第7节 动能和动能定理
- 格式:doc
- 大小:199.50 KB
- 文档页数:13
高考物理科普动能与动能定理动能与动能定理动能是物理学中的一个重要概念,用来描述物体的运动状态。
在高考物理中,学生需要对动能与动能定理有一定的了解。
本文将介绍什么是动能以及动能定理的含义和应用。
一、动能的定义动能(kinetic energy)是一个物体由于运动而具有的能量。
简单来说,物体的动能与物体的质量和速度有关。
动能的单位是焦耳(J)。
动能的计算公式如下:动能 = 1/2 ×质量 ×速度²其中,质量的单位是千克(kg),速度的单位是米/秒(m/s)。
例如,质量为2千克的物体以10米/秒的速度运动,其动能为:动能 = 1/2 × 2 kg × (10 m/s)² = 100 J这表示该物体由于运动而具有100焦耳的能量。
二、动能定理动能定理(kinetic energy theorem)是描述物体动能变化的定理。
它的表述如下:物体的动能的变化量等于作用在物体上的净外力所做的功。
净外力指的是物体受到的所有外力的矢量和,而功即为力对物体的作用在物体上产生的能量转移。
根据动能定理,如果一个物体受到净外力作用,其动能就会发生改变。
当净外力与物体运动方向一致时,物体的动能增加;当净外力与物体运动方向相反时,物体的动能减少。
三、动能定理的应用动能定理在物理学中具有很多应用。
以下是一些常见的应用场景:1. 能量转换:动能定理可以用来描述机械能的转换。
例如,当一个物体在上升过程中受到重力作用时,其动能会逐渐减小,而重力势能会逐渐增加;当物体下落时,动能增加,而重力势能减小。
2. 简谐振动:对于简谐振动,动能和势能之间会发生周期性的转换。
例如,弹簧振子的动能在振动过程中会由最大值转变为最小值,而势能则相反。
3. 碰撞过程:在碰撞过程中,动能定理可以用来分析物体的速度和动量变化。
例如,当两个物体碰撞时,动能定理可以帮助计算碰撞后物体的速度。
四、总结动能与动能定理是高考物理中的重要知识点。
7.动能和动能定理 学 习 目 标知 识 脉 络1.知道动能的概念及定义式,会比较、计算物体的动能.2.理解动能定理的推导过程、含义及适用范围,并能灵活应用动能定理分析问题.(重点)3.掌握利用动能定理求变力的功的方法.(重点、难点)动能的表达式[先填空]1.定义物体由于运动而具有的能量.2.表达式E k =12m v 2.3.单位与功的单位相同,国际单位为焦耳.1 J =1_kg·m 2·s -2.4.物理量特点(1)具有瞬时性,是状态量.(2)具有相对性,选取不同的参考系,同一物体的动能一般不同,通常是指物体相对于地面的动能.(3)是标量,没有方向,E k ≥0.[再判断]1.两个物体中,速度大的动能也大.(×)2.某物体的速度加倍,它的动能也加倍.(×)3.做匀速圆周运动的物体的动能保持不变.(√)[后思考]图7-7-1(1)滑雪运动员从坡上由静止开始匀加速下滑,运动员的动能怎样变化?【提示】增大.(2)运动员在赛道上做匀速圆周运动,运动员的动能是否变化?【提示】不变.[合作探讨]歼-15战机是我国自主研发的第一款舰载战斗机,如图7-7-2所示:图7-7-2探讨1:歼-15战机起飞时,合力做什么功?速度怎么变化?动能怎么变化?【提示】歼-15战机起飞时,合力做正功,速度、动能都不断增大.探讨2:歼-15战机着舰时,动能怎么变化?合力做什么功?增加阻拦索的原因是什么?【提示】歼-15战机着舰时,动能减小.合力做负功.增加阻拦索是为了加大对飞机的阻力.[核心点击]1.动能的特征(1)是状态量:与物体的运动状态(或某一时刻的速度)相对应.(2)具有相对性:选取不同的参考系,物体的速度不同,动能也不同,一般以地面为参考系.(3)是标量:只有大小,没有方向;只有正值,没有负值.2.动能的变化(1)ΔE k =12m v 22-12m v 21为物体动能的变化量,也称作物体动能的增量,表示物体动能变化的大小.(2)动能变化的原因:合力对物体做功是引起物体动能变化的原因,合力做功的过程实质上是其他形式的能与动能相互转化的过程,转化了多少由合力做了多少功来度量.1.在水平路面上,有一辆以36 km/h 行驶的客车,在车厢后座有一位乘客甲,把一个质量为4 kg 的行李以相对客车5 m/s 的速度抛给前方座位的另一位乘客乙,则行李的动能是( )A .500 JB .200 JC .450 JD .900 J【解析】 行李相对地面的速度v =v 车+v 相对=15 m/s ,所以行李的动能E k =12m v 2=450 J ,选项C 正确.【答案】 C2.质量为2 kg 的物体A 以5 m/s 的速度向北运动,另一个质量为0.5 kg 的物体B 以10 m/s 的速度向西运动,则下列说法正确的是( )【导学号:50152125】A .E k A =E k BB .E k A >E k BC .E k A <E k BD .因运动方向不同,无法比较动能【解析】 根据E k =12m v 2知,E k A =25 J ,E k B =25 J ,而且动能是标量,所以E k A =E k B ,A 项正确.【答案】 A3.两个物体质量比为1∶4,速度大小之比为4∶1,则这两个物体的动能之比( )A .1∶1B .1∶4C .4∶1D .2∶1【解析】 由动能表达式E k =12m v 2得E k1E k2=m 1m 2·⎝ ⎛⎭⎪⎫v 1v 22=14×⎝ ⎛⎭⎪⎫412=4∶1,C 对. 【答案】 C动能与速度的三种关系 (1)数值关系:E k =12m v 2,速度v 越大,动能E k 越大.(2)瞬时关系:动能和速度均为状态量,二者具有瞬时对应关系.(3)变化关系:动能是标量,速度是矢量.当动能发生变化时,物体的速度(大小)一定发生了变化,当速度发生变化时,可能仅是速度方向的变化,物体的动能可能不变.动能定理[先填空]1.动能定理的内容力在一个过程中对物体做的功,等于物体在这个过程中动能的变化.图7-7-32.动能定理的表达式(1)W =12m v 22-12m v 21.(2)W =E k2-E k1.说明:式中W 为合外力做的功,它等于各力做功的代数和.3.动能定理的适用范围不仅适用于恒力做功和直线运动,也适用于变力做功和曲线运动情况.[再判断]1.外力对物体做功,物体的动能一定增加.(×)2.动能定理中的W为合力做的功.(√)3.汽车在公路上匀速行驶时,牵引力所做的功等于汽车的动能.(×)[后思考]骑自行车下坡时,没有蹬车,车速却越来越快,动能越来越大,这与动能定理相矛盾吗?图7-7-4【提示】不矛盾.人没蹬车,但重力却对人和车做正功,动能越来越大.[合作探讨]如图7-7-5所示,物体(可视为质点)从长为L、倾角为θ的光滑斜面顶端由静止滑下.图7-7-5探讨1:物体受几个力作用?各做什么功?怎么求合力的功?【提示】物体受重力、支持力两个力作用.重力做正功,支持力不做功.合=mgL sin θ.力做的功W合探讨2:如何求物体到达斜面底端时的速度?能用多种方法求解物体到达斜面底端时的速度吗?哪种方法简单?【提示】可以用牛顿定律结合运动学公式求解,也可以用动能定理求解.用动能定理更简捷.[核心点击]1.应用动能定理解题的步骤(1)确定研究对象和研究过程(研究对象一般为单个物体或相对静止的物体组成的系统).(2)对研究对象进行受力分析(注意哪些力做功或不做功).(3)确定合外力对物体做的功(注意功的正负).(4)确定物体的初、末动能(注意动能增量是末动能减初动能).(5)根据动能定理列式、求解.2.动力学问题两种解法的比较牛顿运动定律运动学公式结合法动能定理适用条件只能研究在恒力作用下物体做直线运动的情况对于物体在恒力或变力作用下,物体做直线运动或曲线运动均适用应用方法要考虑运动过程的每一个细节只考虑各力的做功情况及初、末状态的动能运算方法矢量运算代数运算相同点确定研究对象,对物体进行受力分析和运动过程分析4.(多选)一物体在运动过程中,重力做了-2 J的功,合力做了4 J的功,则()A.该物体动能减少,减少量等于4 JB.该物体动能增加,增加量等于4 JC.该物体重力势能减少,减少量等于2 JD.该物体重力势能增加,增加量等于2 J【解析】重力做负功,重力势能增加,增加量等于克服重力做的功,选项C错误,选项D正确;根据动能定理得该物体动能增加,增加量为4 J,选项A 错误,选项B正确.【答案】BD5.如图7-7-6所示,AB为固定在竖直平面内的14光滑圆弧轨道,轨道的B点与水平地面相切,其半径为R.质量为m的小球由A点静止释放,求:图7-7-6(1)小球滑到最低点B时,小球速度v的大小;(2)小球通过光滑的水平面BC滑上固定曲面,恰达最高点D,D到地面的高度为h(已知h<R),则小球在曲面上克服摩擦力所做的功W f.【导学号:50152126】【解析】(1)小球从A滑到B的过程中,由动能定理得:mgR=12m v2B-0解得:v B=2gR.(2)从A到D的过程,由动能定理可得:mg(R-h)-W f=0-0,解得克服摩擦力做的功W f=mg(R-h).【答案】(1)2gR(2)mg(R-h)应用动能定理时注意的四个问题(1)动能定理中各量是针对同一惯性参考系而言的(一般选取地面为参考系).(2)若物体运动的过程包含几个不同的阶段,应用动能定理时,可以分段考虑,也可以将全过程作为一个整体来处理.(3)在求总功时,若各力不同时对物体做功,W应为各阶段各力做功的代数和.在利用动能定理列方程时,还应注意各力做功的正、负或合力做功的正、负.(4)对于受力情况复杂的问题要避免把某个力的功当做合力的功,对于多过程问题要防止“漏功”或“添功”.高中物理考试答题技巧及注意事项在考场上,时间就是我们致胜的法宝,与其犹犹豫豫不知如何落笔,倒不如多学习答题技巧。
动能和动能定理教案(优秀5篇)动能定理教学设计篇一《动能和动能定理》是高中物理必修2第五章《机械能及其守恒定律》第七节的内容,我从:教材分析、目标分析、教法学法、教学过程、板书设计和教学反思六个纬度作如下汇报:一、教材分析1.内容分析《动能和动能定理》主要学习一个物理概念:动能;一个物理规律:动能定理。
从知识与技能上要掌握动能表达式及其相关决定因素,动能定理的物理意义和实际的应用。
过程与方法上,利用牛顿运动定律和恒力功知识推导动能定理,理解“定理”的意义,并深化理解第五节探究性实验中形成的结论;通过例题1的分析,理解恒力作用下利用动能定理解决问题优越于牛顿运动定律,在课程资源的开发与优化和整合上,要让学生在课堂上切实进行两种方法的相关计算,在例题1后,要补充合力功和曲线运动中变力功的相关计算;通过例题2的探究,理解正负功的物理意义,初步从能量守恒与转化的角度认识功。
在态度情感与价值观上,在尝试解决程序性问题的过程中,体验物理学科既是基于实验探究的一门实验性学科,同时也是严密数学语言逻辑的学科,只有两种方法体系并重,才能有效地认识自然,揭示客观世界存在的物理规律。
2.内容地位通过初中的学习,对功和动能概念已经有了相关的认识,通过第六节的实验探究,认识到做功与物体速度变化的关系。
将本节课设计成一堂理论探究课有着积极的意义。
因为通过“动能定理”的学习,深入理解“功是能量转化的量度”,并在解释功能关系上有着深远的意义。
为此设计如下目标:二、目标分析1、三维教学目标(一)、知识与技能1.理解动能的概念,并能进行相关计算;2.理解动能定理的物理意义,能进行相关分析与计算;3.深入理解W合的物理含义;4.知道动能定理的解题步骤;(二)、过程与方法1.掌握恒力作用下动能定理的推导;2.体会变力作用下动能定理解决问题的优越性;(三)、情感态度与价值观体会“状态的变化量量度复杂过程量”这一物理思想;感受数学语言对物理过程描述的简洁美;2.教学重点、难点:重点:对动能公式和动能定理的理解与应用。
7动能和动能定理一、动能和动能定理1.基本知识(1)动能 ①定义: 物体由于 而具有的能.②表达式: E k =12mv 2,式中v 是瞬时速度.③单位 动能的单位与功的单位相同,国际单位都是 ,符号为J. 1 J =1 kg·m 2/s 2=1 N·m. ④对动能概念的理解a .动能是标量,只有 ,没有 ,且动能为非负数.b .动能是状态量,在某一时刻,物体具有一定的速度,也就具有一定的动能. ⑤动能的变化量 即末状态的动能与初状态的ΔE k =12mv 22-12mv 21.ΔE k >0,表示物体的 .ΔE k <0表示物体的 .(2)动能定理的推导①建立情景 如图所示,质量为m 的物体,在恒力F 作用下,经位移l 后,速度由v 1增加到v 2.②推导依据外力做的总功:W = 由牛顿第二定律:F =由运动学公式:l =v 22-v 212a.③结论:W =12mv 22-12mv 21 即W =E k2-E k1=ΔE k .(3)动能定理的内容力在一个过程中对物体所做的功,等于物体在这个过程中 。
(4)动能定理的表达式 ①W =12mv 22-12mv 21. ②W =E k2-E k1. 说明:式中W 为 ,它等于各力做功的 。
(5)动能定理的适用范围不仅适用于 做功和 运动,也适用于 做功和 运动情况.二、对动能、动能定理的理解1.动能的特征(1)是状态量:与物体的运动状态(或某一时刻的速度)相对应.(2)具有相对性:选取不同的参考系,物体的速度不同,动能也不同,一般以地面为参考系.(3)是标量:只有大小,没有方向;只有正值,没有负值.2.对动能定理的理解(1)内容:外力对物体做的总功等于其动能的增加量,即W =ΔE k . (2)表达式W =ΔE k 中的W 为外力对物体做的总功.(3)ΔE k =12mv 22-12mv 21为物体动能的变化量,也称作物体动能的增量,表示物体动能变化的大小.(4)动能定理描述了做功和动能变化的两种关系.①等值关系:某物体的动能变化量总等于合力对它做的功.②因果关系:合力对物体做功是引起物体动能变化的原因,合力做功的过程实质上是其他形式的能与动能相互转化的过程,转化了多少由合力做了多少功来度量.例1. 关于运动物体所受的合力、合力做的功及动能变化的关系,下列说法正确的是( )A .合力为零,则合力做功一定为零B .合力做功为零,则合力一定为零C .合力做功越多,则动能一定越大D .动能不变化,则物体所受合力一定为零规律总结: 动能与速度的关系1.瞬时关系:动能和速度均为状态量,二者具有瞬时对应关系.2.变化关系:动能是标量,速度是矢量,当动能发生变化时,物体的速度(大小)一定发生了变化,当速度发生变化时,可能仅是速度方向的变化,物体的动能可能不变.训练1.(2014·苏州高一检测)一物体做变速运动时,下列说法正确的有( ) A .合力一定对物体做功,使物体动能改变 B .物体所受合力一定不为零 C .合力一定对物体做功,但物体动能可能不变 D .物体加速度一定不为零 动能定理的应用及优越性1.应用动能定理解题的基本步骤2.优越性(1)对于变力作用或曲线运动,动能定理提供了一种计算变力做功的简便方法.功的计算公式W=Fl cos α只能求恒力做的功,不能求变力的功,而由于动能定理提供了一个物体的动能变化ΔE k与合力对物体所做功具有等量代换关系,因此已知(或求出)物体的动能变化ΔE k=E k2-E k1,就可以间接求得变力做功.算,运算简单不易出错.注意:动能定理虽然是在物体受恒力作用,沿直线做匀加速直线运动的情况下推导出来的,但是对于外力是变力或物体做曲线运动,动能定理同样成立.例2.一架喷气式飞机质量m=5×103 kg,起飞过程中从静止开始滑行的路程s=5.3×102 m时(做匀加速直线运动),达到起飞速度v=60 m/s.在此过程中飞机受到的平均阻力是飞机重力的k倍(k=0.02).求飞机受到的牵引力.规律总结:动能定理与牛顿运动定律在解题时的选择方法1.动能定理与牛顿运动定律是解决力学问题的两种重要方法,一般来讲凡是牛顿运动定律能解决的问题,用动能定理都能解决,但动能定理能解决的问题,牛顿运动定律不一定都能解决,且同一个问题,用动能定理要比用牛顿运动定律解决起来更简便.2.通常情况下,其问题若涉及时间或过程的细节,要用牛顿运动定律去解决;其问题若不考虑具体细节、状态或时间,如物体做曲线运动、受力为变力等情况,一般要用动能定理去解决.训练2.一辆汽车以v1=6 m/s的速度沿水平路面行驶时,急刹车后能滑行s1=3.6 m,如果以v2=8 m/s的速度行驶,在同样的路面上急刹车后滑行的距离s2应为( ) A.6.4 m B.5.6 m C.7.2 m D.10.8 m三、用动能定理求变力的功例3.如图所示,AB 为14圆弧轨道,BC 为水平直轨道,圆弧的半径为R ,BC 的长度也是R .一质量为m 的物体,与两个轨道的动摩擦因数都为μ,当它由轨道顶端A 从静止下滑时,恰好运动到C 处停止,那么物体在AB 段克服摩擦力做功为( )A.12μmgRB.12mgR C .mgR D .(1-μ)mgR规律总结:1.本题中摩擦力的大小、方向都在变化,应用功的定义式无法直接求它做的功,在这种情况下,就要考虑利用动能定理.2.物体的运动过程分为多个阶段时,我们尽量对全过程应用动能定理,如果这样不能解决问题,我们再分段处理.如本题中我们直接对由A →B →C 的全过程应用动能定理,就比分为两个阶段由A →B 和由B →C 分别来处理简单一些.动能定理在多过程中的应用1.分段应用动能定理时,将复杂的过程分割成一个个子过程,对每个子过程的做功情况和初、末动能进行分析,然后针对每个子过程应用动能定理列式,然后联立求解.2.全程应用动能定理时,分析整个过程中出现过的各力的做功情况,分析每个力的做功,确定整个过程中合外力做的总功,然后确定整个过程的初、末动能,针对整个过程利用动能定理列式求解.当题目不涉及中间量时,选择全程应用动能定理更简单、更方便. 例4.如图所示,ABCD 为一竖直平面的轨道,其中BC 水平,A 点比BC 高出10 m ,BC 长1 m ,AB 和CD 轨道光滑.一质量为1 kg 的物体,从A 点以4 m/s 的速度开始运动,经过BC 后滑到高出C 点10.3 m 的D 点速度为零.求:(g 取10 m/s 2)(1)物体与BC 轨道间的动摩擦因数. (2)物体第5次经过B 点时的速度.(3)物体最后停止的位置(距B 点多少米).当堂双基达标1.对于动能的理解,下列说法错误的是( )A .动能是机械能的一种表现形式,凡是运动的物体都具有动能B .动能总为正值C .一定质量的物体,动能变化时,速度一定变化;但速度变化时,动能不一定变化D .动能不变的物体,一定处于平衡状态2.(多选)关于动能,下列说法正确的是( )A .公式E k =12mv 2中的速度v 是物体相对于地面的速度B .动能的大小由物体的质量和速率决定,与物体运动的方向无关C .物体以相同的速率向东和向西运动,动能的大小相等但方向不同D .物体以相同的速率做匀速直线运动和曲线运动,其动能不同3.(多选)一质量为0.1 kg 的小球,以5 m/s 的速度在光滑水平面上匀速运动,与竖直墙壁碰撞后以原速率反弹,若以弹回的速度方向为正方向,则小球碰墙过程中的速度变化和动能变化分别是( )A .Δv =10 m/sB .Δv =0C .ΔE k =1 JD .ΔE k =0 4.关于动能定理,下列说法中正确的是( ) A .某过程中外力的总功等于各力做功的绝对值之和 B .只要合外力对物体做功,物体的动能就一定改变 C .在物体动能不改变的过程中,动能定理不适用 D .动能定理只适用于受恒力作用而加速运动的过程5.下列关于运动物体所受的合力、合力做功和动能变化的关系,正确的是( ) A .如果物体所受的合力为零,那么合力对物体做的功一定为零 B .如果合力对物体做的功为零,则合力一定为零C .物体在合力作用下做匀变速直线运动,则动能在一段过程中变化量一定不为零D .如果物体的动能不发生变化,则物体所受合力一定是零6.一质量为m 的小球,用长为l 的轻绳悬挂于O 点.第一次小球在水平拉力F 1作用下,从平衡位置P 点缓慢地移到Q 点,此时绳与竖直方向夹角为θ(如图774所示),在这个过程中水平拉力做功为W 1.第二次小球在水平恒力F 2作用下,从P 点移到Q 点,水平恒力做功为W 2,重力加速度为g ,且θ<90°,则( )A .W1=F 1l sin θ,W 2=F 2l sin θ B .W 1=W 2=mgl (1-cos θ)C .W 1=mgl (1-cos θ),W 2=F 2l sin θD .W 1=F 1l sin θ,W 2=mgl (1-cos θ)7.一质量为m 的滑块,以速度v 在光滑水平面上向左滑行,从某一时刻起,在滑块上作用一向右的水平力,经过一段时间后,滑块的速度变为-2v (方向与原来相反),在这段时间内,水平力所做的功为( )A.32mv 2 B .-32mv 2 C.52mv 2 D .-52mv 2 8.(多选)甲、乙两个质量相同的物体,用大小相等的力F 分别拉它们在水平面上从静止开始运动相同的距离s ,如图776所示,甲在光滑面上,乙在粗糙面上,则下列关于力F 对甲、乙两物体做的功和甲、乙两物体获得的动能的说法中正确的是( )A .力F 对甲物体做功多B .力F 对甲、乙两个物体做的功一样多C .甲物体获得的动能比乙大D .甲、乙两个物体获得的动能相同9.有一质量为m 的木块,从半径为r 的圆弧曲面上的a 点滑向b 点,如图所示,如果由于摩擦使木块的运动速率保持不变,则以下叙述正确的是( )A .木块所受的合力为零B .因木块所受的力都不对其做功,所以合力做的功为零C .重力和摩擦力做的功代数和为零D .重力和摩擦力的合力为零10.物体在合外力作用下做直线运动的v t 图象如图所示.下列表述正确的是( )A .在0~1 s 内,合力做正功B .在0~2 s 内,合力总是做负功C .在1~ 2 s 内,合力不做功D .在0~3 s 内,合力总是做正功11.(多选)如图所示,一个小环沿竖直放置的光滑圆环形轨道做圆周运动.小环从最高点A 滑到最低点B 的过程中,小环线速度大小的平方v 2随下落高度h 的变化图象可能是图中的( )12.如图所示,一物体由A 点以初速度v 0下滑到底端B ,它与挡板B 做无动能损失的碰撞后又滑回到A 点,其速度正好为零.设A 、B 两点高度差为h ,则它与挡板碰前的速度大小为( )A. 2gh +v 204B.2ghC.2gh +v 202D.2gh +v 2013.质量为m的小球用长度为L的轻绳系住,在竖直平面内做圆周运动,运动过程中小球受空气阻力作用.已知小球经过最低点时轻绳受的拉力为7mg,经过半周小球恰好能通过最高点,则此过程中小球克服空气阻力做的功为( )A.mgL4B.mgL3C.mgL2D.mgL14.物体在合外力的作用下做直线运动的v-t图像如图所示,下列表述中正确的是()A.在0~1s内,合外力做正功B.在0~2s内,合外力总是做正功C.在1s~2s内,合外力不做正功D.在0~3s内,合外力总是做正功15.(多选)物体沿直线运动的vt图象如图所示,已知在第1秒内合力对物体做功为W,则( )A.从第1秒末到第3秒末合力做功为4WB.从第3秒末到第5秒末合力做功为-2WC.从第5秒末到第7秒末合力做功为WD.从第3秒末到第4秒末合力做功为-0.75W16.如图所示,在距沙坑表面高h=8 m处,以v0=22 m/s的初速度竖直向上抛出一质量m=0.5 kg的物体,物体落到沙坑并陷入沙坑d=0.3 m深处停下.若物体在空中运动时的平均阻力是重力的0.1倍(g=10 m/s2).求:(1)物体上升到最高点时离开沙坑表面的高度H;(2)物体在沙坑中受到的平均阻力F是多少?17.如图所示,滑雪者从高为H的山坡上A点由静止下滑,到B点后又在水平雪面上滑行,最后停止在C点.A、C两点的水平距离为s,求滑雪板与雪面间的动摩擦因数μ.18.如图所示,AB为固定在竖直平面内的14光滑圆弧轨道,轨道的B点与水平地面相切,其半径为R.质量为m的小球由A点静止释放,求:(1)小球滑到最低点B时,小球速度v的大小;(2)小球刚到达最低点B时,轨道对小球支持力F N的大小;(3)小球通过光滑的水平面BC滑上固定曲面,恰达最高点D,D到地面的高度为h(已知h<R),则小球在曲面上克服摩擦力所做的功Wf.。
第七节动能和动能定理【知能准备】1.物体由于________而具有的能叫做动能,反之,凡是做__________的物体都具=____________。
有动能,质量为m的物体,以速度v运动时的动能是Ek2.国际单位制中,动能的单位是____________。
1970年我国发射的第一颗人造地球卫星,质量为173kg,运动速度为7.2km/s,它的动能是______________。
3.动能是矢量还是标量?______________;动能是状态量还是过程量?_____________;动能可能小于零吗?____________;动能具有相对性,参考系的不同,速度就不同,动能就_________。
一般取______为参考系。
4.动能是由物体的质量和速度的大小共同决定的,由于速度是矢量,因此,物体的速度变化,动能__________。
5.力在一个过程中对物体所做的功等于_________________________________。
表示____________,这个结论叫做_________,可用公式表述为W=___________,其中Ek1E表示____________,W表示__________。
k2如果物体受到几个力的作用,则动能定理中的W表示______________ 。
6.物体的动能增加,表示物体的动能增量是___________值,合外力对物体做的功为___________值;反之,物体的动能减少,表示物体的动能增量是___________值,合外力对物体做的功为___________值。
【同步导学】1.理解动能定理(1)力(合力)在一个过程中对物体所做的功,等于物体在这个过程中动能的变化。
这就是动能定理,其数学表达式为W=E k2-E k1。
通常,动能定理数学表达式中的W有两种表述:一是每个力单独对物体做功的代数和,二是合力对物体所做的功。
这样,动能定理亦相应地有两种不同的表述:①外力对物体所做功的代数和等于物体动能的变化。
动能和动能定理[知识精讲]知识点1 动能物体由于运动而具有的能叫动能。
动能的大小:E K=mv2/2。
动能是标量。
注意:(1)动能是状态量,也是相对量。
因为v是瞬时速度,且与参照系的选择有关。
(2)动能是标量,动能和速度的方向无关,如在匀速圆周运动中,瞬时速度虽然是变化的,但是其动能是不变的。
(3)动能有相对性,由于物体的速度是与参照物的选择有关,故可知动能也与参照物的选取有关,即具有相对性。
小鸟能在空中把飞机撞坏,充分说明了这一点。
[例1]以初速度v0竖直上抛一个小球,若不计空气阻力,在上升的过程中,从抛出小球到小球动能减小一半所经历的时间是()A.v0/g B.v0/2g C v0/g D.(/2)v0/g[总结]动能与速度的方向无关.因此该题中,从抛出小球到小球动能减小一半时的速度可能有两个。
若在该题中只是问:从抛出小球到小球动能减小一半所经历的时间为多少?则答案应该是两个,即在上升和落回时各有一个。
[变式训练1]关于动能,下列说法中正确的是()①公式E K=mv2/2中的速度v是物体相对于地面的速度②动能的大小由物体的质量和速率决定,与物体运动的方向无关③物体以相同的速率向东和向西运动,动能的大小相等但方向不同④物体以相同的速率做匀速直线运动和曲线运动,其动能不同A.①② B.②③ C.③④ D.①④知识点2 动能定理(1)内容:合力所做的功等于物体动能的变化(2)表达式:W合=E K2-E K1=ΔE或W合= mv22/2- mv12/2 。
其中E K2表示一个过程的末动能mv22/2,E K1表示这个过程的初动能mv12/2。
(3)物理意义:动能地理实际上是一个质点的功能关系,即合外力对物体所做的功是物体动能变化的量度,动能变化的大小由外力对物体做的总功多少来决定。
动能定理是力学的一条重要规律,它贯穿整个物理教材,是物理课中的学习重点。
说明:1.动能定理的理解及应用要点(1)动能定理的计算式为标量式,v为相对与同一参考系的速度。
(2)动能定理的研究对象是单一物体,或者可以看成单一物体的物体系.(3)动能定理适用于物体的直线运动,也适用于曲线运动;适用于恒力做功,也适用于变力做功,力可以是各种性质的力,既可以同时作用,也可以分段作用。
只要求出在作用的过程中各力做功的多少和正负即可。
这些正是动能定理解题的优越性所在。
(4)若物体运动的过程中包含几个不同过程,应用动能定理时,可以分段考虑,也可以考虑全过程作为一整体来处理。
2.动能定理的应用(1) 一个物体的动能变化ΔE K 与合外力对物体所做的功W 具有等量代换关系,若ΔE K ›0,表示物体的动能增加,其增加量等于合外力对物体所做的正功;若ΔE K ‹0,表示物体的动能减小,其减少良等于合外力对物体所做的负功的绝对值;若ΔE K =0,表示合外力对物体所做的功等于零。
反之亦然。
这种等量代换关系提供了一种计算变力做功的简便方法。
(2) 动能定理中涉及的物理量有F 、L 、m 、v 、W 、E K 等,在处理含有上述物理量的力学问题时,可以考虑使用动能定理。
由于只需从力在整个位移内的功和这段位移始末两状态动能变化去考察,无需注意其中运动状态变化的细节,又由于动能和功都是标量,无方向性,无论是直线运动还是曲线运动,计算都会特别方便。
(3) 动能定理解题的基本思路① 选取研究对象,明确它的运动过程。
② 分析研究对象的受力情况和各个力做功情况然后求各个外力做功的代数和。
③ 明确物体在过程始末状态的动能E K1和E K2。
④ 列出动能定理的方程W 合=E K2-E K1,及其他必要的解题过程,进行求解。
[例2]如图所示,物体在离斜面底端5m 处由静止开始下滑,然后滑上由小圆弧与斜面连接的水平面上,若物体与斜面及水平面的动摩擦因数均为0.4,斜面倾 角为37º。
求物体能在水平面上滑行多远。
[总结]应用动能定理解题时,在分析过程的基础上无须深究物体的运动过程中变化的细节,只需考虑整个过程中的功及过程始末的动能。
若过程包含了几个运动性质不同的分过程,既可分段考虑,也可整个过程考虑。
若不涉及中间过程量时,用整个过程分析比较简单。
但求功时,有些力不是全过程都作用的,必须根据不同情况分别对待,求出总功、计算时要把各力的功连同符号(正、负)一同代入公式。
[变式训练2] 一质量为1.0kg 的物体,以4m/s 的速度在光滑的水平面上向左滑行,从某一时刻起对物体施以一水平向右的恒力,经过一段时间,物体的速度方向变为向右,大小仍为4m/s ,则在这段时间内水平力对物体所做的功为( )A .0B .-8JC .-16JD .-32J[难点解析]动能定理的综合应用性问题[例3]图中ABCD 是一条长轨道,其中AB 段是倾角 为θ的斜面,CD 是水平的。
BC 是与AB 和CD 都相切的一小段圆弧,其长度可以忽略不计。
一质量 为m 的小滑块在A 点从静止状态释放,沿轨道滑下,最后停在D 点,A 点和D 点位置如图所示。
现用一沿着轨道方向的力推滑块,使它缓慢地由D 点推回A 点停下,设轨道与滑块间的动摩擦因数为μ,则推力对滑块做的功等于( )A .mghB .2mghC .μmg (l+h/sin θ)D .μmgl+μmghcot θ[总结]在题中不涉及中间物理量的情况下,全过程应用动能定理较为方便。
[变式训练3]以初速度v 1竖直上抛一个质量为m 的物体,物体落回到抛出点时的速度大小为v 2,如果物体在上升和下降过程中受到的空气阻力大小恒定,即大小相等,求物体能上升的最大高度[难点精析2]利用动能定理求变力的功[例4]如图所示,某人用定滑轮吊起一质量为1的物体,绳子 长为L,每单位长的质量为m 2,试求此人将物体从地面吊至高度为L 的过程中至少应做多少功?[方法总结]当物体受力有变力时,其它的力所做的功和物体动能改变量都比较容易求得时,用动能定理求变力的功。
[误区警示]计算绳子的重力做功时,要用重心上升高度L/2而不能认为上升高度为L 。
[变式训练4]一质量为m 的小球,用长为L 的轻绳悬挂于O 点。
小球在水平拉力F 的作用下,从平衡位置P 点缓慢地移动到 Q 点,如图所示,则力F 所做的功为( ) A .mglcos θ B .mgL (1-cos θ)C .Flcos θD .Flcos θ[难点精析3]动能定理与功率问题综合[例5]质量为5t 的汽车,在平直公路上以60kW 恒定的功率从静止开始启动,速度达到24m/s 的最大速度后,立即关闭发动机,汽车从启动到最后停下通过的总位移为1200m 。
运动过程中汽车所受的阻力不变,求汽车运动的时间。
[总结]当变力做功,而力的功率恒定时可考虑由W=Pt 求变力做功。
在实际生活中往往会遇到变力做功的情况,在计算变力所做的功时应注意利用适当的功的表达式。
本题考查的是利用功率公式求汽车运动时间的情况。
对于较为复杂的物理过程,首先分析清楚物体在各个阶段的运动特点,明确各物理量间的关系,再利用合适的物理规律求解。
特别是对求物体受到的力做功时,切不可主观臆断,直接利用恒力做功公式求功。
[变式训练5]一列火车由机车牵引沿水平轨道行使,经过时间t,其速度由0增大到v,已知列车总质量为M,机车功率P保持不变,列车所受阻力f为恒力。
求这段时间内列车通过的路程。
[难点精析4]动能定理在流体问题中的运用[例6]新疆达坂城风口风速约为v=20m/s,设该地区空气密度ρ=1.4kg/m3,若把通过横截面积为S=20m2的风的动能全部转化为电能,则该处风力发电站的发电功率为多大?[总结]在生活、生产、科技实践中,经常会遇到这样的问题,例如水轮机发电、风力发电、火箭喷气、血液流动等,称为连续流体问题。
在处理这类问题时,我们不便于取整体为研究对象,通常是取很短一段时间内的质量Δm作为研究对象,将其看成质点,再进行分析讨论,这是解答此类问题的技巧。
[变式训练6]太阳能烟囱式热力发电原理如图所示,像种蔬菜大棚一样的太阳能集热棚将太阳能收集起来,对空气加热,热空气进入烟囱,由于烟囱内热空气的压强大于外界的大气压,在烟囱中就会形成强大的热气流,推动安置在烟囱底部的空气涡轮发电机发电。
已知太阳每平方米的辐射功率为P0,太阳集热棚的面积为S0,烟囱内部的半径为R,烟囱底部与外界冷空气的压强差为Δp,烟囱内热空气的密度为ρ,热空气的动能转化为电能的效率为η,不考虑发电过程中空气温度的变化.(1)求烟囱热空气的流速;(2)求发电机的发电功率4[难点精析5]动能定理在往复式运动中的运用[例7] 如图所示,AB与CD为两个对称斜面,其上部足够长,下部分别与一个光滑的圆弧面两端相切,圆弧圆心角为120˚,半径R为2.0cm,一个物体在离弧底E高度为h=3.0m处,以初速度4.0m/s沿斜面运动,若物体与两斜面的动摩擦因数为0.02,则物体在两斜面上(不包括圆弧部分)一共能走多长路程?(g取10m/s2)[总结]物体在往复式运动中,重力做功与路径无关,摩擦力做功与路径无关.对整个过程运用动能定理较为简单。
[变式训练7]如图所示,斜面的倾角为θ,质量为m的滑块距Array挡板P为s0,以初速度v0沿斜面上滑,滑块与斜面间的动摩擦因数为μ,滑块所受摩擦力小于滑块沿斜面的瞎话力,若滑块每次与挡板相碰均无机械能损失,求滑块经过的路程。
[综合拓展]一.动能定理的内容和表达式合外力所做的功等于物体动能的变化,即W = E K2-E K1二.动能定理的应用技巧1.一个物体的动能变化ΔE K与合外力对物体所做的功W具有等量代换关系。
若ΔE K>0,表示物体的动能增加,其增加量等于合外力对物体所做的正功;若ΔE K<0,表示物体的动能减少,其减少量等于合外力对物体所做的负功的绝对值;若ΔE K=0,表示合外力对物体所做的功为零。
反之亦然。
这种等量代换关系提供了一种计算变力做功的简便方法。
2.动能定理中涉及的物理量有F、s、m、v、W、E K等,在处理含有上述物理量的力学问题时,可以考虑使用动能定理。
由于只需从力在整个位移内的功和这段位移始末两状态的动能变化去考虑,无需注意其中运动状态变化的细节,又由于动能和功都是标量,无方向性,无论是直线运动还是曲线运动,计算都会特别方便。
当题给条件涉及力的位移,而不涉及加速度和时间时,用动能定理求解比用牛顿第二定律和运动学公式求解简便用动能定理还能解决一些用牛顿第二定律和运动学公式难以求解的问题,如变力做功过程、曲线运动等。
[例8]电动机通过一绳吊起一质量为8kg的物体,绳的拉力不能超过120N,电动机的功率不能超过1200W,要将此物体由静止起用最快的方式将物体吊高90m(已知此物体在被吊高接近90m时已开始以最大速度上升)所需时间为多少?[总结]机车的两种特殊运动,在运用其规律的同时,还要根据题目的实际要求具体问题具体分析,不能生搬硬套。