基于ANSYS的机翼接头强度分析及优化设计
- 格式:pdf
- 大小:395.17 KB
- 文档页数:5
基于有限元仿真的机械结构强度分析研究有限元仿真是一种常用的工程仿真方法,它通过将实际的复杂结构模型离散化为有限数量的有限元素,并利用数学方法,计算出每个元素的应力和应变,进而获得整个结构的应力和应变分布情况。
在机械结构设计中,有限元仿真可以用于进行结构强度分析,以评估结构在工作载荷下的受力情况,为优化设计提供支持。
机械结构强度分析的目标是确定结构在静态或动态载荷作用下是否能满足强度要求,并找出可能的破坏位置和形式。
有限元仿真在机械结构强度分析中扮演重要的角色,可以有效地模拟结构在各种外载荷条件下的应力和应变分布,并通过对应力状态的评估,判断结构是否存在强度缺陷。
在进行有限元仿真的机械结构强度分析时,首先需要建立准确的结构有限元模型。
模型的准确与否直接影响到分析结果的准确性,所以在建模时需要充分考虑结构的几何形状、材料性质、装配关系等因素,并进行合理的简化和假设。
一般来说,工程师会选择合适的有限元软件,如ANSYS、ABAQUS等,进行建模和分析。
接下来,需要为结构施加适当的边界条件和载荷,以模拟实际工作情况。
边界条件包括固约束、弹簧约束、铰链约束等,可以有效限制结构的自由度,避免不必要的位移。
载荷可以是静态载荷、动态载荷或复合载荷,也可以是由运动学分析得到的激励载荷。
建立好结构模型并施加边界条件和载荷后,可以进行有限元仿真计算。
有限元软件会对结构模型进行数学离散化,将结构划分为有限数量的单元。
通过数学方程求解,可以得到每个单元的应力和应变,进而得到整个结构的应力和应变分布情况。
在计算过程中,可以利用预定义的失效准则进行强度评估,如屈服强度、疲劳寿命等。
通过分析结果,可以找出结构的应力集中、失效位置等问题,并进行优化设计。
机械结构强度分析的有限元仿真方法可以有效降低实验测试成本,节省时间和资源,并且具有较高的分析可靠性。
工程师可以根据仿真结果进行结构的优化设计,提高结构的强度性能。
然而,有限元仿真也有其局限性,比如对材料本身的非线性行为、接触问题的模拟等方面有一定的限制。
基于ANSYS的机械结构强度与刚度分析机械结构的强度与刚度是设计和生产过程中重要的考虑因素。
通过基于ANSYS的分析,工程师可以评估机械结构在受力情况下的性能表现,并进行优化设计。
本文将介绍基于ANSYS软件的机械结构强度与刚度分析的基本原理和步骤。
一、简介机械结构的强度与刚度分析是指对机械结构在受力情况下的破坏与变形程度进行评估的过程。
强度分析主要考虑结构在受力情况下是否会发生破坏,而刚度分析则关注结构在受力情况下的变形程度。
二、ANSYS软件简介ANSYS是一款基于有限元方法的工程仿真软件,广泛应用于机械结构、电子电器、航空航天等领域。
其强大的计算能力和丰富的分析功能使得基于ANSYS进行机械结构强度与刚度分析成为工程师们的首选。
三、分析步骤1. 几何建模在进行机械结构强度与刚度分析前,首先需要进行几何建模。
利用ANSYS提供的建模工具,可以将机械结构的几何形状进行精确描述,并生成相应的几何模型。
2. 网格划分在几何建模完成后,需要将几何模型进行网格划分。
ANSYS软件提供了多种不同类型的网格划分方法,如四边形网格、三角形网格、四面体网格等。
通过网格划分,可以将几何模型离散化为有限个单元。
3. 材料属性定义在进行强度与刚度分析之前,需要定义材料的属性。
包括材料的弹性模量、泊松比、密度等参数。
通过合理定义材料属性,可以更准确地评估机械结构在受力情况下的性能表现。
4. 约束条件与加载在进行分析前,需要定义机械结构的约束条件与加载。
约束条件包括固支条件、自由度限制等;加载包括静力加载、动力加载等。
通过合理定义约束条件和加载方式,可以模拟机械结构在实际工作情况下的应力和变形情况。
5. 分析与结果评估完成约束条件和加载的定义后,通过ANSYS进行分析计算。
ANSYS会计算机械结构在受力情况下的应力、应变、位移等结果。
根据结果评估,可以判断机械结构的强度与刚度是否满足设计要求。
四、实例分析为了更好地理解基于ANSYS的机械结构强度与刚度分析,我们以某水箱结构为例进行分析。
机翼模型的模态分析高空长航的飞机近年得到了世界的普遍重视。
由于其对长航时性能的要求,这种飞机的机翼采用非常大的展弦比,且要求结构重量非常低。
大展弦比和低重量的要求,往往使这类结构受载时产生一系列气动弹性问题,这些问题构成飞行器设计和其它结构设计中的不利因素,解决气动弹性问题历来为飞机设计中的关键技术。
颤振的发生与机翼结构的振动特性密切相关。
通过对机翼的模态分析,可获得机翼翼型在各阶频率下的模态,得出振动频率与应变间的关系,从而可改进设计,避免或减小机翼在使用过程中因振动引起变形。
下图是一个机翼的简单模态分析。
该机翼模型沿着长度方向具有不规则形状,而且其横截面是由直线和曲线构成(如图所示) 。
机翼一端固定于机身上,另一端则自由悬挂。
机翼材料的常数为:弹性模量 E=0.26GPa,泊松比 m=0.3 ,密度r =886 kg/m 。
图 1 机翼模型的结构尺寸图1、建立有限元模型1.1定义单元类型自由网格对模型的要求不高,划分简单省时省力。
选择面单元 PLANE42 和体单元Solid45 进行划分网格求解。
1.2定义材料特性根据上文所给的机翼材料常数定义材料特性,弹性模量 E=0.26GPa,泊松比m=0.3,密度r =886 kg/m 。
1.3建立几何模型并分网该机翼模型比较简单,可首先建立机翼模型的截面,再其进行网格划分,然后对截面拉伸0.25m的长度并划分10个长度单元,而得到整个模型的网格。
图2机翼模型截面图图3 盘轴结构的有限元模型1.4 模型施加载荷和约束因为机翼一端固定于机身上,另一端则自由悬挂,因此对机翼模型的一端所有节点施加位移约束和旋转约束。
1.5 分析求解本次求解了机翼模型的前五阶模态,各阶固有频率值如下机翼前五阶振动模态图如下:机翼的各阶模态及相应的变形如表 1 及图 6 所示。
从图可看出在一阶( 14.283 Hz) 和二阶( 61.447Hz) 振动模态下,机翼主要发生弯曲变形,并且离翼根越远变形量越大。
基于ANSYS的机械结构强度分析与优化研究随着现代工程需求的不断增长,对机械结构强度和可靠性的要求也越来越高。
为了满足这一需求,研究人员广泛使用ANSYS软件来进行机械结构的强度分析与优化研究。
本文将介绍基于ANSYS的机械结构强度分析与优化的研究方法和技巧。
一、研究背景和意义机械结构的强度分析是评估其工作状态下可承受的载荷和变形的能力,是确保机械结构安全可靠运行的基础。
而优化设计则是在满足安全性的前提下,设计出更加轻量化和高效的结构,以降低成本和提高性能。
因此,基于ANSYS的机械结构强度分析与优化研究对于工程领域具有重要的意义。
二、ANSYS软件介绍ANSYS是一款广泛应用于工程计算领域的有限元法软件。
它可以模拟和分析各种不同材料和结构类型的力学行为,并提供详细的应力、应变和变形等信息。
利用ANSYS软件,可以进行静力学分析、动力学分析、疲劳分析等多种工程分析。
三、机械结构强度分析流程1. 几何建模:使用ANSYS提供的建模工具,创建机械结构的几何模型。
可以通过绘图、导入CAD文件等方式完成。
2. 材料属性定义:根据实际情况,设置机械结构材料的机械性能参数,包括弹性模量、泊松比、屈服强度等。
3. 网格划分:将几何模型划分成有限元网格,需要注意网格密度和质量的合理选择,以提高计算结果的精度和准确性。
4. 载荷和边界条件定义:根据实际工况对机械结构施加载荷和边界条件。
可以设置静载荷、动载荷、温度载荷等。
5. 强度分析:运行ANSYS计算求解器,进行机械结构的强度分析。
可以获得应力、应变、变形等结果,以评估结构的强度和可靠性。
6. 结果后处理:通过ANSYS的后处理工具,对计算结果进行可视化和分析。
可以生成应力云图、应变曲线等,为结构优化提供依据。
四、机械结构优化方法1. 参数优化:通过改变机械结构的设计参数,如材料厚度、连接方式等,以满足给定的约束条件和性能要求。
2. 拓扑优化:在事先给定的设计空间中,通过修改结构的拓扑形状来实现结构的优化设计。
飞机机翼ansys分析课程设计一、教学目标本课程旨在通过飞机机翼ANSYS分析的学习,让学生掌握以下知识目标:1.理解飞机机翼的基本结构和设计原理。
2.掌握ANSYS软件的基本操作和应用。
3.学会使用ANSYS进行飞机机翼的强度、刚度和稳定性分析。
4.能够独立操作ANSYS软件,进行机翼分析。
5.能够根据分析结果,对机翼设计进行优化。
情感态度价值观目标:1.培养学生对飞机工程领域的兴趣和热情。
2.培养学生解决实际问题的能力和创新精神。
二、教学内容本课程的教学内容主要包括以下几个部分:1.飞机机翼的基本结构和设计原理。
2.ANSYS软件的基本操作和应用。
3.飞机机翼的强度、刚度和稳定性分析方法。
4.机翼设计的优化方法。
教学大纲安排如下:1.第1-2课时:介绍飞机机翼的基本结构和设计原理。
2.第3-4课时:学习ANSYS软件的基本操作和应用。
3.第5-6课时:学习飞机机翼的强度、刚度和稳定性分析方法。
4.第7-8课时:学习机翼设计的优化方法。
三、教学方法为了激发学生的学习兴趣和主动性,本课程将采用多种教学方法,包括:1.讲授法:讲解飞机机翼的基本知识和分析方法。
2.案例分析法:分析实际案例,让学生更好地理解理论知识。
3.实验法:引导学生动手操作ANSYS软件,进行机翼分析。
四、教学资源为了支持教学内容和教学方法的实施,丰富学生的学习体验,我们将准备以下教学资源:1.教材:《飞机机翼ANSYS分析》。
2.参考书:相关领域的学术论文和书籍。
3.多媒体资料:教学PPT、视频教程等。
4.实验设备:计算机、ANSYS软件及其许可证。
五、教学评估本课程的评估方式将包括以下几个方面,以确保评估的客观性和公正性:1.平时表现:通过课堂参与、提问和小组讨论等方式,评估学生的学习态度和积极性。
2.作业:布置相关的机翼分析作业,评估学生对知识的掌握和应用能力。
3.考试:安排一次期末考试,涵盖课程的所有知识点,评估学生的综合理解能力。
应用ANSYS Workbench完成翼型叶片的设计及优化[李琼][华侨大学,361021][ 摘要] 本文介绍利用ANSYS Workben产品,对风扇叶片进行设计和效率优化,并分析其相比传统设计方法的优势。
该设计过程使用了该平台提供的Bladegen , Turbogrid, CFX, AnsysMechanical模块分别进行了叶片设计,网格划分,流体分析以及结构分析。
基于该平台的工具集成仿真环境,使得上述各个模块间的数据传递很容易实现;并且在任一数据被修改后,相应的模型和分析结果可以很方便地被更新,因而整个设计分析过程和传统方法相比极为简便,高效,并且能避免许多人为失误。
[ 关键词]叶片设计,空气动力学分析,流固耦合分析,效率优化Airfoil blade design with ANSYS Workbench[Qiong Li][Huaqiao University, 361021][ Abstract ] The process for airfoil blade design and efficiency optimization by using ANSYS Workbench is presented. Bladegen, Turbogrid, CFX and ANSYS mechanical are applied for blade shapedesign, meshing, aero dynamic analysis and structural analysis respectively. The designand optimization process is greatly simplified as well as the reliability is ensured with theadvantage of the workbench’s compatible simulation environment.[ Keyword ] aero dynamics, efficiency optimization, solid-fluid analysis1前言(背景介绍)为了降低使用成本,提高产品竞争力,风扇类产品的设计除了要使其满足特定工况,如流量,压升,强度等,还要通过优化使其效率最大化。
基于ANSYS的机翼振动模态分析机翼振动模态分析是通过ANSYS软件进行的一种分析技术,可以帮助工程师和设计师了解机翼在不同工作条件下的振动特性,以便优化设计和改进结构。
本文将详细介绍ANSYS在机翼振动模态分析中的应用,并展示其重要性和优势。
首先,机翼振动模态分析是用来计算和分析机翼在不同频率和振动模态下的振动特性。
这对于工程师和设计师来说非常重要,因为机翼的振动性能直接影响到航空器的性能和安全。
振动模态分析可以帮助确定机翼的自然频率,即机翼在没有外部激励下的自由振动频率。
此外,还可以分析机翼的模态形状和振动幅度,以便预测和评估机翼在不同工况下的振动响应。
ANSYS是一种用于有限元分析的强大软件工具,具有广泛的应用领域,包括航空航天、汽车和机械工程等。
在机翼振动模态分析中,ANSYS可以使用多个模块和工具来进行不同类型的分析,如静态分析、模态分析和频率响应分析。
其中,模态分析通常是机翼振动模态分析的主要技术。
在进行机翼振动模态分析之前,需要进行一些前期准备工作。
首先,需要绘制机翼的几何模型,并对其进行网格划分。
ANSYS提供了多种网格划分工具,如有限元网格划分器和自动网格生成器。
然后,需要定义机翼的材料特性和边界条件,如约束和加载条件。
在模态分析中,ANSYS可以计算机翼的固有频率和模态形状。
具体而言,可以通过求解机翼的特征方程来计算其固有频率和模态形状。
通过使用ANSYS的模态分析模块,可以自动求解特征方程,并得到机翼的不同模态频率和模态形状。
通过分析机翼的不同模态频率和模态形状,可以得到以下几点重要信息。
首先,可以确定机翼的固有频率范围,即机翼在不同频率范围内的振动特性。
这对于航空器的设计和改进非常重要,因为它可以帮助设计师避免机翼的固有频率与外部激励频率一致,从而减小机翼的共振现象。
其次,可以得到机翼的不同模态形状。
这对于分析机翼的结构刚度分布和优化结构设计非常重要。
值得一提的是,ANSYS还提供了其他一些分析技术和工具,如频率响应分析和降阶模型。
基于ANSYS的工程机械钢结构优化设计分析摘要:文章介绍了工程机械钢结构的设计特点,并且结合有限元分析的基本思想以及物理力学等基本理论,对工程机械钢结构的设计与结构优化时的性能要求进行了细致分析,并且重点研究了工程机械钢结构在使用过程中对强度、刚度等方面的要求。
前言随着社会和经济在不断的进步和发展,人口的增加以及农村人口向城市流动以及公路的扩建,就会要求住房不断的增加以及不断增加的公路桥梁等工程的建设,在建房和公路桥梁的建设的过程中就会需要使用大量的工程机械进行建设和工作。
而工程机械大都是由钢结构制造的,而目前大多数的钢结构的形状和尺寸都是根据计算的结果,在计算的计算上乘以一个安全系数就得出所用钢结构的形状形式和尺寸的大小。
由于资源的短缺各个国家和企业都会考虑提高材料的利用率,这就需要设计合理的结构,在达到使用功能的基础上减少材料的使用,从而使整个设备的质量降低,也节约了设备的能源消耗量。
为了减少使用不同种类的钢结构进行实验的费用,我们可以使用仿真软件ANSYS对不同的工程机械机构进行仿真,最后得到工程机械钢结构的最优化。
1. 设计工程机械钢结构的特性要求我国最近几年的发展非常的额迅速,不管是住房还是道路桥梁的建设都在快速的发展中,这就需要使用机械设备来进行施工,在施工中的设备全部称为工程机械。
我们都知道工程机械主要是由钢结构、液压和电气控制部分和动力控制部分构成。
我们使用工程机械中最常见的架桥机最为对象进行研究,架桥机中最重要的机构就是钢结构,并以天车作为整个设备的传动部分,也是利用液压控制系统和电气控制系统联合使用的,架桥机的钢结构类似于人类的骨骼,是架桥机完成施工的最重要的结构,钢结构是否能够满足使用要求和安全要求是影响整个作业安全性和人员安全性的重要因素,所以我们要对整个架桥机的钢结构进行受力性能分析。
在架桥机工作时先将混凝土梁运到制定的地方,然后通过架桥机的液压控制系统和电气控制系统来控制架桥机的钢结构部分将混凝土梁抬放到相应的位置,在这个工作工程中钢结构的安全性是非常重要的,如果钢结构的质量不合格不仅会造成财产的重大损失还会造成工作人员的重大伤亡。
玻璃钢/复合材料FRP /C M 2009.No .6基于2的无人机复合材料机翼疲劳分析姜年朝,谢勤伟,戴 勇,张志清(南京模拟技术研究所,江苏南京210016)摘要:计算了某无人机复合材料机翼的静强度,使用局部应力2应变疲劳分析理论,基于正弦载荷激励,按照累积损伤理论和雨流计数法则,应用ANSYS/FE 2S AFE 软件,分析了此无人机机翼的疲劳寿命,为复合材料机翼疲劳分析提供了新的分析途径。
关键词:无人机;复合材料机翼;ANSYS/FE 2S AFE;疲劳分析中图分类号:V214.8 文献标识码:A 文章编号:1003-0999(2009)06-0003-03收稿日期:2008209207本文作者还有王克选,宋军和李湘萍。
作者简介:姜年朝(19722),男,高级工程师,博士,研究方向为复合材料结构设计及飞机强度分析。
1 前 言机翼不仅可以使无人机产生升力,而且还能够使无人机具有横侧稳定性和操作性。
因此,机翼是无人机重要的结构部件[1]。
机翼固定在无人机机身,受到弯曲和扭转共同作用的交变应力[1],因此,机翼及其与机身接头部位是无人机结构的疲劳薄弱部位,在循环载荷作用下会产生疲劳裂纹。
由于疲劳破坏具有突然性和不易察觉的特点[2],在使用期间机翼容易发生突然性的疲劳破坏事故。
因此,必须对机翼进行疲劳破坏分析,准确估计其疲劳寿命。
机翼疲劳分析涉及因素较多,问题复杂,不仅要进行疲劳载荷谱研究,而且还要对机翼整体与局部应力进行分析。
所以,普遍适用的机翼疲劳寿命计算方法或具有解析式的计算方法很难找到。
本文通过对某无人机复合材料机翼进行静力分析,使用局部应力2应变疲劳分析理论,基于正弦载荷激励,按照累积损伤理论和雨流计数法则,应用ANSYS/FE 2S AFE 软件,分析了此型号机翼的疲劳寿命。
2 复合材料机翼静强度分析典型无人机复合材料机翼由翼梁、翼墙、长桁、翼肋和蒙皮等组成,结构如图1所示。
翼梁、翼墙主要承担机翼各种载荷引起的大部分弯矩和剪力,是机翼结构的主要承力件;长桁是机翼蒙皮下的纵向件,主要用来抵抗机翼弯曲变形和支持蒙皮以提高蒙皮受压的稳定性;翼肋主要用来保持机翼截面形状,支持蒙皮、长桁,以提高蒙皮、长桁的受压稳定性,部分加强翼肋还可传递扭矩;蒙皮用来构成机翼外形和承受局部空气动力,部分蒙皮还要承受较大的弯矩和扭矩[3]。
航空器机翼结构强度分析及性能优化研究随着工业革命和科技的发展,航空工业也不断壮大。
航空器机翼是其重要组成部分,能够支撑和产生升力。
然而,机翼又是机身受力最大的部位,因此其结构设计和强度分析至关重要。
本文将介绍航空器机翼结构强度分析及性能优化研究的方法和进展。
一、机翼结构设计机翼的结构设计目标是保证安全、可靠、轻量化。
针对这些目标,机翼结构应满足以下要求:1.强度要求:机翼需保证足够的强度和刚度,以承受飞行时所受到的各种复杂载荷,确保飞行安全。
2.轻量化:良好的轻量化设计不仅可以减轻飞机总重量,提高飞行性能,还可以缩小机翼的体积,节省燃料。
3.气动性能:机翼表面应光滑,不应存在过多的凹凸不平的部位,以减小气动阻力,提高飞机的速度。
4.可生产性:机翼的结构设计应当考虑到其生产成本和生产难度,从而提高生产效率。
二、机翼结构强度分析方法机翼结构强度分析是指通过计算机仿真或试验测量,确定机翼的承载能力和强度,从而保证其结构安全可靠。
目前,机翼结构强度分析主要采用以下方法:1.有限元分析法:有限元分析法是一种广泛应用于结构力学计算的数值分析方法,可以用于计算机翼的强度分析。
2.模态分析法:模态分析法是一种航空结构强度分析的经典方法,依靠结构振动的原理进行结构分析。
3.静力测试法:静力测试是一种将试验机置于静止状态下测量受力情况的方法,该技术适用于对机翼结构强度进行试验验证。
4.疲劳寿命分析法:针对飞机飞行时所受的疲劳载荷,进行机翼结构疲劳寿命分析,使机翼寿命得到保证。
三、机翼性能优化除了机翼的强度分析,机翼性能优化也是当前航空工业研究的热点。
为了使机翼具有更高的性能,研究人员采用了以下方法:1.材料改进:应用新型材料制造机翼,如碳纤维、玻璃钢、铝锂等,以减轻机翼的重量、提高强度和刚度。
2.形状优化:采用优化设计方法来改善机翼结构形状,减小气动阻力和空气噪声,提高机翼气动性能。
3.构件优化:采用优化设计方法来改善机翼构件的连接方式和布局,以减小应力集中,提高机翼的承载能力和结构强度。
ANSYS实例分析——模型飞机机翼模态分析一,问题讲述。
如图所示为一模型飞机机翼,其长度方向横截面形状一致,机翼的一端固定在机体上,另一端为悬空自由端,试对机翼进行模态分析并显示机翼的模态自由度。
是根据一下的参数求解。
机翼材料参数:弹性模量EX=7GPa;泊松比PRXY=0.26;密度DENS=1500kg/m3。
机翼几何参数:A(0,0);B(2,0);C(2.5,0.2);D(1.8,0.45);E (1.1,0.3)。
问题分析该问题属于动力学中的模态分析问题。
在分析过程分别用直线段和样条曲线描述机翼的横截面形状,选择PLANE42和SOLID45单元进行求解。
求解步骤:第1 步:指定分析标题并设置分析范畴1.选取菜单途径Utility Menu>File>Change Title2.输入文字“Modal analysis of a model airplane wing”,然后单击OK。
3.选取菜单途径Main Menu>Preferences.4.单击Structure选项使之为ON,单击OK。
主要为其命名的作用。
第2 步:定义单元类型1.选取菜单途径:MainMenu>Preprocessor>Element Type>Add/Edit/Delete。
2.Element Types对话框将出现。
3.单击Add。
Library ofElement Types对话框将出现。
4.在左边的滚动框中单击“Structural Solid”。
5.在右边的滚动框中单击“Quad 4node 42”。
6.单击Apply。
7.在右边的滚动框中单击“Brick 8node 45”。
8.单击OK。
9.单击Element Types对话框中的Close按钮。
第3 步:指定材料性能1.选取菜单途径Main Menu>Preprocessor>MaterialProps>-Constant-Isot ropic。
ANSYS实例分析-飞机机翼ANSYS实例分析——模型飞机机翼模态分析⼀,问题讲述。
如图所⽰为⼀模型飞机机翼,其长度⽅向横截⾯形状⼀致,机翼的⼀端固定在机体上,另⼀端为悬空⾃由端,试对机翼进⾏模态分析并显⽰机翼的模态⾃由度。
是根据⼀下的参数求解。
机翼材料参数:弹性模量EX=7GPa;泊松⽐PRXY=0.26;密度DENS=1500kg/m3。
机翼⼏何参数:A(0,0);B(2,0);C(2.5,0.2);D(1.8,0.45);E (1.1,0.3)。
问题分析该问题属于动⼒学中的模态分析问题。
在分析过程分别⽤直线段和样条曲线描述机翼的横截⾯形状,选择PLANE42和SOLID45单元进⾏求解。
求解步骤:第1 步:指定分析标题并设置分析范畴1.选取菜单途径Utility Menu>File>Change Title2.输⼊⽂字“Modal analysis of a model airplane wing”,然后单击OK。
3.选取菜单途径Main Menu>Preferences.4.单击Structure选项使之为ON,单击OK。
主要为其命名的作⽤。
第2 步:定义单元类型1.选取菜单途径:MainMenu>Preprocessor>Element Type>Add/Edit/Delete。
2.Element Types对话框将出现。
3.单击Add。
Library ofElement Types对话框将出现。
4.在左边的滚动框中单击“Structural Solid”。
5.在右边的滚动框中单击“Quad 4node 42”。
6.单击Apply。
7.在右边的滚动框中单击“Brick 8node 45”。
8.单击OK。
9.单击Element Types对话框中的Close按钮。
第3 步:指定材料性能1.选取菜单途径Main Menu>Preprocessor>MaterialProps>-Constant-Isot ropic。
基于ANSYS的大型风力发电机组高强度螺栓强度分析摘要:目前在风力发电机组的机械零部件开发过程中,除了轮毂、主轴、轴承座、机舱及塔架等大部件需要做完整的强度分析,他们之间的高强度螺栓设计也是其中十分重要的组成部分,其设计的是否合理将直接影响整个风力发电机组能否正常运行。
这些螺栓不仅要承受弯矩,还要承受扭矩,受力情况十分复杂。
采用一般材料力学的方法,无法进行较为精确的计算。
本文将结合ANSYS有限元分析软件和目前整个风电行业中通行的螺栓强度计算标准——VDI223中的计算方法来分析风力发电机组中高强度螺栓在极限工况下的强度和各疲劳工况下的疲劳寿命。
关键词:风力发电机组高强度螺栓有限元,VDI2230 极限强度疲劳寿命当前我国电产业的发展十分迅速,发展形势也十分良好,但由于很多企业基本都是通过引进国外技术来制造风力发电机组,并没有完全掌握开发风机发电机组的核心技术,这就给我国风电行业的发展埋了很多隐患。
因此十分有必要消化吸收设计技术,为自主研发这一分析方法除了在螺栓设计及优化时使用,由于其符合德国劳埃德(GL)认证规范,故可以普遍满足国内外各认证机构认证之需要。
ANSYS作为一种强大的有限元分析软件,已广泛应用于机械、电子、航空航天、汽车、船舶等各大领域,是现代设计中必不可少的分析工具。
本文将以1.5MW机组中主轴与轮毂之间的连接螺栓为例,比较系统的来阐述螺栓极限强度分析和疲劳强度。
目的是使通过这样一种方法的运用,可以运用到风力发电机组的任何部位的连接螺栓强度分析,使之满足设计要求,螺栓的设计是否合理,同样也关系到相关零部件的设计成本,因此设计合理的螺栓数量,不仅关系到螺栓本身,也涉及到相关零部件的成本。
一、主轴与轮毂连接螺栓结构图一是运达1.5MW双馈式风力发电机组传动系统结构示意图,1.1 螺栓部位结构描述该机组传动系统采用传统的三点支撑结构,主轴通过一个双列圆柱滚子轴承以及和齿箱输入轴通过胀套连接支撑,而整个风机头部的风轮与主轴之间就依靠360度一圈螺栓连接,其中还连接着风轮锁紧盘。
ANSYS案例简介ANSYS是一款强大的工程仿真软件,广泛应用于航空航天、汽车、能源、电子、建筑等领域。
它可以进行结构力学、流体力学、热传导等多个方面的仿真分析,为工程设计提供重要的支持和指导。
本文将介绍一些ANSYS的应用案例,展示其在不同领域的应用。
案例一:飞机机翼结构仿真在航空航天领域,机翼结构的设计是非常重要的。
通过ANSYS的力学分析功能,可以对机翼进行静态和动态的应力分析,评估其在飞行过程中的稳定性和安全性。
例如,可以对机翼的自然频率进行分析,确定其共振频段,从而避免共振引起的结构破坏。
同时,也可以通过仿真分析,优化机翼的材料和结构设计,提高其刚度和强度,减小重量。
案例二:汽车碰撞仿真在汽车行业,碰撞仿真是一项必不可少的工作。
通过ANSYS的流体动力学和结构力学模块,可以对车辆在不同碰撞情况下的变形和应力进行分析,评估车辆的安全性能。
例如,可以模拟正面碰撞、侧面碰撞等不同的碰撞情景,预测车辆在碰撞过程中的应力分布和变形情况,并进行结构强度检验。
这些仿真结果提供了车辆设计和改进的重要依据,帮助制造商提高车辆的安全性能。
案例三:电子产品散热仿真在电子产品设计中,散热是一个重要的问题。
过高的温度会影响电子元件的性能和寿命。
通过ANSYS的热传导模块,可以对电子产品进行散热分析,评估散热器的设计效果。
例如,可以模拟电脑主板上各个元件的功耗和散热器的导热情况,预测各个元件的温度分布。
基于仿真结果,可以优化散热器的设计方案,提高散热效果,确保电子产品的正常运行。
案例四:建筑结构分析在建筑设计中,结构分析是必不可少的一环。
通过ANSYS的力学分析模块,可以对建筑结构进行静力和动力的仿真分析。
例如,可以对高层建筑的地震响应进行模拟,预测结构在地震作用下的变形和应力分布情况。
这些仿真结果可以帮助建筑师调整和改进建筑结构的设计,确保建筑的抗震性能和安全性。
结论ANSYS是一款功能强大的工程仿真软件,广泛应用于航空航天、汽车、能源、电子、建筑等行业。
基于ANSYS的特殊螺纹接头结构设计与分析周晓君;魏波【摘要】Aiming at the leakage problem of the API thread joint, the sealing mechanism about the thread joint was analyzed, the relationship between the sealing ability of the thread joint and the force/temperature loads was established. A premium connection (PC) with new sealing structure was brought forward which was equipped with double - shoulder/three-taper. ANSYS was introduced to analyze the PC structure, the relationship of different forces and temperature loads with the deformation was studied, and the PC connect stress curves,teeth top and root stress curves,and anti-leakage ability with temperature loads changing curves were obtained. The results show that the PC force distribution is "W" type,and the values change from 150 Mpa to 350 Mpa,do not exceed the material strength limits, the overall force is more fluent in PC. The relative values of the PC contact stress change from -25 to 0, which meets the proposed requirements in the anti-leakage mechanism.%针对API螺纹接头泄漏等问题,进行了螺纹接头密封机理的研究.建立了螺纹接头密封性能与受力情况、温度载荷变化情况之间的关系;提出了一种双台肩、三锥度的新型特殊螺纹接头的密封形式,利用ANSYS软件对新型特殊螺纹接头分别在两种受力工况和不同温度载荷下进行了分析,得出了特殊螺纹接头各扣牙的接触应力变化曲线、各扣牙齿顶齿根受力变化情况曲线及其抗泄漏能力随温度载荷变化情况曲线.研究结果表明:基于ANSYS 的新型特殊螺纹接头受力分布呈“W”型,其值变化范围为150 MPa~350 MPa,未超过材料强度极限,整体受力较为均匀;并且螺纹接头的接触应力变化相对值范围为-25 ~0,符合防泄漏机理要求.【期刊名称】《机电工程》【年(卷),期】2012(029)009【总页数】5页(P1002-1006)【关键词】特殊螺纹接头;ANSYS;密封泄漏机理;结构设计;有限元分析【作者】周晓君;魏波【作者单位】上海大学机电工程与自动化学院,上海200072;上海大学机电工程与自动化学院,上海200072【正文语种】中文【中图分类】TH131.3;TH120 引言油田固井时,套管柱被悬挂在几千米深度的油井中,每个接头都必须承受下面悬挂的套管柱的质量[1]。
飞机机翼结构强度优化设计在现代民航业飞速发展的背景下,飞机的性能和安全一直是制造商和航空公司关注的重点。
飞机机翼作为飞机的重要组成部分,其结构的强度优化设计尤为重要。
本文将探讨飞机机翼结构强度优化设计的相关内容。
首先,飞机机翼的结构强度指的是机翼在各种载荷作用下的受力情况以及其对外部环境的抵抗能力。
飞机在飞行过程中面临的载荷有静载荷和动载荷两种。
静载荷主要包括重力、气动力和附加负荷,而动载荷则包括颠簸和振动等飞机运动带来的载荷。
机翼要承受这些载荷并保持结构的完整性和稳定性,因此需要进行结构强度优化设计。
在进行机翼结构强度优化设计时,需要考虑以下几个方面。
首先是材料的选择。
飞机机翼常采用的材料有复合材料和金属材料两种。
复合材料具有轻质高强度的特点,能够满足结构强度的要求,并且具有良好的耐腐蚀性能。
而金属材料则具有成熟的加工工艺和较低的成本,但相对于复合材料来说,其重量较大。
因此,在结构强度优化设计中,需要根据具体的飞机要求和经济性考虑,选择最合适的材料。
其次,对机翼结构进行合理的布局设计也是优化设计的关键。
机翼的布局设计既要满足飞机的气动要求,又要保证结构的强度和刚度。
一般来说,机翼的布局设计会考虑到机翼的翼展、展弦比、平面形状等因素。
通过合理地调整这些参数,可以达到降低机翼结构强度的目的。
此外,飞机机翼的结构还需要考虑到疲劳寿命的问题。
疲劳是导致结构破坏的主要原因之一,特别是对于飞机这样需要长时间飞行的设备来说,疲劳寿命的考虑尤为重要。
为了延长机翼的疲劳寿命,可以采用一些方法,如增加结构的刚度、采用合适的材料、加强连接点等。
通过这些措施,可以有效地提高机翼结构的强度和寿命。
最后,飞机机翼的结构强度优化设计还需要考虑到制造和维修的问题。
飞机的制造和维修过程中,可能会对机翼结构产生一定程度的损坏,因此需要在设计阶段就考虑到这些问题。
对于复杂的机翼结构,可以采用模块化设计的方式,将机翼分为若干个独立的模块,在制造和维修过程中更加灵活和方便。