BC ∴⊥,则ABC ∆为直角三角形.故选:C .【点评】本题是一道构造非常巧妙的试题,解题的关键是由||||BA tBC AC -对一切实数t都成立可得到AC 为A 到BC 的距离.8.如图,在平行四边形ABCD 中,AP BD ⊥,垂足为P ,且3AP =,则AP AC = 18 .【分析】设AC 与BD 交于O ,则2AC AO =,在RtAPO 中,由三角函数可得AO 与AP 的关系,代入向量的数量积||||cos AP AC AP AC PAO =∠可求 【解答】解:设AC 与BD 交于点O ,则2AC AO =AP BD ⊥,3AP =,在Rt APO ∆中,cos 3AO OAP AP ∠==||cos 2||cos 2||6AC OAP AO OAP AP ∴∠=⨯∠==,由向量的数量积的定义可知,||||cos 3618AP AC AP AC PAO =∠=⨯= 故答案为:18【点评】本题主要考查了向量的数量积 的定义的应用,解题的关键在于发现规律:cos 2cos 2AC OAP AO OAP AP ⨯∠=⨯∠=.9.在ABC ∆中,M 是BC 的中点,1AM =,点P 在AM 上且满足向量2AP PM =,则向量()PA PB PC +等于( )A .49-B .43-C .43D .49【分析】由题意M 是BC 的中点,知AM 是BC 边上的中线,又由点P 在AM 上且满足2AP PM =可得:P 是三角形ABC 的重心,根据重心的性质,即可求解.【解答】解:M 是BC 的中点,知AM 是BC 边上的中线, 又由点P 在AM 上且满足2AP PM =P ∴是三角形ABC 的重心∴()PA PB PC +2||PA AP PA ==-又1AM =∴2||3PA =∴4()9PA PB PC +=-故选:A . 【点评】本题考查向量的数量积的应用,解题的关键是判断P 点是三角形的重心,考查计算能力.10.在ABC ∆中,2AB =,3AC =,N 是边BC 上的点,且,BN NC O =为ABC ∆的外心,则(AN AO ⋅= ) A .3B .134C .92D .94【分析】利用平面向量的线性运算法则以及外心的性质、数量积的定义求解. 【解答】解:因为O 为ABC ∆的外心,故2122AO AB AB ⋅==,21922AO AC AC ⋅==, 又BN NC =,故N 为BC 的中点,故1()2AN AB AC =+,所以11()()22AN AO AB AC AO AO AB AO AC ⋅=+⋅=⋅+⋅1913(2)224=+=.故选:B .【点评】本题考查平面向量数量积的定义以及平面向量线性运算的几何意义,属于中档题.11.设a 、b 、c 是单位向量,0a b =,则()()a c b c --的最小值为 1 【分析】利用向量的运算法则展开()()a c b c --,再利用余弦值的有界性求范围. 【解答】解:设c 与a b +的夹角等于θ,()()(a c b c a b c --=-2)a b c ++20||||cos 10||1()1c a b a b a b θ=-++-++=-++2222211a b a b a b =+++=-++1=.故答案为:1【点评】本题主要考查两个向量的数量积的定义,两个向量垂直的性质,考查向量的运算法则:交换律、分配律,但注意不满足结合律,属于中档题.12.已知ABC ∆是边长为2的等边三角形,P 为平面ABC 内一点,则()()PB AB PB PC -+的最小值是( ) A .1-B .32-C .2-D .43-【分析】建立坐标系,设(,)P x y ,得出()()PB AB PB PC -+关于x ,y 的表达式,配方即可得出结论.【解答】解:以BC 为x 轴,以BC 边上的高为y 轴建立坐标系,则(0,3)A ,设(,)P x y ,则2(2,2)PB PC PO x y +==--,()(,3)PB AB PA x y -==--, 222233()()222322()22PB AB PB PC x y y x y ∴-+=+-=+--, ∴当0x =,32y =时,()()PB AB PB PC -+取得最小值32-, 故选:B .【点评】本题考查了平面向量的数量积运算,属于中档题.13.如图,在平面四边形ABCD 中,AB BC ⊥,AD CD ⊥,120BAD ∠=︒,1AB AD ==.若点E 为边CD 上的动点,则AE BE 的最小值为( )A .2116B .32C .2516D .3【分析】如图所示,以D 为原点,以DA 所在的直线为x 轴,以DC 所在的直线为y 轴,求出A ,B ,C 的坐标,根据向量的数量积和二次函数的性质即可求出. 【解答】解:如图所示,以D 为原点,以DA 所在的直线为x 轴, 以DC 所在的直线为y 轴,过点B 做BN x ⊥轴,过点B 做BM y ⊥轴,AB BC ⊥,AD CD ⊥,120BAD ∠=︒,1AB AD ==, 1cos602AN AB ∴=︒=,3sin 60BN AB =︒,13122DN ∴=+=,32BM ∴=,3tan302CM MB ∴=︒=, 3DC DM MC ∴=+=,(1,0)A ∴,3(2B ,3)2,(0,3)C ,设(0,)E m ,∴(1,)AE m =-,3(2BE =-,3)2m -,03m,∴22233333321()()224216416AE BE m m m m =+-=-+-=-+, 当34m =时,取得最小值为2116. 故选:A .【点评】本题考查了向量在几何中的应用,考查了运算能力和数形结合的能力,属于中档题. 14.在ABC ∆中,D 是BC 的中点,H 是AD 的中点,过点H 作一直线MN 分别与边AB ,AC 交于M ,N ,若,AM xAB AN y AC ==,则4x y +的最小值是( )A .52B .73C .94D .14【分析】根据题意,利用MH 与NH 共线,求出x 与y 的表达式,再利用基本不等式求出4x y +的最小值即可.【解答】解:在ABC ∆中,D 为BC 边的中点,H 为AD 的中点, ,AM xAB AN y AC ==,∴1()4AH AM MH xAB MH AB AC =+=+=+,∴11()44MH x AB AC =-+,同理,11()44NH AB y AC =+-, MH 与NH 共线,∴存在实数λ,使(0)MH NH λλ=<,即1111()()4444x AB AC AB y AC λλ-+=+-,即114411()44x y λλ⎧-=⎪⎪⎨⎪=-⎪⎩,解得14x λ-=,114y λ-=, 1115159442(444444x y λλλλ--∴+=+⨯=--+-=, 当且仅当14λλ-=-,即2λ=-时,“=”成立,4x y ∴+的最小值是94. 故选:C .【点评】本题考查了平面向量的线性运算,以及基本不等式的应用,属于中档题. 15.直角三角形ABC 中,P 是斜边BC 上一点,且满足2BP PC =,点M 、N 在过点P 的直线上,若AM mAB =,AN nAC =,(0,0)m n >>,则下列结论错误的是( ) A .12m n+为常数 B .m n +的最小值为169C .2m n +的最小值为3D .m 、n 的值可以为:12m =,2n = 【分析】作出图形,由2BP PC =可得出1233AP AB AC =+,根据三点共线的结论得出123m n+=,结合基本不等式可判断出各选项的正误,即可得出结论. 【解答】解:如下图所示:由2BP PC =,可得2()AP AB AC AP -=-,∴1233AP AB AC =+, 若,,(0,0)AM mAB AN nAC m n ==>>,则11,AB AM AC AN m n==, ∴1233AP AM AN m n=+,M 、P 、N 三点共线,∴12133m n+=,∴123m n +=,故A 正确;所以1,22m n ==时,也满足123m n +=,则D 选项正确;122252252(2)()2333333333n m n m n m n m n mn m +=++=++⋅=, 当且仅当m n =时,等号成立,C 选项成立; 1222()()1211333333n m n m n m n m n m n m +=++=++⋅,当且仅当2n m =时,即1222,33m n ++==时等号成立,故B 选项错误. 故选:B .17.已知点O 、N 、P 在ABC ∆所在平面内,且||||||OA OB OC ==,0NA NB NC ++=,PA PB PB PC PC PA ⋅=⋅=⋅,则点O 、N 、P 依次为ABC ∆的( )A .重心、外心、垂心B .重心、外心、内心C .外心、重心、垂心D .外心、重心、内心【分析】根据O 到三角形三个顶点的距离相等,得到O 是三角形的外心,根据所给的四个选项,第一个判断为外心的只有C ,D 两个选项,只要判断第三个条件可以得到三角形的什么心就可以,移项相减,得到垂直,即得到P 是三角形的垂心. 【解答】证明:||||||OA OB OC ==,O ∴到三角形三个顶点的距离相等, O ∴是三角形的外心,根据所给的四个选项,第一个判断为外心的只有C ,D 两个选项,∴只要判断第三个条件可以得到三角形的什么心就可以,PA PB PB PC PC PA ⋅=⋅=⋅,∴()0PB PA PC -=,∴0PB CA ⋅=,∴PB CA ⊥,同理得到另外两个向量都与相对应的边垂直,得到P 是三角形的垂心, 故选:C .【点评】本题是一个考查的向量的知识点比较全面的题目,把几种三角形的心总结的比较全面,解题时注意向量的有关定律的应用,不要在运算律上出错. 18.已知非零向量,AB AC 和BC 满足())0||||AB AC BC AB AC +⋅=,且1||||2AC BC AC BC ⋅=,则ABC ∆为( ) A .等边三角形 B .等腰非直角三角形C .非等腰三角形D .等腰直角三角形【解答】解:根据向量的性质可得||||1||||AB ACAB AC == ∴||||AB ACAB AC +在BAC ∠的角平分线上(设角平分线为)AD (())0||||AB ACBC AB AC +⋅= AD BC ∴⊥从而有AB AC =又因为12||||AC BC AC BC ⋅=且||||1||||AC BCAC BC ==所以60C ∠=︒三角形为等边三角形 故选:A .【点评】本题主要考查了平面向量的加法的四边形法则,向量的数量积的运算,考查了等边三角形的性质,属于综合试题.19.已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个点,动点P 满足()2||cos ||cos OB OC AB ACOP AB B AC Cλ+=++,[0λ∈,)+∞,则动点P 的轨迹一定通过ABC ∆的( ) A .内心B .垂心C .重心D .外心【解答】解:设BC 的中点为D , ()2||cos ||cos OB OC AB AC OP AB B AC C λ+=++,∴()||cos ||cos AB ACOP OD AB B AC C λ=++, 即()||cos ||cos AB ACDP AB B AC Cλ=+,两端同时点乘BC ,||||cos()||||cos ()()(||||)0||cos ||cos ||cos ||cos AB BC AC BC AB BC B AC BC CDP BC BC BC AB B AC C AB B AC Cπλλλ⋅⋅⋅-⋅⋅=+=+=-+=DP BC ∴⊥,∴点P 在BC 的垂直平分线上,即P 经过ABC ∆的外心故选:D .【点评】本题主要考查了空间向量的加减法,以及三角形的外心的知识,属于基础题. 20.设点O 在ABC ∆的内部,且有230OA OB OC ++=,则ABC ∆的面积与AOC ∆的面积的比为( ) A .2B .32C .3D .53【解答】解:分别取AC 、BC 的中点D 、E ,230OA OB OC++=,∴2()OA OC OB OC+=-+,即2 4OD=-OE,O∴是DE的一个三等分点,∴3ABCAOCSS∆∆=,故选:C.【点评】此题是个基础题.考查向量在几何中的应用,以及向量加法的平行四边形法则和向量共线定理等基础知识,同时考查学生灵活应用知识分析解决问题的能力和计算能力.21.已知点O在ABC∆内,且::4:3:2AOB BOC AOCS S S∆∆∆=,AO AB ACλμ=+,则(λμ+= A.1B.29C.59D.23【分析】先证明0AOB BOC AOCS OC S OA S OB∆∆∆⋅+⋅+⋅=成立,得到4320OC OA OB++=,利用向量的线性运算得到429AC AB AO+=,求出λ,μ,由此能求出结果.【解答】解:先证明0AOB BOC AOCS OC S OA S OB∆∆∆⋅+⋅+⋅=,延长AO交BC于Q,由题意得AOB BOC AOC ABCS S S S∆∆∆∆++=,由面积关系得:BOCABCS OQS AQ∆∆=,∴APB CPAABCS SAQ AQS∆∆∆+=⋅,||||||||AOC AOBAOC AOB AOC AOBS SQC QBAQ AB AC AB ACS S S SBC BC∆∆∆∆∆∆=⋅+⋅=⋅+⋅++,∴0AOC AOB BOCS OB S OC S AO∆∆∆⋅+⋅-⋅=,∴0AOB BOC AOCS OC S OA S OB∆∆∆⋅+⋅+⋅=,由题意知::4:3:2AOB BOC AOCS S S∆∆∆=,4320OC OA OB∴++=,∴429AC AB AO+=,∴24,99λμ==,23λμ∴+=.故选:D.22.“奔驰定理”是平面向量中一个非常优美的结论,因为这个定理对应的图形与“奔驰”()Mercedesbenz的log o很相似,故形象地称其为“奔驰定理”.奔驰定理:已知O是ABC∆内的一点,BOC ∆,AOC ∆,AOB ∆的面积分别为A S ,B S ,C S ,则0A B C S OA S OB S OC ⋅+⋅+⋅=.若O 是锐角ABC ∆内的一点,A ,B ,C 是ABC ∆的三个内角,且点O 满足OA OB OB OC OA OC ⋅=⋅=⋅.则( )A .O 为ABC ∆的外心B .BOC A π∠+=C .||:||:||cos :cos :cos OA OB OC A B C =D .::tan :tan :tan A B C S S S A B C =【分析】选项A ,将OA OB OB OC ⋅=⋅移项,并结合平面向量的减法和数量积的运算法则,可得OB CA ⊥,同理推出OA CB ⊥,OC AB ⊥,得解; 选项B ,根据选项A 中所得,可知2OBC C π∠+=,2OCB B π∠+=,再由三角形的内角和定理,得解;选项C ,延长CO 交AB 于点P ,结合诱导公式与余弦函数的定义,可证cos :cos :A B OA OB =,进而得解;选项D ,由三角形的面积公式与诱导公式,可得:tan :tan A B S S A B =,进而得解. 【解答】解:对于选项A ,()00OA OB OB OC OB OA OC OB CA OB CA ⋅=⋅⇔⋅-=⇔⋅=⇔⊥,同理可得,OA CB ⊥,OC AB ⊥,故O 为ABC ∆的垂心,即A 错误; 对于选项B ,因为OB AC ⊥,OC AB ⊥,所以2OBC C π∠+=,2OCB B π∠+=,所以OBC C OCB B π∠++∠+=,又OBC OCB BOC π∠+∠+∠=,所以BOC C B ∠=+, 又A B C π++=,所以BOC A π∠+=,即B 正确; 对于选项C ,由上可知,A BOC π=-∠,B AOC π=-∠, 延长CO交AB 于点P ,cos :cos cos():cos()cos :cos ::OP OPA B BOC AOC BOP AOP OA OB OB OAππ=-∠-∠=∠∠==, 同理可得,cos :cos :A C OA OC =,所以cos :cos :cos ::A B C OA OB OC =,即C 正确;对于选项D ,11:():():tan :tan tan :tan tan():tan()tan :tan 22A B S S OC BP OC AP BP AP OP POB OP AOP BOC AOC A B A Bππ=⋅⋅⋅⋅==∠∠=∠∠=--=,同理可得,:tan :tan A C S S A C =,所以::tan :tan :tan A B C S S S A B C =,即D 正确.故选:BCD .【点评】本题考查平面向量在几何中的应用,熟练掌握平面向量的数量积,诱导公式,平面几何基础知识是解题的关键,考查逻辑推理能力和运算能力,属于难题.23.在矩形ABCD 中,1AB =,2AD =,动点P 在以点C 为圆心且与BD 相切的圆上.若AP AB AD λμ=+,则λμ+的最大值为( )A .3B .22C 5D .2【分析】方法一:如图:以A 为原点,以AB ,AD 所在的直线为x ,y 轴建立如图所示的坐标系,先求出圆的标准方程,再设点P 的坐标为25(1θ+,252)θ+,根据AP AB AD λμ=+,求出λ,μ,根据三角函数的性质即可求出最值.方法二:根据向量分解的等系数和线直接可得.【解答】解:如图:以A 为原点,以AB ,AD 所在的直线为x ,y 轴建立如图所示的坐标系,则(0,0)A ,(1,0)B ,(0,2)D ,(1,2)C ,动点P 在以点C 为圆心且与BD 相切的圆上, 设圆的半径为r ,2BC =,1CD =,22215BD ∴=+∴1122BC CD BD r ⋅=⋅, 5r ∴=,∴圆的方程为224(1)(2)5x y -+-=,设点P 的坐标为25(1θ+252)θ+,AP AB AD λμ=+,25(1θ∴+252)(1θλ+=,0)(0μ+,2)(λ=,2)μ, ∴251θλ+=2522θμ+=,255cos sin 2sin()255λμθθθϕ∴+=++=++,其中tan 2ϕ=, 1sin()1θϕ-+,13λμ∴+,故λμ+的最大值为3,方法二:根据向量分解的等系数和线,可得λμ+的最大值为3,如图所述 故选:A .【点评】本题考查了向量的坐标运算以及圆的方程和三角函数的性质,关键是设点P 的坐标,考查了学生的运算能力和转化能力,属于中档题.24.平面直角坐标系中,O 为坐标原点,已知两点(3,1)A 、(1,3)B -,若点C 满足OC OA OB αβ=+,其中α、R β∈,且1αβ+=,则点C 的轨迹方程为( )A .32110x y +-=B .22(1)(2)5x y -+-=C .20x y -=D .250x y +-=【分析】由点C 满足OC OA OB αβ=+,其中α、R β∈,且1αβ+=,知点C 在直线AB 上,故求出直线AB 的方程即求出点C 的轨迹方程.【解答】解:C 点满足OC OA OB αβ=+且1αβ+=,A ∴、B 、C 三点共线. C ∴点的轨迹是直线AB 又(3,1)A 、(1,3)B -,∴直线AB 的方程为:133113y x --=---整理得250x y +-= 故C 点的轨迹方程为250x y +-= 故选:D .【点评】考查平面向量中三点共线的充要条件及知两点求直线的方程,是向量与解析几何综合运用的一道比较基本的题,难度较小,知识性较强.25.若动直线:440l mx y m -+-=与圆22:(4)(5)9C x y -+-=相交于A ,B 两点,则()A .||AB 的最小值为42B .CA CB ⋅的最大值为7-C .(OA OB O ⋅为坐标原点)的最大值为78D .AC AB ⋅的最大值为18【解答】解:440mx y m -+-=,(4)(4)0m x y ∴---=,故动直线l 恒过点(4,4)D ; 圆22:(4)(5)9C x y -+-=的圆心为(4,5)C ,半径为3,则22||(44)(45)1CD =-+-=, 故||AB 的最小值为2223142⨯-=;故选项A 正确;对于选项B ,||||cos 9cos CA CB CA CB ACB ACB ⋅=⋅∠=∠,易知当CD AB ⊥时,ACB ∠最小,此时22233(42)7cos 2339maxACB +-∠==-⨯⨯;故7()9()79max CA CB ⋅=⨯-=-;故选项B 正确;对于选项C ,设AB 的中点为M ,()()OA OB OM MA OM MA ⋅=+⋅-22229OM MA OM CM =-=+-,而点M 在以DC 为直径的圆2291(4)()24x y -+-=上,设1(4cos 2M θ+,91sin )([022θθ+∈,2]π,且)2πθ≠,故2222221911119(4cos )(sin )(cos )(sin )9222222OA OB OM CM θθθθ⋅=+-=+++++--284cos 4sin 2842sin()28424πθθθ=++=+++,故错误;对于选项D ,21||||cos ||2AC AB AC AB CAB AB ⋅=⋅∠=, 故当||AB 取最大值,即AB 过圆心C 时,但动直线l 的斜率一定存在, 故动直线l 不包括垂直于x 轴的直线,故AC AB ⋅的最大值不存在,即错误; 故选:AB .【点评】本题综合考查了直线与圆的位置关系的应用及平面向量的综合应用,属于难题.。
平面向量与复数
高考分析及预测
从内容上看:向量的基本概念(共线、垂直)及其运算(加法、减法、数乘和数量积)是高考的必考内容;从题型上看,平面向量的考题比较灵活,多以向量的运算为主,平面几何图形作为载体,考查向量加减法的几何意义,考查学生分析问题、解决问题的能力和运算能力,填空题、解答题都有可能出现,可能是容易题,也可能是中档题。
复数题在高考中主要以小题形式呈现,难度不大,主要考查复数的运算。
高考能级要求:
知识梳理:
重点及易错点回顾:
典例精研:
目标达成反馈:
课堂小结:
学教反思:。
高三数学二轮复习重点高三数学第二轮重点复习内容专题一:函数与不等式,以函数为主线,不等式和函数综合题型是考点函数的性质:着重掌握函数的单调性,奇偶性,周期性,对称性。
这些性质通常会综合起来一起考察,并且有时会考察具体函数的这些性质,有时会考察抽象函数的这些性质。
一元二次函数:一元二次函数是贯穿中学阶段的一大函数,初中阶段主要对它的一些基础性质进行了了解,高中阶段更多的是将它与导数进行衔接,根据抛物线的开口方向,与x轴的交点位置,进而讨论与定义域在x轴上的摆放顺序,这样可以判断导数的正负,最终达到求出单调区间的目的,求出极值及最值。
不等式:这一类问题常常出现在恒成立,或存在性问题中,其实质是求函数的最值。
当然关于不等式的解法,均值不等式,这些不等式的基础知识点需掌握,还有一类较难的综合性问题为不等式与数列的结合问题,掌握几种不等式的放缩技巧是非常必要的。
专题二:数列。
以等差等比数列为载体,考察等差等比数列的通项公式,求和公式,通项公式和求和公式的关系,求通项公式的几种常用方法,求前n项和的几种常用方法,这些知识点需要掌握。
专题三:三角函数,平面向量,解三角形。
三角函数是每年必考的知识点,难度较小,选择,填空,解答题中都有涉及,有时候考察三角函数的公式之间的互相转化,进而求单调区间或值域;有时候考察三角函数与解三角形,向量的综合性问题,当然正弦,余弦定理是很好的工具。
向量可以很好得实现数与形的转化,是一个很重要的知识衔接点,它还可以和数学的一大难点解析几何整合。
专题四:立体几何。
立体几何中,三视图是每年必考点,主要出现在选择,填空题中。
大题中的立体几何主要考察建立空间直角坐标系,通过向量这一手段求空间距离,线面角,二面角等。
另外,需要掌握棱锥,棱柱的性质,在棱锥中,着重掌握三棱锥,四棱锥,棱柱中,应该掌握三棱柱,长方体。
空间直线与平面的位置关系应以证明垂直为重点,当然常考察的方法为间接证明。
专题五:解析几何。
2014高三数学:平面向量的综合应用典型例题1.利用向量的坐标运算,解决两直线的夹角,判定两直线平行、垂直问题 例1、若非零向量b a ,满足||||b a =.0)2(=⋅+b b a ,则b a ,的夹角为()A .30oB .60oC .120oD .150o1、非零向量a .b .c 满足||||||c b a ==,c b a =+,则向量a .b 夹角为()A .150°B .120°C .60°D .30°2 .已知向量(1,cos ),(1,2cos )θθ=-=a b 且⊥ab ,则cos 2θ等于( )A .1-B .0C .12D .223已知平面向量a ()2m =-,,b ()13=,,且()-⊥a b b ,则实数m 的值为( )A .23-B .23C .43D .634.设非零向量a,b 的夹角为θ,记θθsin cos ),(b a b a f -=.若21,e e 均为单位向量,且2321=⋅e e ,则向量),(21e e f 与),(12e e f -的夹角为____rad.5.已知A,B,C 是函数x e y =图象上的三点,横坐标分别为1,,1+-t t t .(1)当t=1时,求实数x,y 的值,使得OC y OA x OB +=,其中O 为坐标原点;(2)①证明:对任意实数t,A,B,C 三点不在同一条直线上;②问△ABC 是锐角三角形、直角三角形、还是钝角三角形?说明理由.6 .已知O 是ABC ∆的外心,10,6==AC AB ,若AC y AB x AO ⋅+⋅=且5102=+y x ,则=∠BAC cos _____________.7、在ABC ∆中,若22()||5CA CB AB AB +⋅=,则tan tan AB= ________. 【答案】73 8、已知O 为△ABC 的外心,210||,16||==AC AB , 若AC y AB x AO +=,且32x+25y=25,则||OA →==_____.【答案】109、已知)2,3(),2,(x AC x x AB -==,若∠BAC 是钝角,则x 的取值范围是___________2.利用向量的坐标运算,解决有关线段的长度问题例2、已知非零向量a ,b 满足|a |=|a +b |=1,a 与b 夹角为120°,则向量b 的模为________.1、在平面直角坐标系中,O 是坐标原点,()2,0A,()0,1B ,则点集{},1,,P OP OA OB R λμλμλμ=++≤∈所表示的平面区域的面积是________.【答案】42、已知ABC ∆是边长为4的正三角形,D 、P 是ABC ∆内部两点,且满足11(),48AD AB AC AP AD BC =+=+,则APD ∆的面积为__________.【答案】343、若向量→a 、→b 满足|→a |=1,|→b |=2,且→a 与→b 的夹角为π3,则|→a +2→b |=_______ 【答案】 214、已知向量a =(2,1),a ·b =10,|a +b |52=,则|b |=__________【答案】55、已知在等边三角形ABC 中,点P 为线段AB 上一点,且(01)AP AB =≤≤λλ.(1)若等边三角形边长为6,且13=λ,求CP ;(2)若CP AB PA PB ⋅≥⋅,求实数λ的取值范围. 3.利用向量的坐标运算,用已知向量表示未知向量 例3、已知点O 是,,内的一点,090BOC 150AOB =∠=∠∆ABC ,,,OA c OC b OB a ===设且,3,1,2===c b a 试用.,c b a 表示和1、如图,,的夹角为与,的夹角为与5OC ,30OA OC 120OB ,100===OA OB OA 用OB OA ,表示.OC 2、如图,在△OAB 中,已知P 为线段AB 上的一点,.OP x OA y OB =⋅+⋅(1)若BP PA =,求x ,y 的值;(2)若3BP PA =,||4OA =,||2OB =,且OA 与OB 的夹角为60°时,求OP AB ⋅ 的值.4.利用向量的数量积问题例题4、是圆C:22(1)(3)1x y -+-=上的一个动点,A(3,1),则OP OA 的最小值为______【答案】2(3-1) 1、直角三角形ABC 中,90,2ACB AC BC ︒∠===, P 是斜边AB 上的一个三等分点,则CP CB CP CA ⋅+⋅=__.【答案】41、在ABC ∆中,已知||||||2AB BC CA ===,则向量AB BC =( )A .2B .2-C .23D.23-2、如图, 在等腰三角形ABC 中, 底边2=BC , DC AD =, 12AE EB =, 若12BD AC ⋅=-, 则AB CE ⋅=_____.【答案】3、在ABC ∆中,6BC=,BC 边上的高为2,则AB AC ⋅的最小值为________.【答案】5-4、在ABC ∆中,90=C 且3CA CB ==,点M 满足,2MA BM =则CB CM ⋅等于( )A .2B .3C .4D .65、若等腰梯形ABCD 中,//AB CD ,3AB =,2BC =,45ABC ∠=,则AC BD ⋅ 的值为________【答案】36、在ABC ∆中,已知a .b .c 成等比数列,且33,cos 4a c B +==,则AB BC ⋅=(B ) A .32B .32-C .3D .-37、如图,在正方形ABCD 中,已知2AB =,M 为BC 的中点,若N 为正方形 内(含边界)任意一点,则AM AN ⋅的取值范围是______.)在Rt ΔAB C 中,C ∠=90.,若ΔABC 所在平面内的一点P 满足过0=++PC PB PA λ(I)当λ= 1时,222||||||PC PB PA +=_______(II) 222||||||PC PB PA +的最小值为______.【答案】(1)5;(2)1. 8、在△ABC 中,O 是中线AM 上一个动点,若AM=4,则的最小值是(B ) A .-4 B .-8C .-10D .-125.利用向量的数量积解决有关系数问题例5、如图,在△ABC 中,D,E 分别为边BC,AC 的中点. F 在边AB 上,且,则x+y的值为____【答案】521、向量b n a m b a --==若),3,2(),2,1(与b a 2+共线(其中,,0mm n R n n∈≠且)则等于_【答案】21-2、已知O 为△ABC 的外心,,120,2,20=∠==BAC aAC a AB 若AC AB AO βα+=,则βα+的最小值为____ 【答案】23、已知O 是锐角三角形△ABC 的外接圆的圆心,且,A θ∠=若cos cos 2,sin sin B CAB AC mAO C B+=则m =( )A .sin θB .cos θC .tan θD .不能确定4、已知ABC 和点M 满足0MA MB MC ++=.若存在实数m 使得AB AC mAM +=成立,则m = ( )A .2B .3C .4D .55、如图,AB 是圆O 的直径,C D 、是圆O 上的点,60CBA ∠=,45ABD ∠=,CD xOA yBC =+,则x y +的值为 ( )A .33-B .13-C .23D .36、已知向量(3,4)a =, (2,1)b =-,如果向量a xb -与b 垂直,则x 的值为( C )A .233B .323C .25D .25-COAB D7、已知向量AB 与AC 的夹角为0120,且|AB →|=3, |AC →|=2,若λ=+AP AB AC ,且⊥AP BC ,则实数λ的值为__________.【答案】7128、已知△ABC 中,点D 是BC 的中点,过点D 的直线分别交直线AB.AC 于E 、F 两点,若()0>=λλAE AB ,AF AC μ=()0>μ,则14λμ+的最小值是________【答案】29 9、设21,e e 为单位向量,非零向量R y x e y e x b ∈+=,,21,若21,e e 的夹角为6π,则||||b x 的最大值等于________.6.利用向量的数量积解决与直线相关问题.例题6、已知A,B,C 是函数x e y =图象上的三点,横坐标分别为1,,1+-t t t .(1)当t=1时,求实数x,y 的值,使得OC y OA x OB +=,其中O 为坐标原点;(2)①证明:对任意实数t,A,B,C 三点不在同一条直线上;②问△ABC 是锐角三角形、直角三角形、还是钝角三角形?说明理由.1、将函数y =2x 的图像按向量a →平移后得到函数y =2x +6的图像,给出以下四个命题:①a →的坐标可以是(-3.0);②a →的坐标可以是(0,6);③a →的坐标可以是(-3,0)或(0,6);④a →的坐标可以有无数种情况,其中真命题的个数是( D )A .1 B .2 C .3 D .42、是平面上一定点,A .B .C 是平面上不共线的三个点,动点P 满足).,0[)||||(+∞∈⋅++=λλAC ACAB AB OA OP 则P 的轨迹一定通过△ABC 的( B )A .外心B .内心C .重心D .垂心3设P 是△ABC 所在平面内的一点,2BC BA BP +=,则(B )A .0PA PB += B .0PC PA += C .0PB PC +=D .0PA PB PC ++=4、P 是ABC ∆所在平面内一点,若PB PA CB +=λ,其中R ∈λ,则P 点一定在(B )(A)ABC ∆内部 (B)AC 边所在直线上 (C)AB 边所在直线上 (D)BC 边所在直线上7.利用向量的数量积解决与三角函数的综合.例题7、设向量(2,sin ),(1,cos ),a b θθθ==为锐角.(1)若136a b ⋅=,求sin cos θθ+的值;(2)若//a b ,求sin(2)3πθ+的值.1、已知向量(cos ,sin ),(cos ,sin ),(1,0)a a a b c ββ===-(Ⅰ)求向量b c +的长度的最大值;(Ⅱ)设a 4π=,且()a b c ⊥+,求cos β的值.2、已知向量a →=(cos3x 2,sin 3x 2),b →=(cos x 2,―sin x 2),且x ∈[0,π2].(1) 已知a →∥b →,求x;(2)若f(x)=a →·b →―2λ|a →+b →|+2λ的最小值等于―3,求λ的值.3、设(cos ,(1)sin ),(cos ,sin ),(0,0)2a b παλαββλαβ=-=><<<是平面上的两个向量,若向量a b +与a b -互相垂直.(Ⅰ)求实数λ的值;(Ⅱ)若45a b ⋅=,且4tan 3β=,求tan α的值. 4、设平面向量)23,21(),1,3(=-=b a ,若存在实数)0(≠m m 和角θ,其中)2,2(ππθ-∈,使向量θθtan ,)3(tan 2⋅+-=-+=b a m d b a c ,且d c ⊥.(Ⅰ)求)(θf m =的关系式;(Ⅱ)若]3,6[ππθ-∈,求)(θf 的最小值,并求出此时的θ值. 8.利用向量的新型的综合.例题8、已知两个非零向量a 与b ,定义sin θ⨯=a b a b ,其中θ为a 与b 的夹角. 若()3,4-a =, ()0,2b =,则⨯a b 的值为 ( D )A .8- B .6- C .8D .61、定义平面向量之间的一种运算“⊙”如下:对任意的a=(m,n),b=(p,q),令a ⊙b= mq-np,下面说法错误的是( )A .若a 与b 共线,则a ⊙b =0 B .a ⊙b =b ⊙a C .对任意的λ∈R,有(λa)⊙b =λ(a ⊙b)D .(a ⊙b)2+(a·b)2= |a|2|b|22、已知向量a=(x +z,3),b=(2,y-z),且a ⊥ b.若x ,y 满足不等式1x y +≤,则z 的取值范围为 ( D )A .[-2,2]B .[-2,3]C .[-3,2]D .[-3,3]3、称(,)||d a b a b =-为两个向量,a b 间的距离.若a b 、满足:①||=1;b ②a b ≠; ③对任意的,t R ∈恒有(,)(,)d a tb d a b ≥,则( B )A .()()a b a b +⊥-B .()b a b ⊥-C .a b ⊥D .()a a b ⊥-4、以下命题:①若||||||a b a b ⋅=⋅,则a ∥b ;②a =(-1,1)在b =(3,4)方向上的投影为15;③若△ABC 中,a=5,b =8,c =7,则BC ·CA =20;④若非零向量a 、b 满足||||a b b +=,则|2||2|b a b >+.其中所有真命题的标号是______________【答案】①②④5、已知)2,3(),2,(x AC x x AB -==,若∠BAC 是钝角,则x 的取值范围是___________【答案】解析:不共线与且AC AB AC AB 0<⋅可得⎪⎭⎫⎝⎛+∞⋃⎪⎭⎫ ⎝⎛-⋃⎪⎭⎫ ⎝⎛-∞-∈,340,3131,x 6、定义*a b 是向量a 和b 的“向量积”,它的长度*sin a b a b α=,其中α为向量a 和b 的夹角,若()2,0u =,(1,3u v -=-,则*()u u v +=_____________.【答案】23【平面向量的综合应用】一、选择题1.设A 、B 、C 、D 四点坐标依次是(-1,0),(0,2),(4,3),(3,1),则四边形ABCD 为( ) A.正方形B.矩形C.菱形D.平行四边形2.已知△ABC 中,AB =a ,AC =b ,a ·b <0,S △ABC =415,|a |=3,|b |=5,则a 与b 的夹角是( ) A.30°B.-150°C.150°D.30°或150°二、填空题3.将二次函数y =x 2的图象按向量a 平移后得到的图象与一次函数y =2x -5的图象只有一个公共点(3,1),则向量a =_________.4.等腰△ABC 和等腰Rt △ABD 有公共的底边AB ,它们所在的平面成60°角,若AB =16 cm,AC =17 cm,则CD =_________.三、解答题5.如图,在△ABC 中,设AB =a ,AC =b ,AP =c , AD =λa ,(0<λ<1),AE =μb (0<μ<1),试用向量a ,b 表示c .6.正三棱柱ABC —A 1B 1C 1的底面边长为a ,侧棱长为2a . (1)建立适当的坐标系,并写出A 、B 、A 1、C 1的坐标; (2)求AC 1与侧面ABB 1A 1所成的角.7.已知两点M (-1,0),N (1,0),且点P 使NP NM PN PM MN MP ⋅⋅⋅,,成公差小于零的等差数列. (1)点P 的轨迹是什么曲线?(2)若点P 坐标为(x 0,y 0),Q 为PM 与PN 的夹角,求tan θ.8.已知E 、F 、G 、H 分别是空间四边形ABCD 的边AB 、BC 、CD 、DA 的中点. (1)用向量法证明E 、F 、G 、H 四点共面; (2)用向量法证明:BD ∥平面EFGH ;(3)设M 是EG 和FH 的交点,求证:对空间任一点O ,有)(41OD OC OB OA OM +++=.参考答案一、1.解析:AB =(1,2),DC =(1,2),∴AB =DC ,∴AB ∥DC ,又线段AB 与线段DC 无公共点,∴AB ∥DC 且|AB |=|DC |,∴ABCD 是平行四边形,又|AB |=5,AC =(5,3),|AC |=34,∴|AB |≠|AC },∴ABCD不是菱形,更不是正方形;又BC =(4,1),∴1·4+2·1=6≠0,∴AB 不垂直于BC ,∴ABCD 也不是矩形,故选D. 答案:D2.解析:∵21415=·3·5sin α得sin α=21,则α=30°或α=150°. 又∵a ·b <0,∴α=150°. 答案:C二、3.(2,0) 4.13 cm三、5.解:∵BP 与BE 共线,∴BP =m BE =m (AE -AB )=m (μb -a ), ∴AP =AB +BP =a +m (μb -a )=(1-m )a +m μb①又CP 与CD 共线,∴CP =n CD =n (AD -AC )=n (λa -b ), ∴AP =AC +CP =b +n (λa -b )=n λa +(1-n )b②由①②,得(1-m )a +μm b =λn a +(1-n )b .∵a 与b 不共线,∴⎩⎨⎧=-+=-+⎩⎨⎧-==-010111m n m n n m a m μλμλ即 ③解方程组③得:m =λμμλμλ--=--11,11n 代入①式得c =(1-m )a +m μb =πμ-11[λ(1-μ)a +μ(1-λ)b ]. 6.解:(1)以点A 为坐标原点O ,以AB 所在直线为Oy 轴,以AA 1所在直线为Oz 轴,以经过原点且与平面ABB 1A 1垂直的直线为Ox 轴,建立空间直角坐标系.由已知,得A (0,0,0),B (0,a ,0),A 1(0,0,2a ),C 1(-,2,23aa 2a ). (2)取A 1B 1的中点M ,于是有M (0,2,2a a ),连AM ,MC 1,有1MC =(-23a ,0,0),且AB =(0,a ,0),1AA =(0,02a )由于1MC ·AB =0,1MC ·1AA =0,所以M C 1⊥面ABB 1A 1,∴AC 1与AM 所成的角就是AC 1与侧面ABB 1A 1所成的角.∵1AC =),2,2,0(),2,2,23(a aAM a a a =-a a a AM AC 49240221=++=⋅∴a a a AM a a a a AC 2324||,324143||22221=+==++=而 2323349,cos 21=⨯>=<∴aa aAM AC所以AM AC 与1所成的角,即AC 1与侧面ABB 1A 1所成的角为30°.7.解:(1)设P (x ,y ),由M (-1,0),N (1,0)得,PM =-MP =(-1-x ,-y ),NP PN -= =(1-x ,-y ),MN =-NM =(2,0),∴MP ·MN =2(1+x ), PM ·PN =x 2+y 2-1,NP NM ⋅ =2(1-x ).于是,NP NM PN PM MN MP ⋅⋅⋅,,是公差小于零的等差数列,等价于⎩⎨⎧>=+⎪⎩⎪⎨⎧<+---++=-+03 0)1(2)1(2)]1(2)1(2[211222x y x x x x x y x 即 所以,点P 的轨迹是以原点为圆心,3为半径的右半圆. (2)点P 的坐标为(x 0,y 0),30,1cos 21,3041||cos 42)24)(24()1()1(||||,210220002020*******πθθθ<≤≤<∴≤<-=⋅⋅=∴-=-+=+-⋅++=⋅=-+=⋅x x PNPM PN PM x x x y x y x PN PM y x PN PM||3cos sin tan ,411cos 1sin 02022y x x =-==∴--=-=∴θθθθθ 8.证明:(1)连结BG ,则EH EF EH BF EB BD BC EB BG EB EG +=++=++=+=)(21由共面向量定理的推论知:E 、F 、G 、H 四点共面,(其中21BD =EH )(2)因为BD AB AD AB AD AE AH EH 21)(212121=-=-=-=.所以EH ∥BD ,又EH ⊂面EFGH ,BD ⊄面EFGH 所以BD ∥平面EFGH .(3)连OM ,OA ,OB ,OC ,OD ,OE ,OG 由(2)知BD EH 21=,同理BD FG 21=,所以FG EH =,EH FG ,所以EG 、FH 交于一点M 且被M 平分,所以).(41)](21[21)](21[212121)(21OD OC OB OA OD OC OB OA OG OE OG OE OM +++=+++==+=.。
高三数学第二轮专题复习系列(5)--平面向量一、本章知识结构:二、高考要求1、理解向量的概念,掌握向量的几何表示,了解共线向量的概念。
2、掌握向量的加法和减法的运算法则及运算律。
3、掌握实数与向量的积的运算法则及运算律,理解两个向量共线的充要条件。
4、了解平面向量基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算。
5、掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件。
6、掌握线段的定比分点和中点坐标公式,并且能熟练运用;掌握平移公式。
7、掌握正、余弦定理,并能初步运用它们解斜三角形。
8、通过解三角形的应用的教学,继续提高运用所学知识解决实际问题的能力。
三、热点分析对本章内容的考查主要分以下三类:1.以选择、填空题型考查本章的基本概念和性质.此类题一般难度不大,用以解决有关长度、夹角、垂直、判断多边形形状等问题.2.以解答题考查圆锥曲线中的典型问题.此类题综合性比较强,难度大,以解析几何中的常规题为主.3.向量在空间中的应用(在B类教材中).在空间坐标系下,通过向量的坐标的表示,运用计算的方法研究三维空间几何图形的性质.在复习过程中,抓住源于课本,高于课本的指导方针.本章考题大多数是课本的变式题,即源于课本.因此,掌握双基、精通课本是本章关键.分析近几年来的高考试题,有关平面向量部分突出考查了向量的基本运算。
对于和解析几何相关的线段的定比分点和平移等交叉内容,作为学习解析几何的基本工具,在相关内容中会进行考查。
本章的另一部分是解斜三角形,它是考查的重点。
总而言之,平面向量这一章的学习应立足基础,强化运算,重视应用。
考查的重点是基础知识和基本技能。
四、复习建议由于本章知识分向量与解斜三角形两部分,所以应用本章知识解决的问题也分为两类:一类是根据向量的概念、定理、法则、公式对向量进行运算,并能运用向量知识解决平面几何中的一些计算和证明问题;另一类是运用正、余弦定理正确地解斜三角形,并能应用解斜三角形知识解决测量不可到达的两点间的距离问题。
在解决关于向量问题时,一是要善于运用向量的平移、伸缩、合成、分解等变换,正确地进行向量的各种运算,进一步加深对“向量”这一二维性的量的本质的认识,并体会用向量处理问题的优越性。
二是向量的坐标运算体现了数与形互相转化和密切结合的思想,所以要通过向量法和坐标法的运用,进一步体会数形结合思想在解决数学问题上的作用。
在解决解斜三角形问题时,一方面要体会向量方法在解三角形方面的应用,另一方面要体会解斜三角形是重要的测量手段,通过学习提高解决实际问题的能力。
五、典型例题平面向量【例1】 在下列各命题中为真命题的是( ) ①若a =(x 1,y 1)、b =(x 2,y 2),则a ²b =x 1y 1+x 2y 2②若A(x 1,y 1)、B(x 2,y 2),则|AB |=221221)()(y y x x -+- ③若a =(x 1,y 1)、b =(x 2,y 2),则a ²b =0⇔x 1x 2+y 1y 2=0 ④若a =(x 1,y 1)、b =(x 2,y 2),则a ⊥b ⇔x 1x 2+y 1y 2=0 A 、①② B 、②③ C 、③④ D 、①④解:根据向量数量积的坐标表示;若a =(x 1,y 1), b =(x 2,y 2),则a ²b =x 1x 2+y 1y 2,对照命题(1)的结论可知,它是一个假命题、于是对照选择支的结论、可以排除(A)与(D),而在(B)与(C)中均含有(3)、故不必对(3)进行判定,它一定是正确的、对命题(2)而言,它就是两点间距离公式,故它是真命题,这样就以排除了(C),应选择(B)、说明:对于命题(3)而言,由于a ²b =0⇔a =0或b =0或a ⊥b ⇔x 1x 2+y 1y 2=0,故它是一个真命题、而对于命题(4)来讲,a ⊥b ⇒x 1x 2+y 1y 2=0、但反过来,当x 1x 2+y 1y 2=0时,可以是x 1=y 1=0,即a =0,而我们的教科书并没有对零向量是否与其它向量垂直作出规定,因此x 1x 2+y 1y 2=0⇒/a ⊥b ),所以命题(4)是个假命题、【例2】 已知a =(-3,-1), b =(1,3),那么a ,b 的夹角θ=( )A 、30°B 、60°C 、120°D 、150°解:a ²b =(-3,-1)²(1,3)=-23 |a |=22)1()3(-+-=2 |b |=22)3(1+=2 ∴cos θ=ba b a ∙∙=2232⨯-=23- 【例3】 已知a =(2,1), b =(-1,3),若存在向量c 使得:a ²c =4, b ²c =-9,试求向量c 的坐标、解:设c =(x ,y ),则由a ²c =4可得: 2x +y =4;又由b ²c =-9可得:-x +3y =-9于是有:⎩⎨⎧=+-=+9342y x y x )2()1(由(1)+2(2)得7y =-14,∴y =-2,将它代入(1)可得:x =3 ∴c =(3,-2)、说明:已知两向量a ,b 可以求出它们的数量积a ²b ,但是反过来,若已知向量a 及数量积a ²b ,却不能确定b 、【例4】 求向量a =(1,2)在向量b =(2,-2)方向上的投影、 解:设向量a 与b 的夹角θ、 有cos θ=ba b a ∙∙ =2222)2(221)2(221-++-⨯+⨯=-1010∴a 在b 方向上的投影=|a |cos θ=5³(-1010)=-22 【例5】 已知△ABC 的顶点分别为A(2,1),B(3,2),C(-3,-1),BC 边上的高AD ,求AD 及点D 的坐标、 解:设点D 的坐标为(x ,y ) ∵AD 是边BC 上的高,∴AD ⊥BC ,∴AD ⊥BC 又∵C 、B 、D 三点共线, ∴BC ∥BD又AD =(x -2,y -1), BC =(-6,-3)BD =(x -3,y -2)∴⎩⎨⎧=-+--=----0)3(3)2(60)1(3)2(6x y y x解方程组,得x =59,y =57 ∴点D 的坐标为(59,57),AD 的坐标为(-51,52) 【例6】 设向量a 、b 满足:|a |=|b |=1,且a +b =(1,0),求a ,b 、 解:∵|a |=|b |=1,∴可设a =(cos α,sin α), b =(cos β,sin β)、 ∵a +b =(cos α+cos β,sin α+sin β)=(1,0),⎩⎨⎧=+=+)2(0βsin αsin )1(1βcos αcos 由(1)得:cos α=1-cos β……(3) 由(2)得:sin α=-sin β……(4) ∴cos α=1-cos β=21 ∴sin α=±23,sin β= 23 ⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛=23,2123,21b a 或⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-=23,2123,21b a【例7】 对于向量的集合A={v =(x ,y )|x 2+y 2≤1}中的任意两个向量1v 、2v 与两个非负实数α、β;求证:向量α1v +β2v 的大小不超过α+β、 证明:设1v =(x 1,y 1),2v =(x 2,y2)根据已知条件有:x 21+y 21≤1,x 22+y 22≤1又因为|α1v +β2v |=221221)βα()βα(y y x x ++ =)(αβ2)(β)(α21212222221212y y x x y x y x +++++其中x 1x 2+y 1y 2≤2121y x +2222y x +≤1所以|α1v +β2v |≤αβ2βα22++=|α+β|=α+β【例8】 已知梯形ABCD 中,AB ∥CD ,∠CDA=∠DAB=90°,CD=DA=21AB 、 求证:AC ⊥BC证明:以A 为原点,AB 所在直线为x 轴,建立直角坐标系、如图,设AD=1 则A(0,0)、B(2,0)、C(1,1)、D(0,1)∴BC =(-1,1), AC=(1,1) BC ²AC=-1³1+1³1=0∴BC ⊥AC 、【例9】 已知A(0,a ),B(0,b),(0<a <b),在x 轴的正半轴上求点C ,使∠ACB 最大,并求出最大值、 解,设C(x ,0)(x >0) 则CA =(-x ,a ), CB =(-x ,b) 则CA ²CB =x 2+a b 、 cos ∠ACB=CBCA CB CA ∙∙=22222bx ax ab x +++令t=x 2+a b 故cos ∠ACB=11)(1)(1222+∙-+--t b a tb a ab当t 1=ab 21即t=2a b 时,cos ∠ACB 最大值为ba ab +2、 当C 的坐标为(ab ,0)时,∠ACB 最大值为arccosba ab+2、【例10】 如图,四边形ABCD 是正方形,P是对角线BD 上的一点,PECF 是矩形,用向量法证明 (1)PA=EF (2)PA ⊥EF证明:建立如图所示坐标系,设正方形边长为1, |OP |=λ,则A(0,1),P(22λ,22λ),E(1,22λ),F(22λ,0)∴PA =(-22λ,1-22λ), EF =(22λ-1,- 22λ) (1)|PA |2=(-22λ)2+(1-22λ)2=λ2-2λ+1|EF |2=(22λ-1)2+(-22λ)2=λ2-2λ+1 ∴|PA |2=|EF |2,故PA=EF (2) PA ²EF =(-22λ)(22λ-1)+(1-22λ)(-22λ)=0 ∴PA ⊥EF ∴PA ⊥EF 、【例11】 已知).1,2(),0,1(==b a① 求|3|b a +;②当k 为何实数时,k -a b 与b a3+平行, 平行时它们是同向还是反向?解:①b a3+= (1,0) + 3(2,1) = ( 7,3) , ∴|3|b a+=2237+=58.②k -a b= k(1,0)-(2,1)=(k -2,-1).设k -a b =λ(b a3+),即(k -2,-1)= λ(7,3),∴⎩⎨⎧=-=-λ31λ72k ⎪⎪⎩⎪⎪⎨⎧-=-=⇒31λ31k . 故k= 31-时, 它们反向平行. 【例12】 已知,1||,2||==b a a 与b 的夹角为3π,若向量b k a +2与b a +垂直,求k.解:3πcos ||||b a b a =⋅=2×1×21=1.∵b k a+2与b a +垂直,∴(b k a+2))(b a +⋅= 0 ,∴20222=++⋅+b k b a k b a a ⇒ k = - 5.【例13】 如果△ABC 的三边a 、b 、c 满足b 2 + c 2 = 5a 2,BE 、CF 分别为AC 边与AB 上的中线, 求证:BE ⊥CF. 解:22222222211(),()221()41111[()()(4222BE BA BC CF CB CA BE CF BA BC AB AC BC CB CA BA BC AC AB AC BC BC CA C =+=+∴⋅=-⋅+⋅--⋅=-+-++---+22222222)]11(5)(5)0,88B BA AB AC BC b c a -=+-=+-=∴BE ⊥CF, 即 BE ⊥CF .【例14】 是否存在4个平面向量,两两不共线,其中任何两个向量之和均与其余两个向量之和垂直?解:如图所示,在正△ABC 中,O 为其内心,P 为圆周上一点, 满足PA ,PB ,PC ,PO 两两不共线,有 (PA +PB )²(PC +PO )=(PO +OA +PO +OB )²(PO +OC +PO ) =(2PO +OA +OB )²(2PO +OC ) =(2PO -OC )²(2PO +OC ) =4PO 2-OC 2 =4PO 2-OC 2=0有(PA +PB )与(PC +PO )垂直、同理证其他情况、从而PA ,PB ,PC ,PO 满足题意、故存在这样4个平面向量、平面向量的综合应用1.利用向量的坐标运算,解决两直线的夹角,判定两直线平行、垂直问题【例1】 已知向量321,,OP OP OP 满足条件0321=++OP OP OP ,1321===OP OP OP ,求证:321P P P ∆是正三角形解:令O 为坐标原点,可设()()()333222111sin ,cos ,sin ,cos ,sin ,cos θθθθθθP P P 由321OP OP OP -=+,即()()()332211θsin θcos θsin ,θcos θsin ,θcos --=+⎩⎨⎧-=+-=+321321θsin θsin θsin θcos θcos θcos 两式平方和为()11θθcos 2121=+-+,()21θθcos 21-=-, 由此可知21θθ-的最小正角为0120,即1OP 与2OP 的夹角为0120, 同理可得1OP 与3OP 的夹角为0120,2OP 与3OP 的夹角为0120, 这说明321,,P P P 三点均匀分部在一个单位圆上, 所以321P P P ∆为等腰三角形.【例2】 求等腰直角三角形中两直角边上的中线所成的钝角的度数 解:如图,分别以等腰直角三角形的两直角边为x 轴、y 轴建立直角坐标系,设()()a B a A 2,0,0,2,则()()a C a D ,0,0,, 从而可求:()()a a BD a a AC 2,,,2-=-=,()()aa a a a a BDAC BD AC 552,,2θcos ⋅-⋅-=⋅==545422-=-a a . ⎪⎭⎫⎝⎛-=∴54arccos θ.2.利用向量的坐标运算,解决有关线段的长度问题【例3】 已知ABC ∆,AD 为中线,求证()2222221⎪⎭⎫⎝⎛-+=BC AC AB AD证明:以B 为坐标原点,以BC 所在的直线为x 轴建立如图2直角坐标系,①②设()()0,,,c C b a A ,⎪⎭⎫ ⎝⎛0,2c D ,则()222222402b a ac c b a c AD ++-=-+⎪⎭⎫ ⎝⎛-=, 222221⎪⎪⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛+BC AC AB . =()442122222222c ac b a c b a c b a +-+=⎥⎦⎤⎢⎣⎡-+-++, 从而=2AD 222221⎪⎪⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛+BC AC AB ,()2222221⎪⎭⎫⎝⎛-+=BC AC AB AD .3.利用向量的坐标运算,用已知向量表示未知向量【例4】 已知点O 是,,内的一点,090BOC 150AOB =∠=∠∆ABC ,,,OA c OC b OB a ===设且,3,1,2===c b a 试用.,c b a 表示和解:以O 为原点,OC ,OB 所在的直线为x 轴和y 轴建立如图3所示的坐标系. 由OA=2,0120=∠AOx ,所以()(),31-A ,120sin 2,120cos 200,即A , 易求()()3,0C 1-0B ,,,设()()()12121212OA ,-130-13,0-3-13.13--3OB OC λλλλλλλλ=+=+⎧==⎧⎪⎪⎨⎨==⎪⎪⎩⎩即,,,,133a b c =-- .【例5】 如图,001,OB 120OC OA 30,OC 5OA OB OA === 与的夹角为,与的夹角为,用OAOB ,表示.OC解:以O 为坐标原点,以OA 所在的直线为x 轴,建立如图所示的直角坐标系,则()0,1A ,(),,即,所以由⎪⎪⎭⎫⎝⎛=∠25235C ,30sin 5,5cos30C 30COA 000⎪⎪⎭⎫⎝⎛-23,21B 同理可求 ()121253513OC ,10-,2222OA OB λλλλ⎛⎫⎛⎫=+=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭即,, .335λ3310λλ2325λ21-λ23521221⎪⎪⎩⎪⎪⎨⎧==⎪⎪⎩⎪⎪⎨⎧==, OB OA OC 3353310+=∴. 4.利用向量的数量积解决两直线垂直问题【例6】 如图,已知平行六面体ABCD —A 1B 1C 1D 1的底面 ABCD 是菱形,且∠C 1CB =∠C 1CD =∠BCD . (1)求证:C 1C ⊥BD . (2)当1CC CD的值为多少时,能使A 1C ⊥平面C 1BD ?请给出证明.(1)证明:设CD =a , CD =b ,1CC =c ,依题意,|a |=|b |,CD 、CB 、 1CC中两两所成夹角为θ,于是DB CD BD -==a -b ,BD CC ⋅1=c (a -b )=c ²a -c ²b =|c |²|a |cos θ-|c |²|b |cos θ=0,∴C 1C ⊥BD .(2)解:若使A 1C ⊥平面C 1BD ,只须证A 1C ⊥BD ,A 1C ⊥DC 1, 由)()(1111CC CD AA CA D C CA -⋅+=⋅=(a +b +c )²(a -c )=|a |2+a ²b -b ²c -|c |2=|a |2-|c |2+|b |²|a |cos θ-|b |²|c |²cos θ=0,得 当|a |=|c |时,A 1C ⊥DC 1,同理可证当|a |=|c |时,A 1C ⊥BD , ∴1CC CD=1时,A 1C ⊥平面C 1BD .【例7】 如图,直三棱柱ABC —A 1B 1C 1,底面△ABC 中,CA =CB =1,∠BCA =90°,AA 1=2,M 、N 分别是A 1B 1、A 1A 的中点. (1)求BN 的长;(2)求cos<11,CB BA >的值; (3)求证:A 1B ⊥C 1M .解:(1)如图,以C 为原点建立空间直角坐标系O -xyz . 依题意得:B (0,1,0),N (1,0,1) ∴|BN |=3)01()10()01(222=-+-+-.(2)解:依题意得:A 1(1,0,2),C (0,0,0),B 1(0,1,2). ∴1BA =1),2,1,1(CB -=(0,1,2)11CB BA ⋅=1³0+(-1)³1+2³2=3|1BA |=6)02()10()01(222=-+-+-5)02()01()00(||2221=-+-+-=CB .1030563||||,cos 111111=⋅=⋅⋅>=<∴CB BC CB BA CB BA (3)证明:依题意得:C 1(0,0,2),M (2,21,21))2,1,1(),0,21,21(11--==B A M C∴,,00)2(21121)1(1111M C B A M C B A ⊥∴=⨯-+⨯+⨯-=⋅∴A 1B ⊥C 1M .5.利用向量的数量积解决有关距离的问题,距离问题包括点到点的距离,点的线的距离,点到面的距离,线到线的距离,线到面的距离,面到面的距离.【例8】 求平面内两点),(),,(2211y x B y x A 间的距离公式 解:设点),(),,(2211y x B y x A ,),(1212y y x x AB --=∴212212)()(||y y x x AB -+-=∴ ,而||||AB AB =∴点A 与点B 之间的距离为:212212)()(||y y x x AB -+-=6.利用向量的数量积解决线与线的夹角及面与面的夹角问题.【例9】 证明:βαβαβαsin sin cos cos )cos(+=-证明:在单位圆O 上任取两点B A ,,以Ox 为始边,以OB OA ,为终边的角分别为αβ,,则A 点坐标为),sin ,(cos ββB 点坐标为)sin ,(cos αα;则向量=OA ),sin ,(cos ββ=OB )sin ,(cos αα,它们的夹角为βα-,,1||||==OB OA βαβαsin sin cos cos +=⋅OB OA ,由向量夹角公式得:=⋅=-||||)βαcos(OB OA OB OA βαβαsin sin cos cos +,从而得证.注:用同样的方法可证明=+)cos(βαβαβαsin sin cos cos - 7.利用向量的数量积解决有关不等式、最值问题.【例10】 证明柯西不等式2212122222121)()()(y y x x y x y x +≥+⋅+证明:令),(),,(2211y x b y x a ==(1) 当0 =a 或0 =b 时,02121=+=⋅y y x x b a,结论显然成立; (2) 当0 ≠a 且0 ≠b 时,令θ为b a ,的夹角,则],0[πθ∈θcos ||||2121b a y y x x b a=+=⋅. 又 1|cos |≤θ ||||||b a b a≤⋅∴(当且仅当b a //时等号成立)222221212121||y x y x y y x x +⋅+≤+∴∴2212122222121)()()(y y x x y x y x +≥+⋅+.(当且仅当2211y x y x =时等号成立) 【例11】 求x x x x y 22cos 3cos sin 2sin ++=的最值 解:原函数可变为x x y 2cos 2sin 2++=,所以只须求x x y 2cos 2sin +='的最值即可, 构造{}{}1,1,2cos ,2sin ==b x x a , 那么22cos 2sin =≤⋅=+b a b a x x .故22,22min max -=+=y y .【例12】 三角形ABC 中,A (5,-1)、B (-1,7)、C (1,2),求:(1)BC 边上的中线AM 的长;(2)∠CAB 的平分线AD 的长;(3)cos ABC 的值.解:(1)点M 的坐标为x M =)29,0(,29227;0211M y M ∴=+==+- .2221)291()05(||22=--+-=∴AM 5)21()15(||,10)71()15(||)2(2222=--+-==--++=AC ABD 点分BC 的比为2. ∴x D =31121227,3121121=+⨯+==+⨯+-D y.2314)3111()315(||22=--+-=AD(3)∠ABC 是BA 与BC 的夹角,而BA =(6,8),BC =(2,-5).1452629291052)5(2)8(6)5()8(26||||cos 2222==-+⋅-+-⨯-+⨯=⋅⋅=∴BC BA BC BA ABC 解斜三角形【例1】 已知△ABC 的三个内角A 、B 、C 满足A +C =2B .BC A cos 2cos 1cos 1-=+,求cos2CA -的值. 解法一:由题设条件知B =60°,A +C =120°. 设α=2CA -,则A -C =2α,可得A =60°+α,C =60°-α,,43cos cos sin 43cos 41cos sin 23cos 211sin 23cos 211)60cos(1)60cos(1cos 1cos 1222-αα=α-αα=α+α+α-α=α-︒+α+︒=+C A 所以依题设条件有,cos 243cos cos 2B-=-αα .2243cos cos ,21cos 2-=-αα∴=B整理得42cos 2α+2cos α-32=0(M )(2cos α-2)(22cos α+3)=0,∵22cos α+3≠0, ∴2cos α-2=0.从而得cos222=-C A . 解法二:由题设条件知B =60°,A +C =120°22cos 1cos 1,2260cos 2-=+∴-=︒-CA①,把①式化为cos A +cos C =-22cos A cos C②,利用和差化积及积化和差公式,②式可化为)]cos()[cos(22cos 2cos2C A C A CA C A -++-=-+③, 将cos2C A +=cos60°=21,cos(A +C )=-21代入③式得:)cos(2222cos C A C A --=-④将cos(A -C )=2cos 2(2C A -)-1代入 ④:42cos 2(2C A -)+2cos 2CA --32=0,(*),.222cos :,022cos 2,032cos 22,0)32cos 22)(222cos 2(=-=--∴=+-=+---C A C A C A C A C A 从而得【例2】 在海岛A 上有一座海拔1千米的山,山顶设有一个观察站P ,上午11时,测得一轮船在岛北30°东,俯角为60°的B 处,到11时10分又测得该船在岛北60°西、俯角为30°的C 处。