2019_2020学年九年级数学下册第二十九章投影与视图29.1投影第2课时正投影作业设计新版新人教版
- 格式:docx
- 大小:39.51 KB
- 文档页数:4
第二十九章投影与视图29.1投影(1)学习目标1、经历实践探索,了解投影、投影面、平行投影和中心投影的概念;2、了角平行投影和中心投影的区别。
3、使学生学会关注生活中有关投影的数学问题,提高数学的应用意识。
学习重点理解平行投影和中心投影的特征;学习难点在投影面上画出平面图形的平行投影或中心投影。
教学互动设计备注(一)创设情境你看过皮影戏吗?皮影戏又名“灯影子”,是我国民间一种古老而奇特的戏曲艺术,在关中地区很为流行。
皮影戏演出简便,表演领域广阔,演技细腻,活跃于广大农村,深受农民的欢迎。
(二)你知道吗北京故宫中的日晷闻名世界,是我国光辉出灿烂文化的瑰宝.它是我国古代利用日影测定时刻的仪器,它由“晷面”与“晷针”组成,当太阳光照在日晷中轴上产生投影,晷针的影子就会投向晷面,随着时间的推移,晷针的影的长度发生变化,晷针的影子在晷面上慢慢移动,聪明的古人以此来显示时刻.问题:那什么是投影呢?出示投影让学生感受在日常生活中的一些投影现象。
一般地.用光线照射物体.在某个平面(地面、墙壁等)上得到的影子叫做物体的投影.照射光线叫做投影线,投影所在的平面叫做投影面.有时光线是一组互相平行的射线.例如太阳光或探照灯光的一束光中的光线(如图).由平行光线形成的投影是平行投影.例如.物体在太阳光的照射下形成的影子(简称日影)就是平行投影.由同一点(点光源)发出的光线形成的投影叫做中心投影.例如.物体在灯泡发出的光照射下形成影子就是中心投影.(三)问题探究(在课前布置,以数学学习小组为单位)探究平行投影和中心投影和性质和区别1、以数学习小组为单位,观察在太阳光线下,木杆和三角形纸板在地面的投影。
2、不断改变木杆和三角形纸板的位置,什么时候木杆的影子成为一点,三角形纸板的影子是一条线段?当木杆的影子与木杆长度相等时,你发现木杆在什么位置?三角形纸板在什么位置时,它的影子恰好与三角形纸板成为全等图形?还有其他情况吗?(四)应用新知:(1)地面上直立一根标杆AB如图,杆长为2cm。
投影与视图29.1 投影第2课时正投影素材一新课导入设计情景导入置疑导入归纳导入复习导入类比导入悬念激趣复习导入<1>什么叫投影?投影有哪几种?<2>图29-1-32表示一块三角尺在光线照射下形成的投影,其中哪个是平行投影,哪个是中心投影?图<2><3>的投影线与投影面的位置关系有什么区别?图29-1-32结论:图<1>中的投影线集中于一点,属于中心投影;图<2><3>中的投影线互相平行,属于平行投影;图<2>中,投影线斜着照射到投影面上;图<3>中投影线垂直照射到投影面上,即投影线垂直于投影面.[说明与建议] 说明:通过对投影的概念和类型的回顾,加强新旧知识之间的联系.建议:充分观察三个图形,发现其中的不同点,给出正投影的概念.条件允许的学校,可以让学生自己做试验探究.素材二考情考向分析[命题角度] 常见几何体的正投影与判断1.线段的正投影.位置线段AB平行于投影面线段AB倾斜于投影面线段AB垂直于投影面投影特点正投影是线段A1B1,线段AB=A1B1正投影是线段A2B2,线段AB>A2B2正投影是一个点A3<B3>2.正方形的正投影.位置纸板ABCD平行于投影面纸板ABCD倾斜于投影面纸板ABCD垂直于投影面投影特点正投影是正方形A1B1C1D1,它们的性质、大小一样正投影是四边形A2B2C2D2,它们的性质、大小不一样正投影是线段A3D3<或B3C3>例一位小朋友拿一个等边三角形木框在阳光下玩,等边三角形木框在地面上的影子不可能是<B>素材三教材习题答案P88 练习把下列物体与它们的投影用线连接起来:解:如下图:P92 练习如图,投影线的方向如箭头所示,画出圆柱体的正投影.解:P92 习题29.11.小华在不同时间于天安门前拍了几幅照片,下面哪幅照片是在下午拍摄的?<天安门是坐北朝南的建筑>解:第3幅照片是在下午拍摄的.2.请用线把图中各物体与它们的投影连接起来.解:3.如图,右边的正五边形是光线由上到下照射一个正五棱柱<正棱柱的上、下底面都是正多边形,并且侧棱垂直于底面>时的正投影,你能指出这时正五棱柱的各个面的正投影分别是什么吗?解:上、下底面的正投影是同一个正五边形,5个侧面的正投影分别是正五边形的5条边.4.一个圆锥的轴截面平行于投影面,圆锥的正投影是边长为3的等边三角形,求圆锥的体积和表面积.解:设该圆锥的正投影<轴截面的正投影>为正三角形ABC.过A作AD⊥BC于D,则AD=3×sin60°=错误!错误!,BD=错误!,S侧=错误!×π×3×3=错误!π.∴S表=错误!π+错误!π=错误!π,V=错误!×错误!π×错误!错误!=错误!错误!π.5.画出如图摆放的物体<正六棱柱>的正投影:<1>投影线由物体前方照射到后方;<2>投影线由物体左方照射到右方;<3>投影线由物体上方照射到下方.解:素材四图书增值练习[当堂检测]1. 如图,从左面看圆柱,则图中圆柱的投影是〔〕A.圆B.矩形C.梯形D.圆柱2. 太阳光垂直照射一扇矩形的窗户,投在平行于窗户的墙上的影子的形状是〔〕A.与窗户全等的矩形 B.平行四边形C.比窗户略小的矩形 D.比窗户略大的矩形3. 〔2013达州〕下面是一天中四个不同时刻两座建筑物的影子,将它们按时间先后顺序排列正确的是〔〕A.③①④②B.③②①④C.③④①②D.①②①③4. 如图所示是一个圆锥在某平面上的正投影,则该圆锥的侧面积是.5.如图是木杆和旗杆竖立在操场上,其中木杆在阳光下的影子已画出.〔1〕用线段表示这一时刻旗杆在阳光下的影子;〔2〕比较旗杆与木杆影子的长短;〔3〕图中是否出现了相似三角形?〔4〕上面的投影是正投影吗?为什么?参考答案1.B2.A3.C4.15π45.解:〔1〕线段MN即是旗杆在阳光下的影子.〔2〕根据图形可观察出旗杆的影子长.〔3〕有相似三角形,分别由旗杆与其影子和木杆与其影子以与太阳光线构成.〔4〕不是正投影,只有投影线和投影面垂直的投影才是正投影.[能力培优]专题一太阳光下的投影1.如图是一根电线杆在一天中不同时刻的影长图,试按其一天中发生的先后顺序排列,正确的是〔〕A.①②③④B.④①③②C.②③①④D.④③②①2.兴趣小组的同学要测量某棵树的高度.在阳光下,一名同学测得一根长为1米的直立竹竿的影长为0.6米,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得此影子长为0.3米,一级台阶高为0.3米,如图所示,若此时落在地面上的影长为4.8米,则树高为多少米?3.某校初三课外活动小组,在测量树高的一次活动中,如图所示,测得树底部中心A到斜坡底C的水平距离为8.8m.在阳光下某一时刻测得1米的标杆影长为0.8m,树影落在斜坡上的部分CD=3.2m.已知斜坡CD的坡比i=3求树高AB.〔结果保留整数,参考数据:3 1.7〕专题二灯光下的投影如图,一根直立于水平地面上的木杆AB在灯光下形成影子,当木杆绕点A按逆时针方向旋转直至到达地面时,影子的长度发生变化.设AB垂直于地面时的影长为AC﹙假定AC>AB﹚,影长的最大值为m,最小值为n,那么下列结论:①m>AC;②m=AC;③n=AB;④影子的长度先增大后减小.其中,正确结论的序号是.5.如图,小华、小军、小丽同时站在路灯下,其中小军和小丽的影子分别是AB,CD.〔1〕请你在图中画出路灯灯泡所在的位置〔用点P表示〕;〔2〕画出小华此时在路灯下的影子〔用线段EF表示〕.6.如图所示,点P表示广场上的一盏照明灯.〔1〕请你在图中画出小敏在照明灯P照射下的影子〔用线段表示〕;〔2〕若小丽到灯柱MO的距离为4.5米,照明灯P到灯柱的距离为1.5米,小丽目测照明灯P 的仰角为55°,她的目高QB为1.6米,试求照明灯P到地面的距离〔结果精确到0.1米〕.〔参考数据:tan55°≈1.428,sin55°≈0.819,cos55°≈0.574〕专题三正投影7.如图,投影面上垂直立一线段AB,线段长为2 cm.〔1〕当投影线垂直照射投影面时,线段在地面上的投影是什么图形?请在左图中画出来.〔2〕当投影线与投影面的倾斜角为60°时,线段在投影面上的投影是什么图形?并画出投影示意图.〔3〕上面〔1〕、〔2〕问题中的投影都是正投影吗?为什么?8.在正投影中,正方形倾斜于投影面放置时,它的投影是什么图形?若正方形的面积为10,它的正投影的面积是5,你知道正方形与投影面的倾斜角是多少度吗?专题四规律探究题9.学习投影后,小明、小颖利用灯光下自己的影子长度来测量一路灯的高度,并探究影子长度的变化规律.如图,在同一时刻,身高为1.6m的小明〔AB〕的影子BC的长是3m,而小颖〔EH〕刚好在路灯灯泡的正下方H点,并测得HB=6m.〔1〕请你在图中画出形成影子的光线,并确定路灯灯泡所在的位置G ;〔2〕求路灯灯泡的垂直高度GH ;〔3〕如果小明沿线段BH 向小颖〔点H 〕走去,当小明走到BH 的中点B 1处时,求其影子B 1C 1的长;当小明继续走剩下路程的13到B 2处时,求其影子B 2C 2的长;当小明继续走剩下路程的14到B 3处时,……,按此规律继续走下去,当小明走剩下路程的11 n 到B n 处时,其影子B n C n 的长为m 〔用含n 的代数式表示〕.[知识要点]1.投影:一个物体放在阳光下或灯光前,就会在地面上或墙壁上留下它的影子,这个影子称为物体的投影.投影要有照射光线和形成影子的地方,这就是投影线和投影面.2.平行投影:由平行光线形成的投影是平行投影.3.中心投影:由同一个点〔点光源〕发出的光线所形成的投影为中心投影.4.正投影的概念:在平行投影中,如果投射线垂直于投影面,那么这种投影称为正投影.几何体在一个平面上的正投影叫做这个几何体的视图.5.<1>当线段AB 平行于投影面P 时,它的正投影是线段A 1B 1,线段AB 与它的投影的大小关 系为AB =A 1B 1;<2>当线段AB 倾斜于投影面P 时,它的正投影是线段A 2B 2,线段AB 与它的投影的大小关系为AB >A 2B 2;<3>当线段AB 垂直于投影面P 时,它的正投影是一个点.6.<1>当纸板Q 平行于投影面P 时,Q 的正投影与Q 的形状、大小一样;<2>当纸板Q 倾斜于投影面P 时,Q 的正投影与Q 的形状、大小发生变化;<3>当纸板Q 垂直于投影面P 时,Q 的正投影成为一条线段.故当物体的某个面平行于投影面时,这个面的正投影与这个面的形状、大小完全相同. [温馨提示]平行投影与中心投影的区别与联系.2.在平行投影下,一个图形上的点被投影后,对应点的连线互相平行.同一时刻,平行投影的影子方向和大小不随物体位置的变化而变化.3.中心投影的投射光线相交于一点,同一时刻,中心投影的影子方向随物体位置的变化而发生变化.4.正投影是平行投影的一种特例,正投影的特征是每条投影线都垂直于投影面.[方法技巧]1.因为一天之中,太阳东升西落,所以早晨物体的影子朝西,傍晚物体的影子朝东,但因为地处北半球,即使是夏天的正午,也由于太阳直射点的关系,物体的影子略微向北偏移,故一天之中影子方向的变化顺序为:正西→北偏西→正北→北偏东→正东;一天之中影子的长度的变化规律为:长→短→长.2.确定点光源的位置的方法:两个物体影子的顶端与物体的顶端的连线的交点为点光源的位置.区别 联系 光线 物体与投影面平行时的投影 平行投影 平行的投影线 全等 都是物体在光线的照射下,在某个平面内形成的影子〔即都是投影〕 中心投影 从一点出发的投影线放大〔位似变换〕3.分别自两个物体的顶端与其影子的顶端作一条直线,若两直线平行,则为平行投影;若两直线相交,则为中心投影,其交点是光源的位置.参考答案C [解析]太阳由东升起的过程中,物体的影子投向西侧,且由长到短,太阳偏西,物体的影子也转投向东侧,且由短到长.故选C.解:画出示意图如图所示.从图中我们看到小树在一组平行光的照射下,影子分成了三部分AC 、CD 、DG .因为小树和竖直台阶是水平的,所以四边形CDEF 是平行四边形,EF =CD ,因为同一时刻,不同物体的物高与影长之比相等,所以6.01==AC AF DG BE . 即6.018.43.0==AF BE . 解得BE =0.5,AF =8.所以小树的高AB =AF +EF +BE =8+0.3+0.5=8.8<米>.3.解:如图所示,延长BD 与AC 的延长线交于点E ,过点D 作DH ⊥AE 于点H .∵i =tan ∠DCH =CH DH =31=33, ∴∠DCH =30°. ∴DH =12CD =1.6m,CH =3DH ≈2.7 m. 由题意可知10.8DH HE =, ∴HE =0.8DH =1.28m.∴AE =AC +CH +HE ≈8.8+2.7+1.28=12.78<m>.∵8.01=AE AB ,所以168.078.128.0≈==AE AB <m>. ①③④ [解析]当木杆绕点A 按逆时针方向旋转时,如图所示,m>AC ,①成立;①成立,那么②不成立;当旋转到达地面时,有最短影长,等于AB ,③成立;由上可知,影子的长度先增大后减小,④成立.解:如图所示.〔1〕点P 就是所求的点;〔2〕EF 就是小华此时在路灯下的影子.6.解:〔1〕如图,线段AC 是小敏的影子.〔2〕过点Q 作QE ⊥MO 于E ,过点P 作PF ⊥AB 于F ,交EQ 于点D ,则PF ⊥EQ .在Rt △PDQ 中,∠PQD =55°,DQ =EQ -ED =4.5-1.5=3〔米〕.∵tan55°=错误!未找到引用源.,∴PD =3tan55°≈4.3〔米〕.∵DF =QB =1.6米,∴PF =PD +DF ≈4.3+1.6=5.9〔米〕.答:照明灯P 到地面的距离为5.9米.7.解:〔1〕点.〔2〕线段,这条线段BC 的长度为332.〔3〕〔1〕问中的投影是正投影,〔2〕问中的投影不是正投影,是平行投影.只有投影线和投影面垂直的投影才是正投影.8.是一个长方形,当正方形倾斜于投影面放置时,它与投影面平行的一边长等于原来的长度,而与投影面不平行的边长缩小.因为正方形的面积为10,它的正投影的面积是5,所以不平行的一边长的投影等于这边的一半,所以正方形与投影面的倾斜角是60度.9.解:〔1〕如图,点G 即为所求.〔2〕由题意得△∽△ABC GHC ,∴AB BC GH HC =, ∴1.6363GH =+, ∴ 4.8GH =m.〔3〕1111△∽△A B C GHC ,∴11111A B B C GH HC =, 设11B C 的长为x m,则1.64.83x x =+, 解得32x =〔m 〕,即1132B C =m . 同理22221.64.82B C B C =+, 解得221B C =〔m 〕,31n n B C n =+. 素材五 数学素养提升日晷简介日晷,本义是指太阳的影子.现代的"日晷〞指的是人类古代利用日影测得时刻的一种计时仪器,又称"日规〞.其原理就是利用太阳的投影方向来测定并划分时刻,通常由晷针和晷面组成.利用日晷计时的方法是人类在天文计时领域的重大发明,这项发明被人类沿用达几千年之久. 在一天中,被太阳照射到的物体投下的影子在不断地改变着:第一是影子的长短在改变.早晨的影子最长,随着时间的推移,影子逐渐变短,一过中午它又重新变长;第二是影子的方向在改变.在北回归线以北的地方,早晨的影子在西方,中午的影子在北方,傍晚的影子在东方.从原理上来说,根据影子的长度或方向都可以计时,但根据影子的方向来计时更方便一些.故通常都是以影子的方位计时.[1]随着时间的推移,晷针上的影子慢慢地由西向东移动.移动着的晷针影子好像是现代钟表的指针,晷面则是钟表的表面,以此来显示时刻.早晨,影子投向盘面西端的卯时附近;当太阳达正南最高位置〔上中天〕时,针影位于正北〔下〕方,指示着当地的午时正时刻.午后,太阳西移,日影东斜,依次指向未、申、酉各个时辰.。
第二十九章投影与视图1.以丰富的实例为背景,认识投影与视图的基本概念和基本性质.2.会在投影面上画出平行投影、中心投影及简单的平面图形的正投影.3.理解视图的概念,探索三视图中三个视图间的位置关系和大小关系.4.会画简单几何体及简单组合体的三视图.5.学会根据物体的三视图描述出几何体的基本形状或实物原型.6.通过制作立体模型的课题学习,进一步加强对投影与视图的认识.1.通过联系生活实际,初步感受平行投影、中心投影及正投影,体会数学与生活之间的密切联系,提高学生的数学应用意识.2.通过具体的活动,培养学生动手实践能力和数学思考能力,发展学生的空间观念.3.通过观察、操作、猜想、讨论、合作等活动,使学生体会到三视图中各部分之间位置及大小的对应关系,积累数学活动的经验.4.通过观察、探究等活动使学生能根据物体的三视图还原出物体的形状,进一步认识物体与其三视图之间的关系.5.通过学习和实践活动,激发学生对投影与视图学习的好奇心,加强动手动脑、理论结合实际的能力.1.使学生学会关注生活中有关投影与视图的数学问题,体会数学与生活实际密不可分,提高数学的应用意识,激发学生学习数学的兴趣.2.学生通过观察、思考、分析、探究得出结论,培养学生的观察能力、实践能力及归纳总结能力.3.通过自主学习与合作交流的学习方式,提高动手操作能力、分析问题及解决问题的能力,培养学生的合作精神.4.通过探究物体的三视图,学会多角度看问题,品尝成功的喜悦,激发学生学习数学的热情,增强学好数学的信心.5.在探究三视图向立体图形转化的过程中,使学生感受数学的和谐美,培养学生动手实践能力,发展空间想象能力.本章的主要内容有平行投影、中心投影和简单物体的三视图.投影是生活中常见的现象,而三视图又是特殊投影的产物,投影与三视图的知识在日常生活和生产中有广泛的应用,是培养学生空间观念的有效平台,空间观念的形成是一个长期的过程,而使学生具有良好的空间观念是义务教育阶段数学教育的一个重要目标.本章内容在数学学习中起着承上启下的作用,学生前边学习过“图形的初步知识”“图形和变换”等几何知识,在此基础上本章继续研究“投影与视图”,它是反映空间观念的重要内容,也为高中学习立体几何做了铺垫.教材以生活实例出发,引出投影的概念,观察分析不同的投影,得到平行投影和中心投影的区别与联系,然后以探究正方形的影子为例,得到平行投影中正投影的概念,而物体三个方向上的正投影就是该物体的三视图,教材最后探究“由物到图”和“由图到物”,两方面结合起来,就从不同角度反映了平面图形与立体图形是如何联系的.本章的知识内容不太多,编写本章最主要的目的不是介绍投影与视图的知识,而是通过学习本章切实发展学生的空间想象能力.【重点】1.通过实例了解平行投影和中心投影的含义及简单应用.2.会画基本几何体及简单组合体的三视图.3.能根据三视图描述基本几何体或实物的原型.【难点】了解基本几何体与其三视图、展开图之间的联系,通过典型实例知道这种关系在现实生活中的应用.教学中应重视借助直观模型或动画演示,帮助学生克服立体几何知识不足的困难,在本章的教学中,不可避免地要涉及立体几何中的一些基础知识,但是学生此前缺乏对这些知识的系统学习,只是有一些感性认识,解决这个问题比较好的做法是选择一些实例或通过课件展示,让学生通过观察、想象,由直观认识结合实例了解空间关系,降低学习本章内容的难度,提高学生空间想象能力.数学是以数量关系和空间形式为主要研究对象的学科,数量关系和空间形式是从现实世界中抽象出来的.很明显,关于投影和视图的知识是从实际需要(建筑、制造等)中产生的,它们与实际问题联系非常紧密.在本章之前,学生已经数次接触过和几何图形有关的平面图形知识及简单立体图形,对投影和视图的知识已有初步的、朦胧的了解,只是还没有明确接触过一些基本名词术语,对有关基本规律还缺乏归纳总结.所以在本章的学习中,以生活实例为载体,通过观察学生熟悉的生活实例,抽象出有关概念和性质.实际教学要比教科书有更大的灵活性,教学中要动态地展示模型,直接面对学生授业解惑,应充分发挥这些优势.因此,建议教学中在上述问题的处理上,能注意结合实物模型,充分利用直观演示,达到由感性认识到理性认识的提高.29.1投影2课时29.2三视图2课时29.3课题学习制作立体模型1课时单元概括整合1课时29.1投影1.通过实践探索,了解投影、投影面、平行投影、中心投影及正投影的概念.2.了解平行投影和中心投影的含义,认识两者之间的区别.3.会在投影面上画出平行投影和中心投影.4.能根据正投影的性质画出简单的平面图形的正投影.1.通过联系生活实际,初步感受平行投影、中心投影及正投影,体会数学与生活之间的密切联系,提高学生的数学应用意识.2.通过具体的活动,培养学生动手实践能力和数学思考能力,发展学生的空间观念.3.通过学习和实践活动,激发学生对投影学习的好奇心,体会数学与现实生活的联系.1.通过感受生活中的投影现象,体会数学与实际生活的密切联系,激发学生学习数学的兴趣.2.通过实物演示和多媒体教学,把抽象问题直观化,激发学生的求知欲,感悟数学知识的奇妙无穷.3.学生通过观察、思考、分析、探究得出结论,培养学生的观察能力、实践能力及归纳总结能力.4.通过探究正投影的性质,培养学生动手操作能力、分析问题及解决问题的能力.【重点】1.通过实例了解平行投影和中心投影的含义及简单应用.2.能根据正投影的性质画出简单的平面图形的正投影.【难点】在投影面上画出平面图形的平行投影、中心投影及正投影.第课时1.通过实践探索,了解投影、投影面、平行投影和中心投影的概念.2.了解平行投影和中心投影的含义,认识两者之间的区别.3.会在投影面上画出平行投影和中心投影.1.通过联系生活实际,初步感受平行投影和中心投影,体会数学与生活之间的密切联系.2.认识中心投影和平行投影的区别与联系,发展空间想象能力.1.通过观察、分析、探究得出结论,激发学生学习数学的兴趣,培养学生观察能力和实践能力.2.使学生学会关注生活中有关投影的数学问题,提高数学的应用意识,增强学好数学的信心.【重点】理解平行投影和中心投影的特征.【难点】在投影面上画出平面图形的平行投影或中心投影.导入一:【师生活动】教师课件展示“鸟巢”“水立方”等建筑图片,学生观察欣赏.导入二:你看过皮影戏吗?皮影戏又名“灯影子”,是我国民间一种古老而奇特的戏曲艺术,在关中地区非常流行.皮影戏演出简便,表演领域广阔,演技细腻,活跃于广大农村,深受农民的欢迎.【师生活动】教师课件展示图片,学生欣赏图片,有条件的可以放映电影《小兵张嘎》部分片段——小胖墩和他父亲在日军炮台内为日本人表演皮影戏,简单介绍有关皮影戏的知识,导出本节课的课题.导入三:北京故宫中的日晷闻名世界,是我国光辉灿烂的文化瑰宝.它是我国古代利用日影测定时刻的仪器,它由“晷面”与“晷针”组成,太阳光照在日晷中轴上产生投影,晷针的影子就会投向晷面,随着时间的推移,晷针的影子长度发生变化,晷针的影子在晷面上慢慢移动,聪明的古人以此来显示时刻.【师生活动】教师展示图片,引入新课,学生观察思考,初步感知投影的概念.[设计意图]通过欣赏大家熟悉的名建筑导出本章内容,让学生体会数学与生活之间的密切联系,激发学习本章的兴趣.学生通过观看电影片段或欣赏图片,了解中国传统文化,数学课堂上渗透德育教育,通过对皮影和日晷的介绍,让学生初步感知投影的概念,为下面的学习做好铺垫.一、认识概念思路一【师生活动】(1)学生举出物体在光线的照射下形成影子的例子,教师点评.(2)教师出示投影图片,让学生感受日常生活中的一些投影现象.(3)学生尝试总结什么是投影,互相补充,最后教师与学生一起归纳总结.课件展示图片:【结论】一般地,用光线照射物体,在某个平面(地面、墙壁等)上得到的影子叫做物体的投影.照射光线叫做投影线,投影所在的平面叫做投影面.【师生活动】(1)教师展示探照灯发出的光线图片,学生观察.(2)学生思考:探照灯发出的光线与灯泡发出的光线是否相同?太阳光线与哪种光线相同?(3)学生小组合作交流,共同归纳,小组代表发言,教师点评,然后归纳有关概念.【结论】有时光线是一组互相平行的射线,例如太阳光或探照灯中的光线.由平行光线形成的投影叫做平行投影.例如,物体在太阳光的照射下形成的影子(简称日影)就是平行投影.由同一点(点光源)发出的光线形成的投影叫做中心投影.例如,物体在灯泡发出的光照射下形成的影子就是中心投影.思路二【思考】(1)物体在日光或灯光的照射下会形成影子,影子的形成与哪些因素有关?(物体本身、照射光线、形成影子的平面)(2)你能举出生活中的一些实例吗?【师生活动】教师展示生活中的图片(同思路一),学生观察思考后,小组合作交流,教师结合学生的结论,给出投影的一些概念.【结论】一般地,用光线照射物体,在某个平面(地面、墙壁等)上得到的影子叫做物体的投影.照射光线叫做投影线,投影所在的平面叫做投影面.【师生活动】教师展示分别用探照灯和灯泡作为光源,在教室的墙面上形成三角尺的影子.【思考】(1)探照灯的光线与灯泡发出的光线有什么不同?(2)太阳光与哪种光线相同?【师生活动】学生观察思考后小组合作交流,教师对学生的回答进行点评,归纳概念.【结论】有时光线是一组互相平行的射线,例如太阳光或探照灯中的光线.由平行光线形成的投影叫做平行投影.例如,物体在太阳光的照射下形成的影子(简称日影)就是平行投影.由同一点(点光源)发出的光线形成的投影叫做中心投影.例如,物体在灯泡发出的光照射下形成的影子就是中心投影.[设计意图]通过观察图片,感知数学概念的形成来源于生活,通过观察、思考,抽象出有关概念,对投影的感性认识上升到理性认识,通过理论联系实际,不仅使学生加深了对概念的理解,而且突出了数学与现实的联系,激发了学生的求知欲望.二、共同探究【思考】(1)如图(1)是同一时刻的两棵树及其影子,请你在图中画出形成树影的光线,并判断它是太阳光线还是灯光的光线.若是灯光的光线,请确定光源的位置.(2)请判断如图(2)的两棵树的影子是在太阳光下形成的还是在灯光下形成的,并画出同一时刻旗杆的影子(用线段表示).(3)通过上边的练习,请观察平行投影和中心投影,它们有什么相同点与不同点?【师生活动】学生独立思考后,小组合作交流,动手操作后交流答案,教师进行点评,共同归纳.【课件展示】【课件展示】平行投影与中心投影的区别与联系:[设计意图]通过解决设计的练习,学生经历观察、思考、操作、交流、归纳等数学活动,得出平行投影和中心投影的区别与联系,不仅加深了对平行投影和中心投影的概念的理解和掌握,同时提高了学生的应用意识和能力,让学生获得了成功的体验.三、例题讲解(1)地面上直立一根标杆AB ,如图(1),杆长为2m .①当阳光垂直照射地面时,标杆在地面上的投影是什么图形?②当阳光与地面的倾斜角为60°时,标杆在地面上的投影是什么图形?并画出投影示意图.(2)一个正方形纸板ABCD 和投影面平行(如图(2)),投影线和投影面垂直,点C 在投影面上的对应点为C',请画出正方形纸板的投影示意图.教师引导分析:(1)当阳光垂直照射地面时,点A 的影子落在什么地方?(2)当阳光与地面的倾斜角为60°时,点A 的影子落在什么地方?(3)在直角三角形中,已知一锐角和一直角边,怎样求出三角形的另一直角边?(4)当投影线与投影面垂直时,如何画出顶点A ,B ,C ,D 的投影?【师生活动】 学生独立思考,动手操作完成画图及求解,小组代表展示成果,教师点评. 解:(1)①当阳光垂直照射地面时,标杆在地面上的投影是一个点.因为标杆与地面垂直,阳光垂直照射地面时与标杆平行,使得影子与点B 重合.②当阳光与地面的倾斜角为60°时,如图(3).在Rt △ABC 中,∠ACB =60°,AB =2,∵tan ∠ACB =AA AA =√3,∴BC =√3=2√33. ∴标杆在地面上的投影是长为2√33m 的线段,如图(3)的BC.(2)因为纸板与投影面平行,投影线和投影面垂直,所以分别过点A,B,D作投影面的垂线,垂足分别为A',B',D',顺次连接A',B',C',D'即可.如图(4)为所画的投影.[设计意图]通过例题的教学进一步加深对投影的理解和掌握,在巩固所学的知识的同时,为下节课的正投影做铺垫,通过分析、思考、交流、解答等数学活动,培养学生分析问题、解决问题的能力.[知识拓展](1)光线移动时,物体影子的大小、方向也随着变化,物体的形状与影子的形状有密切的联系.(2)光是沿直线传播的,因此我们可以由投影与物体确定光线方向.(3)平行投影的应用:①根据阳光下影子的大小、位置的变化判断时刻的不同;②已知一个物体及其在阳光下的影子,可作出同一时刻另一个物体在阳光下的影子;③根据物高和影长的关系可以求物高或影长.(4)中心投影的应用:①根据点光源下两种或两种以上物体及影子的情况判断点光源的位置;②已知点光源的位置,可以画物体在点光源下的影子.1.一般地,用光线照射物体,在某个平面(地面、墙壁等)上得到的影子叫做物体的投影.2.有时光线是一组互相平行的射线,例如太阳光或探照灯中的光线.由平行光线形成的投影叫做平行投影.3.由同一点(点光源)发出的光线形成的投影叫做中心投影.1.平行投影中的光线是()A.平行的B.聚成一点的C.不平行的D.向四面八方发散的2.下列投影中属于中心投影的是()A.阳光下跑动的运动员的影子B.阳光下木杆的影子C.阳光下汽车的影子D.路灯下行人的影子3.下图是小红在某天四个时刻看到一根木棒及其影子的情况,那么她看到的先后顺序是.4.下列影子:①阳光下遮阳伞的影子;②灯光下小明读书的影子;③阳光下大树的影子;④阳光下农民锄地的影子;⑤路灯下木杆的影子.其中属于平行投影的是,属于中心投影的是.5.某一广告牌PQ旁有两根直立的木杆AB和CD,某一时刻在太阳光下,木杆CD的影子刚好不落在广告牌PQ上.(1)在图中画出此时的太阳光线CE及木杆AB的影子BF;(2)若AB=5米,CD=3米,CD到PQ的距离DQ的长为4米,求此时木杆AB的影长.【答案与解析】1.A 解析:平行投影中的光线是平行的.故选A.2.D 解析:中心投影的光源为点光源,平行投影的光源为阳光、探照灯光等平行光,在各选项中只有D选项中的投影为中心投影.故选D.3.④③①②解析:根据平行投影的特点以及北半球影长的规律可知影子由长变短再变长.故填④③①②.4.①③④②⑤解析:①阳光下遮阳伞的影子;③阳光下大树的影子;④阳光下农民锄地的影子都是太阳光线形成的影子,故属于平行投影.②灯光下小明读书的影子及⑤路灯下木杆的影子都是灯光形成的影子.故属于平行投影的是①③④,属于中心投影的为②⑤.5.解:(1)如图.(2)设木杆AB的影长BF为x米.由题意,得5A =34,解得x=203.答:此时木杆AB的影长是203米.第1课时1.认识概念平行投影中心投影2.共同探究3.例题讲解例题一、教材作业二、课后作业【基础巩固】1.下面说法正确的是()A.所有的光线都是平行的B.太阳光线是平行的C.同一组物体的平行投影与中心投影是相同的D.以上说法都不对2.在同一时刻,两根长度不等的竹竿置于阳光之下,但它们的影长相等,那么这两根竹竿的相对位置是()A.两根都垂直于地面B.两根平行斜插在地上C.两根竹竿不平行D.一根倒在地上3.下列投影不是中心投影的是()4.如图,晚上小亮在路灯下散步,在小亮由A处走到B处这一过程中,他在地上的影子()A.逐渐变短B.逐渐变长C.先变短后变长D.先变长后变短5.下列结论正确的有()①同一时刻物体在阳光照射下影子的方向是相同的;②物体在任何光线照射下影子的方向都是相同的;③物体在路灯照射下,影子的方向与路灯的位置有关;④物体在光线照射下,影子的长短仅与物体的长短有关.A.1个B.2个C.3个D.4个6.如图,小华为了测量所住楼房的高度,他请来同学帮忙,测得同一时刻他自己的影长和楼房的影长分别是0.5米和15米,已知小华的身高为1.6米,那么他所住楼房的高度为米.7.如图,光源P在横杆AB的正上方,AB在灯光下的影子为CD,AB∥CD,AB=2m,CD=6m,点P到CD的距离是2.7m,则AB与CD之间的距离是m.8.如图,赵亮同学想利用影长测量学校旗杆的高度,他在某一时刻直立1米长的标杆测得其影长为1.2米,同时旗杆的影子一部分在地面上,另一部分在某一建筑的墙上,分别测得其长度分别为9.6米和2米,则学校旗杆的高度为米.9.如图,AB和DE是直立在地面上的两根立柱,AB=5m,某一时刻AB在阳光下的投影BC= 3m.(1)请在图中画出此时DE在阳光下的投影;(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,请你计算DE的长.10.如图,小华、小军、小丽同时站在路灯下,其中小军和小丽的影子分别是AB,CD.(1)请你在图中画出路灯灯泡所在的位置(用点P表示);(2)画出小华此时在路灯下的影子(用线段EF表示).【能力提升】11.三角尺在灯泡O的照射下在墙上形成影子(如图).现测得OA=20cm,OA'=50cm,这个三角尺的周长与它在墙上形成的影子的周长的比值是.12.如图,小明在A时测得某树的影长为2m,B时又测得该树的影长为8m,若两次日照的光线互相垂直,则树的高度为m.13.如图,光源L距地面(LN)8米,距正方形顶端(LM)2米,已知在光源照射下,正方形在左侧的影子BE长5米,求正方形在右侧的影子CF的长.【拓展探究】14.如图,王琳同学在晚上由路灯A走向路灯B,当他行到P处时发现,他在路灯B下的影长为2米,且恰好位于路灯A的正下方,接着他又走了6.5米到Q处,此时他在路灯A下的影子恰好位于路灯B的正下方.(已知王琳身高1.8米,路灯B高9米)(1)标出王琳站在P处在路灯B下的影子;(2)计算王琳站在Q处在路灯A下的影长;(3)计算路灯A的高度.【答案与解析】1.B解析:只有平行投影的光线是平行的,而中心投影的光线是不平行的,故A错误;太阳光线是平行的,B正确;根据平行投影及中心投影的定义及特点知同一组物体的平行投影与中心投影是不相同的,故C错误;因为B选项正确,所以D选项错误.故选B.2.C解析:在同一时刻,两根长度不等的竹竿置于阳光之下,但它们的影长相等,那么这两根竹竿不平行.故选C.3.D解析:分别连接头顶和影子的端点,A,B,C中的两条光线交于一点,是中心投影,D中的两条光线平行,是平行投影.故选D.4.C解析:因为小亮由A处走到B处这一过程中,离光源是由远到近再到远的过程,所以他在地上的影子先变短后变长.故选C.5.B解析:①因为太阳光线是平行光线,所以同一时刻物体在阳光照射下,影子的方向是相同的,故①正确;②物体在灯光的照射下影子的方向与物体的位置有关,故②错误;③物体在路灯照射下,影子的方向与路灯的位置有关,故③正确;④物体在点光源的照射下,影子的长短与物体的长短和光源的位置有关,故④错误.所以正确的有2个.故选B.6.48解析:如图,易证△ABC∽△DEF,则有AC∶BC=DF∶EF,解得DF=48米.7. 1.8解析:∵AB ∥CD ,∴△PAB ∽△PCD ,∴AB ∶CD =点P 到AB 的距离∶点P 到CD 的距离.∴2∶6=点P 到AB 的距离∶2.7,∴点P 到AB 的距离为0.9m,则AB 与CD 之间的距离为2.7-0.9=1.8(m).8. 10解析:如图,作DE ⊥AB 于点E .根据题意得AA AA =11.2,即AA 9.6=11.2,解得AE =8米,则AB =AE +BE =8+2=10(米).即旗杆的高度为10米.9.解:(1)如图,连接AC ,过点D 作DF ∥AC ,交直线BC 于点F ,线段EF 即为DE 的投影.(2)∵AC ∥DF ,∴∠ACB =∠DFE.∵∠ABC =∠DEF =90°,∴△ABC ∽△DEF ,∴AA AA =AA AA ,∴5AA =36, ∴DE =10m .10.解:如图.(1)点P 为所求的点. (2)EF 为小华此时在路灯下的影子.11.25解析:由题意知三角尺与其影子相似,它们周长的比就等于相似比.因为AA AA '=2050=25,所以三角尺的周长与它在墙上形成的影子的周长的比值是25. 12.4解析:如图,过点C 作CD ⊥EF .由题意,得△EFC 是直角三角形,且∠ECF =90°.又∠EDC =∠CDF =90°,∴∠E +∠ECD =∠ECD +∠DCF =90°,∴∠E =∠DCF ,∴Rt △EDC ∽Rt △CDF ,则有AA AA =AA AA ,即DC 2=ED ·FD ,代入数据可得DC 2=16,则DC =4m .13.解:由题意知四边形DEFG 是正方形,且LN ⊥BC ,∴DG ∥EF ,MN =DE =FG ,四边形DENM 与四边形MNFG 是矩形,∴△DLM ∽△BLN ,∴AA AA +AA =AA AA ,解得DM =53,∴MG =133,同理,AA AA +AA =AA AA ,解得FC =13.∴正方形在右侧的影子CF 的长为13米.14.解:(1)线段CP 为王琳站在P 处在路灯B 下的影子.(2)由题意得Rt △CEP ∽Rt △CBD ,∴AA AA =AA AA ,∴1.89=22+6.5+AA,解得QD =1.5,即影长为1.5米. (3)由题意得Rt △DFQ ∽Rt △DAC ,∴AA AA =AA AA ,∴1.8AA =1.51.5+6.5+2,解得AC =12.答:路灯A 的高度为12米.本节课由鸟巢、水立方等建筑实物图片引出教学内容,激发学生学习本节课内容的兴趣,学生欣赏皮影和日晷了解中国文化的同时,导出本节课的课题,让学生体会数学与生活之间的联系,激发学生学习本节课的欲望.结合生活中的影子图片,感知投影的概念,并观察不同的投影之间的区别与联系,归纳出平行投影和中心投影的概念.师生通过解决实际问题,画出图形,共同探究平行投影与中心投影的区别和联系,学生在教师的引导下,通过观察、思考、交流等数学活动,加深对有关投影概念的理解和掌握的同时,培养了归纳总结能力,并为下节课做好铺垫,学生在课堂上思维活跃,人人学有价值的数学.本节课的主要内容是投影的有关概念,通过联系生活实际,观察、思考、交流、归纳等数学活动,感知投影、平行投影与中心投影的概念,课堂上学生气氛活跃,回答问题积极,但是。
第二十九章投影与视图投影第1课时平行投影与中心投影教学目标【知识与技能】1.经历实践探索,了解投影、平行投影和中心投影的概念;2.了解平行投影和中心投影的区别.【过程与方法】经历观察、思考的过程,感受生活中的投影广泛存在着,从中体会平行投影与中心投影的联系和区别.【情感态度】使学生学会关注生活中有关投影的数学问题,提高数学应用意识.【教学重点】掌握投影的含义,体会中心投影与平行投影的联系和区别.【教学难点】中心投影与平行投影的联系与区别.教学过程一、情境导入,初步认识物体在日光或灯光的照射下,会在地面、墙壁等处形成影子.请观察下面三幅图片,感受日常生活中的一些投影现象,并引入教材练习以加深理解.二、思考探究,获取新知一般地,用光线照射物体,在某个平面(地面、墙壁等)上得到的影子叫做物体的投影,照射光线叫做投影线,投影所在的平面叫做投影面.有时光线是一组互相平行的射线,如太阳光或探照灯光的一束光中的光线.由平行光线形成的投影是平行投影,例如物体在太阳光的照射下形成的影子(简称日影)就是平行投影.由同一点(点光源)发出的光线形成的投影叫做中心投影,如物体在灯泡发出的光照射下形成影子就是中心投影.如图所示的是三角尺在灯光(点光源)下的投影.由此可以看出点光源下物体的投影是物体的放大图形,这两个图形是位似图形.【思考】如何判断一个物体的投影是平行投影还是中心投影呢?【教学说明】学生间相互交流,进一步体验平行投影和中心投影的关系.【归纳结论】如果投影与物体的对应点连线互相平行,则此时的投影是平行投影,如果对应点的连线交于一点,则此时的投影为中心投影.三、典例精析,掌握新知(2) 当乙木杆移动到什么位置时,其影子刚好不落在墙上?(3)在(2)的情况下,如果测得甲、乙木杆的影子长分别为和1m,那么你能求出甲木杆的高度吗?例2 请举出生活中的投影现象,说说它们是平行投影还是中心投影?【教学说明】本环节的两个问题都可让学生自主探究或相互交流.教师巡视指导,听取学生的观点,加深对知识的理解.四、师生互动,课堂小结通过这节课的学习你有哪些收获?你还有什么疑问?【教学说明】师生共同回顾本节知识,在相互交流中巩固新知.当堂测评2. 下面属于中心投影的是 ( )A. 太阳光下的树影B. 皮影戏C. 月光下房屋的影子D. 海上日出3. 晚上,人在马路上走过一盏路灯的过程中,其影子长度的变化情况是( )A. 先变短后变长B. 先变长后变短C. 逐渐变短D. 逐渐变长4. 小玲和小芳两人身高相同,两人站在灯光下的不同位置,已知小玲的影子比小芳的影子长,则可以判定小芳离灯光较______.(填“远”或“近”) .5.小亮在上午8时、9时30分、10时、12时四次到室外的阳光下观察广场的旗杆随太阳转动的情况,无意之中,他发现这四个时刻广场的旗杆在地面上的影子的长度各不相同,那么影子最长的时刻为-----综合应用:如图,路灯(P点)距地面8米,身高米的小明从距路灯的底部(O点)20米的A点沿OA所在的直线行走14米到B点时,影子的长度是变长了还是变短了?变长或变短了多少米?教学反思本课时通过引入具体情境,让学生感受平行投影与中心投影的特征,进而探讨中心投影与平行投影的区别与联系,这进一步发展了学生的抽象概括能力.。
第
2课时正投影
知识点1 正投影
1. 如图,水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影是()
D O □ o
A B C D
2. 把一个正五棱柱按如图方式摆放,当投影线由正前方射到后方时,它的正投影是
( )
3. 当物体的某个面平行于投影面时,这个面的正投影与这个面的形状、大小
知识点2 画物体的正投影
4. 画出图中物体(正三棱柱)的正投影:
⑴投影线由物体前方射到后方;
(2)投影线由物体左方射到右方;
(3)投影线由物体上方射到下方.
C D
5. 下列说法正确的有()
①线段a垂直于投影面P,则线段a在投影面P上的正投影是一个点;②长方形的对角线垂直于投影面,则长方形在投影面上的正投影是一条线段;③正方体的一侧面与投影面平行,则该正方体有4个面的正投影是线段;④圆锥的轴截面与投影面平行,则圆锥在投影面上的正投影是等腰三角形.
A.1个B . 2个C . 3个D . 4个
6. 底面与投影面垂直的圆锥的正投影是___________ .
7. 如图,在正方体上面放一个圆柱,已知正方体的一个侧面ABCD平行于投影面P,若
一一1
圆柱中心正对正方体上面的中心,圆柱高等于AB底面直径为石AB若AB= 4 cm.
3
(1) 画出立体图形的正投影;
(2) 计算投影的面积.
8. 如图,已知一纸板的形状为正方形ABCD其边长为10 cm, AD BC与投影面卩平行, ABCD与投影面不平行,正方形在投影面卩上的正投影为四边形ABCD.若/ ABB= 45°,
求四边形ABCD的面积.
参考答案
1. D [解析]从上向下观察水杯,杯口的正投影为圆,杯把为线段•故选 D.
2. B
3. 相同[解析]当物体的某个面平行于投影面时,光线垂直于这个面,故这个面的正投影与这个面的形状、大小相同.
4. 解:如图.
5. D [解析]根据题目要求画图分析,说法①②③④都正确.
6. 等腰三角形
7. 解:⑴如图.
1 64 2, 64 2
(2) -X4X4+ 4X4= —(cm ),即投影的面积为—cm.
3 3 3
8.解:易知四边形A i BiGD是矩形.如图,过点A作AHL BB于点H.
•••/ ABE= 45°,
• • •△ ABH是等腰直角三角形,
AH= ~22A B= ~22X 10= 5 '』2(cm),
•- AB= AH= 5 yJ2 cm.
■/ AD = AD= 10 cm ,
•矩形ABGD 的面积为AB • AD= 5 J2X 10 = 50 Q2(cm1 2 3).。