2024考研数学常必背公式汇总
- 格式:docx
- 大小:37.48 KB
- 文档页数:4
全国硕士研究生统一入学考试数学公式大全导数公式:基本积分表:三角函数的有理式积分:ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x Cx dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , 一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x xxx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xxx x x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+= ·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。
考研数学需要识记的基本公式高教考研整理了考研数学中不需要理解而直接应用的全部公式如下,除此以外,其它涉及到的公式都需要依赖于理解和日常的题目训练来达到熟练的状态,如果达不到,只能说明你的理解或者题目的训练量存在问题,请重新检视复习安排!经常用到的初等数学公式(3),a c a a c c b d b b d d+<<<+设则(4)非负数的算术平均值不小于其几何平均值,即12323n a a a a a b a b c n++++++≥≥≥4.绝对值不等式1)2)3)a b a ba b a ba b a b+≤+-≤+-≥-(6)m ma a -=8.对数log ,(0,1,0)a N a a N >≠>(1)对数恒等式log ,a N lnNN a N e ==更常用(2)log ()log log a a a MN M N=+12312)11(1)11n n n a a q a q n S q q--==--前项和(3)常用的几种数列的和1)1123(1)2n n n ++++=+ 2)22221123(1)(21)6n n n n ++++=++ 3245(平行四边形sin S bh ab ϕ==(2)梯形S=中位线X 高21122rl r θ=(3)扇形S=2.旋转体(1)圆柱设R ……底圆半径,H……柱高,则1)=2S RHπ侧侧面积2)=2()R H R π+全面积S 11平面三角1.三角函数间的关系(1)sin csc 1a a ==(4)cos cos 2sin sin 22a a a βββ+--=-[]1(5)sin cos sin()sin()2a a a βββ=++-[][][]1(6)cos cos cos()cos()21(7)cos sin sin()sin()21(8)sin sin cos()cos()2a a a a a a a a a βββββββββ=++-=+--=+--4.边角关系(1)正弦定理2,sin sin sin a b c R R A B C===为外接圆半径(2)余弦定理2222222222cos 2cos 2cos a b c bc Ab c a ca Bc a b ab C=+-=+-=+-5.反三角函数恒等式22(1)arcsin arcsin arcsin(11)x y x y y x ±=+±-()()()()2222(1)arcsin arcsinarcsin 11(2)arccos arccos arccos 11(3)arctan arctan arctan 1(4)arcsin arccos 2(5)arctan cot 2m x y x y y x x y xy x y x y x y xy x x x arc x ππ±+±-±=--⎛⎫±±= ⎪⎝⎭+=+= 三角函数的有理式积分2222212sin ,cos ,,1121u u x du x x u tg dx u u u -====+++倍角公式222232sin 22sin cos cos 22cos 112sin cos sin sin 33sin 4sin 122a a aa a a a aa a actg a ctg a ctga==-=-=-=--=高等数学导数与微分的计算用公式求导数分为三步:第一步按导数四则运算法则展开;第二步计算导数(注意,导数基本公式中没有的,一律按复合函数求导数处理);第三步整理化简。
考研数学常用公式速记技巧数学作为考研的一门必考科目,对于大多数考生来说是个挑战。
其中,熟练记忆和灵活运用数学公式是解决数学题目的关键。
本文将介绍一些常用的数学公式速记技巧,帮助考生更好地备战考研数学。
一、代数与方程公式速记1. 二次方程求根公式对于形如ax^2+bx+c=0的二次方程,求根公式为:x=\frac{-b\pm\sqrt{b^2 - 4ac}}{2a}2. 度量衡单位转换公式常见的长度单位转换公式:1米(m)= 100厘米(cm)= 1000毫米(mm)常见的重量单位转换公式:1克(g)= 1000毫克(mg)= 1000000微克(μg)3. 三角函数公式常用的三角函数公式有:正弦定理:\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}余弦定理:a^2 = b^2 + c^2 - 2bc\cos A正切公式:\tan A = \frac{\sin A}{\cos A}二、微积分公式速记1. 导数公式基本函数的导数公式:常数函数:(k)' = 0幂函数:(x^n)' = nx^{n-1}指数函数:(e^x)' = e^x对数函数:(\ln x)' = \frac{1}{x}2. 积分公式基本函数的积分公式:幂函数:\int x^n \ dx = \frac{x^{n+1}}{n+1} + C (其中C为常数)指数函数:\int e^x \ dx = e^x + C对数函数:\int \frac{1}{x} \ dx = \ln |x| + C三、概率与统计公式速记1. 概率公式事件的加法公式:P(A \cup B) = P(A) + P(B) - P(A \cap B)事件的乘法公式:P(A \cap B) = P(A) \cdot P(B|A)2. 统计学公式样本均值公式:\bar{x} = \frac{1}{n}\sum_{i=1}^n x_i样本方差公式:s^2 = \frac{1}{n-1}\sum_{i=1}^n (x_i -\bar{x})^2标准差公式:s = \sqrt{s^2}四、线性代数公式速记1. 矩阵运算公式矩阵相加:A + B = B + A矩阵相乘:AB \neq BA (一般情况下)2. 向量公式向量点乘:\mathbf{A} \cdot \mathbf{B} =|\mathbf{A}||\mathbf{B}|\cos \theta向量叉乘:\mathbf{A} \times \mathbf{B} =|\mathbf{A}||\mathbf{B}|\sin \theta \mathbf{n}通过掌握这些常用的数学公式及其速记技巧,考生可以在考试中迅速回忆起相关公式并应用于解题,提高解题效率。
考研数学常见定理速记口诀数学是考研考试中必考的科目之一,在数学考试中,掌握和记忆数学定理是提高解题效率和答题准确性的关键。
为了帮助考生更好地备考和记忆常见数学定理,以下是一些常见数学定理的速记口诀,希望能对考生们有所帮助。
一、数列相关定理1. 等差数列的前 n 项和:差乘商,除以二,2. 等差数列通项公式:首项加等比,乘以项数减 1,3. 等比数列的前 n 项和:首项减末项,乘以公比除以 1 减公比,4. 等比数列通项公式:首项乘等比,乘以公比的 n 减 1 次方。
二、集合相关定理1. 全集的补集是空集,空集的补集是全集,2. 交换率、结合率都是集合运算法则,3. 并集运算满足交换、结合和分配律,4. 交集运算满足交换、结合和分配律。
三、导数相关定理1. 基本函数导数会,求导法则要牢记,2. 一切理论解析,函数变量要贴身。
四、概率相关定理1. 加法规则一定记,互斥模式别忘,2. 乘法规则切记住,独立事件要相乘,3. 做题中来了全集,概率一定是 1。
五、三角函数相关定理1. 正弦的定理好记牢,比与边成比例,2. 余弦的定理知根据,边与边构造函数,3. 正切的定理对角度,弧的比值好记得。
六、极限相关定理1. 夹逼定理用好用,无穷小量不放过,2. 极限运算确定性,变量逼近难不倒。
以上口诀只是对常见数学定理的简要概括,希望考生们能够通过这些口诀记忆和掌握数学定理,提高解题的速度和准确性。
然而,仅仅依靠速记口诀可能不足以完全理解和掌握定理的应用,考生们还需要在备考过程中深入学习和练习,加强对各个定理的理解和应用能力。
最后,祝愿所有考生在考研数学考试中取得优异成绩!加油!。
[基础知识]…++)因式分解公式:-=(-b)(+b+b+…+…+-)b+…+为正偶数时))-=(+b)(-b+( n为正偶数时b+……-+)为正奇数时))+=(+b)(-b+( n为正奇数时二项式定理:=不等式:(1)a,b位实数,则○1;○2;○3≤.(2),…,>0, 则○1≥取整函数:x-1x-1<<[x]x三角函数和差化积;积化和差(7):sinα+sinβ=2(sin)(cos) sinαcosβ=(sin+cos)sinα-sinβ=2(cos)(sin) cosαcosβ=(cos+cos)cosα+cosβ=2(cos)(co) sinαsinβ=-(cos-cos)cosα-cosβ=2(sin)(sin)重要三角公式1+=1+==-=1-2=2-1=tan===±cot===万能公式:,则,函数图像sec(x) csc(x) cot(x) arcsin(x) arccos(x)arctan(x) arc cot(x)[极限]定义函数极限x →• :(6)=A : ∀ >0,∃ >0,当0<|x - x 0|< 时,恒有|f (x)-A |< . =A : ∀ >0,∃ >0,当0<(x- x 0)< 时,恒有|f (x)-A |< . =A : ∀ >0,∃ >0,当0<( x 0- x )< 时,恒有|f (x)-A |< . =A : ∀ >0, ∃X>0,当|x |>X 时,恒有|f (x)-A |< .=A : ∀ >0, ∃X>0,当x>X 时,恒有|f (x)-A|(x)-A|<< .=A: ∀ >0, ∃X>0,当-x>X时,恒有|f (x)-A |<.数列极限n →∞ :=A =A: ∀ : ∀ >0,>0, ∃N>0,当n>N 时,恒有|X n -A|< .性质 (1)唯一性:设=A ,=B ,则A=B. (2)局部有界性:若存在,则存在 >0,使f(x)在U={x |0<|x-x 0|< 内有界.(3)局部保号性:○1(脱帽)若=A>0,则存在x 0的一个去心邻域,在该邻域内恒有f(x)>0.○○2(戴帽戴帽))若存在x 0的一个去心邻域,在该邻域内f(x)>(≥)0,且=A(∃),则A ≥0.计算极限四则运算:设=A(A(∃∃),=B(=B(∃∃),则○1=A±B.○2=A =A⋅⋅B.○3= (B (B≠0).≠0). 等价无穷小(9)ln (1+x ),, (a>0) ,,(洛必达法则:“”型:○1=0,=0; ○2f(x),g(x)在x 0的某去心领域内可导,且g’(x)≠0 ○3=A 或为∞. 则“”型:○1=∞,=∞; ○2f(x),g(x)在x 0的某去心领域内可导,且g’(x)≠0 ○3=A 或为∞. 则[注]洛必达法则能不能用,用了再说. 数列极限存在准则:1.1. 单调有界数列必收敛2.夹逼准则:如果函数f(x),g(x)f(x),g(x)及及h(x)h(x)满足下列条件:满足下列条件:满足下列条件: (1)g(x)≤f(x)≤h(x); (2)limg(x)=A,limh(x)=A, 则limf(x)存在,且limf(x)=A .两种典型放缩:○1max{}≤≤n∙max{}; ○○2n∙min{}≤≤n∙max{}选取的依据是谁在和式中去决定性作用选取的依据是谁在和式中去决定性作用海涅定理(归结原则):设f(x)f(x)在在 (内有定义,则内有定义,则=A 存在⟺对任何以为极限的数列{}(≠),极限=A存在. 连续的两种定义: (1)(2)间断点:第一类:可去、跳跃;第二类:无穷、振荡第一类:可去、跳跃;第二类:无穷、振荡[一元微分学]定义导数定义式:f’ (x0)=|x=x0==微分定义式:若y=A +o(),则dy=A.可导的判别:(1)(1)必要条件必要条件必要条件::若函数f(x)f(x)在点在点处可导处可导,,则f(x)在点处连续处连续. .(2)(2)充要条件充要条件充要条件::存在存在,都存在,且=.[注]通俗来说就是连续函数不一定可导;函数在一点可导且在该点连续,但在这点的某个邻域未必连续;函数可导,则其导函数可能连续,也可能震荡间断点的某个邻域未必连续;函数可导,则其导函数可能连续,也可能震荡间断. . 可微的判别:=0=0,则,则f(x)f(x)可微。
高等数学公式篇导数公式: 基本积分表:C kx dx k +=⎰)1a (,C x 1a 1dx x 1a a-≠++=+⎰C x ln dx x 1+=⎰ C e dx e xx +=⎰C a ln a dx a xx+=⎰(1a ,0a ≠>) C x cos xdx sin +-=⎰C x sin dx x cos +=⎰ C x arctan dx x 112+=+⎰C axarcsin x a dx C x a xa ln a 21x a dx C a x ax ln a 21a x dx C a xarctan a 1x a dx Cx cot x csc ln xdx csc C x tan x sec ln xdx sec Cx sin ln xdx cot C x cos ln xdx tan 22222222+=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==C)a x x ln(a x dx C shx chxdx C chx shxdx Ca ln a dx a Cx csc xdx cot x csc C x sec dx x tan x sec Cx cot xdx csc x sin dx C x tan xdx sec x cos dx 2222x x2222aln x 1)x (log a ln a )a (x cot x csc )x (csc x tan x sec )x (sec x csc )x (cot x sec )x (tan x cos )x (sin aX )X (0)C (a x x 221a a ='='⋅-='⋅='-='='='='='-2222xx x 11)x cot arc (x 11)x (arctan x 11)x (arccos x 11)x (arcsin x 1)x (ln e )e (x sin )x (cos +-='+='--='-='='='-='C x sin d x cos c ln B Ax dx x sin d x cos c xsin b x cos a +++=++⎰其中,)x sin d x cos c (B )x sin d x cos c (A x sin b x cos a +++=+ a Bd Ac =+B ,A b Bc Ad ⇒=-三角函数的有理式积分:2222u1du2dx 2x tan u u 1u 1x cos u 1u 2x sin +==+-=+=, , , 一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xxx x x x·和差角公式: ·和差化积公式:·倍角公式:·半角公式:α-α=αα+=α-α+±=αα+α=αα-=α+α-±=αα+±=αα-±=αcos 1sin sin cos 1cos 1cos 12cot cos 1sin sin cos 1cos 1cos 12tan2cos 12cos 2cos 12sin ·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+= ·反三角函数性质:x cot arc 2x arctan x arccos 2x arcsin -π=-π= 高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+α±ββ⋅α=β±αβ⋅αβ±α=β±αβαβα=β±αβα±βα=β±αcot cot 1cot cot )cot(tan tan 1tan tan )tan(sin sin cos cos )cos(sin cos cos sin )sin( α-α-α=αα-α=αα-α=α2333tan 31tan tan 33tan cos 3cos 43cos sin 4sin 33sin α-α=αα-α=αα-α=α-=-α=ααα=α222222tan 1tan 22tan cot 21cot 2cot sin cos sin 211cos 22cos cos sin 22sin中值定理与导数应用:拉格朗日中值定理。
考研数学常用公式总结考研数学是考研中的一门重要科目,它的题目种类繁多,考察内容广泛。
在备考过程中,熟练掌握和灵活运用常用公式是非常关键的。
本文将就考研数学中常用的公式进行总结与归纳,以帮助考生更好地备考。
1、微积分公式微积分是考研数学中的重点内容,以下是一些常用的微积分公式:(1)导数公式:- 基本导数公式:a. 常数函数:$[k]'=0$;b. 幂函数:$[x^n]'=nx^{n-1}$;c. 指数函数:$[a^x]'=a^x\ln a$;d. 对数函数:$[\log_a x]'=\frac{1}{x\ln a}$;e. 三角函数:$[\sin x]'=\cos x$,$[\cos x]'=-\sin x$,$[\tan x]'=\sec^2 x$。
- 运算法则:a. 基本运算:$[u \pm v]'=u' \pm v'$;b. 乘法法则:$[uv]'=u'v+uv'$;c. 除法法则:$\left[\frac{u}{v}\right]'=\frac{u'v-uv'}{v^2}$;d. 复合函数:$[f(g(x))]'=f'(g(x))g'(x)$。
(2)积分公式:- 基本积分公式:a. 幂函数:$\int x^n\mathrm{d}x=\frac{x^{n+1}}{n+1}+C$;b. 指数函数:$\int a^x\mathrm{d}x=\frac{a^x}{\ln a}+C$;c. 对数函数:$\int \frac{1}{x\ln a}\mathrm{d}x=\log_a(\ln a)+C$;d. 三角函数:$\int \sin x\mathrm{d}x=-\cos x+C$,$\int \cosx\mathrm{d}x=\sin x+C$。
数学知识点背诵高数部分1. 导数公式22(tan )sec (cot )csc (sec )sec tan (csc )csc cot x xx xx x x x x x'='=-'=⋅'=-⋅22(arcsin )(arccos )1(arctan )11(cot )1x x x x arc x x '='='=+'=-+2. 积分公式2222tan ln cos cot ln sin sec ln sec tan csc ln csc cot sec tan cos csc cot sin sec tan sec csc cot csc xdx x C xdx x Cxdx x x C xdx x x Cdx xdx x C x dx xdx x Cx x xdx x Cx xdx x C=-+=+=++=-+==+==-+⋅=+⋅=-+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰2222221arctan 1ln 21ln 2ln(arcsin dx xC a x a a dx x aC x a a x a dx a xC a x a a x x CxC a=++-=+-++=+--=+=+⎰⎰⎰222ln(2ln 2arcsin 2a x Ca x C a x Ca=+=-++=++22201sin cos nn n n n I xdx xdx I nππ--===⎰⎰3. 和差化积sin sin 2sincos22sin sin 2cos sin22cos cos 2cos cos22cos cos 2sin sin22αβαβαβαβαβαβαβαβαβαβαβαβ+-+=+--=+-+=+--=-4. 积化和差[][][][]1sin cos sin()sin()21cos sin sin()sin()21cos cos cos()cos()21sin sin cos()cos()2αβαβαβαβαβαβαβαβαβαβαβαβ=++-=+--=++-=-+-- 5. 万能公式22tan2sin 1tan 2ααα=+ 221t a n2c o s 1t a n 2ααα-=+ 22t a n2t a n 1t a n2ααα=- 6. 半角公式221cos sin 221cos cos 22αααα-=+= 21c o s t a n 21c o s s i n 1c o s t a n 21c o s s i nαααααααα-=+-==+7. 三倍角公式3332sin 33sin 4sin cos34cos 3cos 3tan tan tan 313tan αααααααααα=-=--=- 8. 三角函数关系图sin costan 1cot sec csc↔↔↔⊗↔↔↔↔↔↔⊗⊗↔↔↔..1.a b c ⊗说明:六边形每个顶点等于两相邻顶点乘积三条对角线上,两端点相乘等于标记的三角形,上面的平方和等于下面的平方9. 等价无穷小33333333222201sin ()61arcsin ()61tan ()31arctan ()31ln(1)()21cos 1()2x x x x o x x x x o x x x x o x x x x o x x x x o x x x o x →=-+=++=++=-++=-+=-+时2011ln 11cos 2(1)1x x x e x a x a x xx x αα→---+-时10. 华里士公式等华里士公式:2200131,222sin cos 132,123n nn n n n n xdx xdx n n n n n πππ--⎧⋅⋅⎪⎪-==⎨--⎪⋅⎪-⎩⎰⎰为正的偶数为大于的奇数20sin 2sin nn xdx xdx ππ=⎰⎰2002c o s ,c o s 0,n nxdx n xdx n ππ⎧⎪=⎨⎪⎩⎰⎰为偶数为奇数2220004sin ,sin =cos 0,n n nxdx n xdx xdx n πππ⎧⎪=⎨⎪⎩⎰⎰⎰为偶数为奇数()()220sin cos f x dx f x dx ππ=⎰⎰ ()()00sin cos f x dx f x dx ππ≠⎰⎰()()()20sin sin sin 2xf x dx f x dx f x dx πππππ==⎰⎰⎰11. 函数展开为幂级数20201+()!2!1(1)1(1)(11)1n nxn n n n nn x x x e x x n n x x x x x x ∞=∞===++++-∞<<+∞=-=-+-+-+-<<+∑∑!20234111213572122011(11)1ln(1)(1)(1)(11)234sin (1)(1)()(21)!3!5!7!(21)!cos (1)1(2)!2!n n n n nn n n n n nnn n nn x x x x x x x x x x x x x x n nx x x x x x x x n n x x x n ∞=∞--=++∞=∞===+++++-<<-+=-=-+-++-+-<≤=-=-+-++-+-∞<<+∞++=-=-+∑∑∑∑()(][]4622(1)()4!6!(2)!(1)(1)(1)(1)12!!(1-1,1;10-1,1;0-1,1)nn nx x x x n n x x x x n αααααααααα-++-+-∞<<+∞---++=+++++≤--<<>时,收敛域为时,收敛域为时,收敛域为12. 幂级数的和函数1211121121212112220(1)11(1)1(1)(1)(1)(1)(1)1(1)1k nn k n n n n n n n n n n n n n n n n n n cx cx x x x nx x x x x x nx x nx x x x nx x nx x x n n x x x x ∞=∞∞-==∞∞-==∞∞+-==∞∞∞-====<-''⎛⎫⎛⎫===< ⎪ ⎪--⎝⎭⎝⎭==<-==<-''''''⎛⎫⎛⎫⎛⎫-=== ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭∑∑∑∑∑∑∑∑∑∑3110001112(1)(1)1ln(1)(11)1n x x x n n n n n x x x t dt t dt dt x x n t ∞∞∞--====<-⎛⎫====---≤< ⎪-⎝⎭∑∑∑⎰⎰⎰13. 狄利克雷收敛定理设()f x 是以2l 为周期的可积函数,如果在[],l l -上()f x 满足: 1)连续或只有有限个第一类间断点; 2)只有有限个极值点;则()f x 的傅里叶级数处处收敛,记其和函数为()S x ,则()01cos sin 2n n n a n x n x S x a b l l ππ∞=⎛⎫=++ ⎪⎝⎭∑,且()()()()()(),00,200,2f x x f x f x S x x f l f l x ⎧⎪⎪-++⎪=⎨⎪⎪-++-⎪⎩为连续点为第一类间断点为端点 14. 周期为2l 的周期函数的傅里叶级数设周期为2l 的周期函数()f x 满足狄利克雷收敛定理的条件,则它的傅里叶级数为()()01cos sin 2n n n a n x n x f x S x a b l l ππ∞=⎛⎫=++ ⎪⎝⎭∑其中系数n a 和n b 分别为:()()1cos (0,1,2,)1sin (1,2,3,)l n l l n l n x a f x dx n l l n x b f x dx n l l ππ--⎧==⎪⎪⎨⎪==⎪⎩⎰⎰ (1)将普通周期函数()f x 在[],l l -上展开为傅里叶级数: 展开系数为()()()01,1cos ,(1,2,3,)1sin ,(1,2,3,)l l l n l l n la f x dx l n x a f x dx n l l n xb f x dx n l l ππ---⎧=⎪⎪⎪==⎨⎪⎪==⎪⎩⎰⎰⎰ (2)将奇偶周期函数()f x 在[],l l -上展开为傅里叶级数:当()f x 为奇函数时,展开为正弦级数()000,0,(1,2,3,)2sin ,(1,2,3,)n l n a a n n x b f x dx n l l π⎧⎪=⎪==⎨⎪⎪==⎩⎰当()f x 为偶函数时,展开为余弦级数()()0002,2cos ,(1,2,3,)0,(1,2,3,)l l nn a f x dx l n x a f x dx n l l b n π⎧=⎪⎪⎪==⎨⎪==⎪⎪⎩⎰⎰ (3)将非对称区间[]0,l 上的函数()f x 展开为正弦级数或余弦级数:将[]0,l 上的函数()f x ,根据要求作奇延拓(若要求展开为正弦级数)或偶延拓(若要求展开为余弦函数),得到[],l l -上的奇函数或偶函数,再根据(2)中的方式展开。
考研数学考前公式
考研数学考试的内容主要涉及高等数学、线性代数和概率论与数理统计三大部分,每个部分包含的内容和公式如下:
高等数学部分:
1. 极限公式:
对数函数极限:lim(log(1+x)/x)=1,当x趋于0时
三角函数极限:lim(sin(x)/x)=1,当x趋于0时;lim((1-cos(x))/x)=0,当x趋于0时
2. 牛顿-莱布尼茨公式:∫abf(x)dx=F(b)-F(a),其中F(x)是f(x)的一个原函数
3. 泰勒公式:f(x)=f(a)+f'(a)(x-a)+f''(a)(x-a)^2/2!+...+f^n(a)(x-
a)^n/n!+Rn(x),其中,Rn(x)是余项,有Lagrange余项和Cauchy余项两种形式。
线性代数部分:
1. 向量公式:
向量的模:a=√(x1^2+x2^2+...+xn^2)
向量的点积:a·b=x1y1+x2y2+...+xnyn
向量的叉积:a×b=(y1z2-y2z1)i-(x1z2-x2z1)j+(x1y2-x2y1)k
2. 矩阵公式:
矩阵的乘积:C=AB,其中Cij=∑(k=1到n)AikBkj
矩阵的逆:若A是可逆矩阵,则A的逆矩阵A^-1满足AA^-1=A^-
1A=E
矩阵的秩:矩阵的秩是指它的行与列的最大线性无关组数,也就是矩阵中含有的一个最大的非零子式的阶数。
概率论与数理统计部分:
这部分的公式涉及的内容较多,可以查阅考研数学大纲或者相关教辅书来获取更全面的信息。
以上信息仅供参考,如有需要,建议查阅考研数学大纲或咨询专业教师。
考研数学必背公式数学是考研的一门重要科目,无论是理工科还是文科,数学都是考研必考科目之一、在备考期间,掌握并背诵一些重要的数学公式是非常重要的,因为公式是解题的基础,可以帮助我们快速解决问题。
下面是一些考研数学中常见的重要公式,供大家背诵和复习使用:1.三角函数公式:sin(x ± y) = sinxcosy ± cosxsinycos(x ± y) = cosxcosy ∓ sinxsinytan(x ± y) = (tanx ± tany) / (1 ∓ tanxtany)sin²x +cos²x = 11 + tan²x = sec²x1 + cot²x = csc²x2.指数和对数公式:ab × ac = ab+c(ab)c = abca⁰=1,a¹=aaⁿ×aⁿ=aⁿ⁺ⁿ(a/b)ⁿ=aⁿ/bⁿalogba = alogba + logbc = logba*clogba - logbc = logba/c3.三角函数的基本关系:sin(π/2 - x) = cosxcos(π/2 - x) = sinxtan(π/2 - x) = cotxcot(π/2 - x) = tanxsin²x + cos²x = 1secx = 1/cosxcscx = 1/sinxcotx = 1/tanx4.高中数学知识:三角函数的定义:sinx = y/r, cosx = x/r, tanx = y/x, cotx = x/y, secx = r/x, cscx = r/ysin(-x) = -sinx, cos(-x) = cosx, tan(-x) = -tanxsin(π + x) = -sinx, cos(π + x) = -cosx, tan(π + x) = tanx sin(2π - x) = sinx, cos(2π - x) = cosx, tan(2π - x) = tanxsin(π/2 + x) = cosx, cos(π/2 + x) = -sinx, tan(π/2 + x) = -cotxsin(3π/2 - x) = -cosx, cos(3π/2 - x) = sinx, tan(3π/2 - x) = -cotx5.极限公式:lim(x→0) (sinx / x) = 1lim(x→0) (1 - cosx) / x = 0lim(x→∞) (1 + 1/x)^x = elim(x→0) (a^x - 1) / x = ln(a)6.求导公式:(d/dx) (c) = 0(d/dx) (x^n) = nx^(n-1)(d/dx) (sinx) = cosx(d/dx) (cosx) = -sinx(d/dx) (tanx) = sec²x(d/dx) (cotx) = -csc²x(d/dx) (secx) = secxtanx(d/dx) (cscx) = -cscxcotx(d/dx) (e^x) = e^x(d/dx) (lnx) = 1/x7.积分公式:∫(k)dx = kx + C∫(x^n)dx = (x^(n+1)) / (n+1) + C (n ≠ -1)∫(cosx)dx = sinx + C∫(sinx)dx = -cosx + C∫(sec²x)dx = tanx + C∫(csc²x)dx = -cotx + C∫(secx * tanx)dx = secx + C∫(cscx * cotx)dx = -cscx + C∫(e^x)dx = e^x + C∫(1/x)dx = ln,x, + C。
考研数学公式大全数学是考研的核心科目之一,而掌握必要的数学公式则是取得好成绩的关键。
以下是一份考研数学公式大全,涵盖了高等数学、线性代数和概率论与数理统计中的重要公式,希望能对备考研究生入学考试的同学有所帮助。
一、高等数学1、求导法则本文1)链式法则:f(u)f'(u)=f'(u)du本文2)乘积法则:f(u)g(u)=f'(u)g(u)+f(u)g'(u)本文3)指数法则:f(u)^n=nu'f(u)/(n-1)!2、求极值本文1)极值条件:f'(x)=0本文2)极值定理:f(x)在x=a处取得极值,则f'(a)=03、积分公式本文1)牛顿-莱布尼茨公式:∫f(x)dx=F(b)-F(a),其中F'(x)=f(x)本文2)微分定理:d/dx∫f(x)dx=f(x)本文3)积分中值定理:若f(x)在[a,b]上连续,则至少存在一点c∈[a,b],使得∫f(x)dx=f(c)(b-a)4、不定积分公式本文1)幂函数积分:∫x^n dx=(n+1)/n+1 x^(n+1)/n+1+C本文2)三角函数积分:∫sinx dx=cosx+C,∫cosx dx=-sinx+C 5、定积分公式本文1)矩形法:若a<=x<=b,a<=y<=b,则∫(a,b)(x^2+y^2)dx=∫(a,b)x^2 dx+∫(a,b)y^2 dx=(b-a)(x^2+y^2)/2本文2)梯形法:若a<=x<=b,a<=y<=b,则∫(a,b)(x^2+y^2)dx=∫(a,b)x^2 dx+∫(a,b)y^2 dx=(b-a)(x^2+[by]+[ax])/3二、线性代数6、行列式公式本文1)行列式展开式:D=a11A11+a12A12+...+an1An1,其中Aij为行列式中第i行第j列的代数余子式本文2)范德蒙行列式:V=(∏i=1n[(x-a)(i-1)]^(n-i)) / (∏i=1n[(x-a)(i-1)]),其中ai为行列式中第i行第i列的元素7、矩阵公式本文1)矩阵乘法:C=AB,其中Cij=∑AikBkj,k为矩阵乘法的维数本文2)逆矩阵:A^-1=(1/∣A∣)A,其中∣A∣为矩阵A的行列式值,A为矩阵A的伴随矩阵8、向量公式本文1)向量内积:〈a,b〉=a1b1+a2b2+...1、求导法则本文1)链式法则:若f是一个包含x和函数u=u(x),则f' = f'[u(x)] * u'(x)。
考研数学公式总结考研数学是考研数学专业课中的重要一科,掌握好数学公式是考研数学的关键。
下面是考研数学常用的一些公式总结。
1.代数与数论1.1二项式定理:(a + b)^n = C(n,0)a^n + C(n,1)a^(n-1)b + C(n,2)a^(n-2)b^2 +...+ C(n,n-1)ab^(n-1) + C(n,n)b^n1.2二次方程求根公式:x = (-b ± sqrt(b^2 - 4ac)) / 2a1.3勾股定理:a^2+b^2=c^21.4平方差公式:(a + b)^2 = a^2 + 2ab + b^2(a - b)^2 = a^2 - 2ab + b^21.5一元二次不等式求解方法:ax^2 + bx + c > 0 或 < 0当a>0,则解集为(-∞,x1)∪(x2,+∞)当a<0,则解集为(x1,x2)1.6等差数列求和公式:S = n(a1 + an) / 21.7等比数列求和公式:S = (a1 - an*q) / (1 - q),当,q, < 12.数学分析2.1极限相关公式:x,<1时,1/(1-x)的幂级数展开为1+x+x^2+x^3+..sin(x) 的幂级数展开为 x - x^3/3! + x^5/5! - ...cos(x) 的幂级数展开为 1 - x^2/2! + x^4/4! - ...e^x的幂级数展开为1+x+x^2/2!+x^3/3!+...2.2微积分相关公式:微分公式:(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)积分公式:∫(f(x) + g(x))dx = ∫f(x)dx + ∫g(x)dx 2.3泰勒展开公式:函数f(x)在x=a处的泰勒展开公式:f(x)=f(a)+f'(a)(x-a)+f''(a)(x-a)^2/2!+...+f^n(a)(x-a)^n/n!+R_n3.概率论与数理统计3.1排列组合:排列公式:P(n,m)=n!/(n-m)!组合公式:C(n,m)=n!/[(n-m)!*m!]3.2二项分布:P(X=k)=C(n,k)*p^k*q^(n-k),其中q=1-p3.3正态分布:P(a < X < b) = ∫[a, b] (1/sqrt(2πσ^2)) * exp(-(x-μ)^2 / (2σ^2)) dx3.4样本均值:样本均值的期望:E(¯X)=μ样本均值的方差:Var(¯X) = σ^2 / n3.5方差:总体方差的估计量:s^2 = Σ(xi - x_bar)^2 / (n - 1)以上是考研数学中较为常见的一些公式总结,这些公式涵盖了代数与数论、数学分析、概率论与数理统计等知识点。
考研数学公式(全) ·平方关系:sin^2(α)+cos^2(α)=1tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)·积的关系:sinα=tanα*cosαcosα=cotα*sinαtanα=sinα*secαcotα=cosα*cscαsecα=tanα*cscαcscα=secα*cotα·倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1直角三角形ABC中,角A的正弦值就等于角A的对边比斜边,余弦等于角A的邻边比斜边正切等于对边比邻边,·三角函数恒等变形公式·两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)·三角和的三角函数:sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tan α)·辅助角公式:Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)tant=B/AAsinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B·倍角公式:sin(2α)=2sinα·cosα=2/(tanα+cotα)cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan(2α)=2tanα/[1-tan^2(α)]·三倍角公式:sin(3α)=3sinα-4sin^3(α)cos(3α)=4cos^3(α)-3cosα·半角公式:sin(α/2)=±√((1-cosα)/2)cos(α/2)=±√((1+cosα)/2)tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα·降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=covers(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)]·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)] cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)] cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)] sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2] cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2] cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]·推导公式tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos^2α1-cos2α=2sin^2α1+sinα=(sinα/2+cosα/2)^2·其他:sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0 cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0三角函数的角度换算[编辑本段]公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)部分高等内容[编辑本段]·高等代数中三角函数的指数表示(由泰勒级数易得):sinx=[e^(ix)-e^(-ix)]/(2i) cosx=[e^(ix)+e^(-ix)]/2tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(-ix)]泰勒展开有无穷级数,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+…此时三角函数定义域已推广至整个复数集。
考研数学常用公式整理与记忆方法考研数学是许多考生备战考研的一大难点,其中最重要的就是掌握数学公式。
本文将对考研数学常用公式进行整理,并分享记忆方法,帮助考生们更好地掌握这些公式。
一、线性代数1. 行列式公式:- 二阶行列式:$\begin{vmatrix}a&b\\c&d\end{vmatrix} = ad - bc$- 三阶行列式:$\begin{vmatrix}a&b&c\\d&e&f\\g&h&i\end{vmatrix} = aei + bfg + cdh - ceg - bdi - afh$2. 矩阵公式:- 矩阵乘法:$AB = [a_{ij}]_{m×n} \cdot [b_{ij}]_{n×p} = [c_{ij}]_{m×p}$,其中$c_{ij} = \sum_{k=1}^{n} a_{ik}b_{kj}$3. 特征值与特征向量:- 矩阵特征方程:$|A - λI| = 0$,其中$A$为矩阵,$λ$为特征值,$I$为单位矩阵4. 向量与空间:- 内积:$\vec{a} · \vec{b} = |\vec{a}| |\vec{b}| \cosθ$,其中$\vec{a}$和$\vec{b}$为向量,$θ$为夹角- 外积:$\vec{a} ×\vec{b} = |\vec{a}| |\vec{b}| \sinθ \vec{n}$,其中$\vec{n}$为法向量二、高等数学1. 极限公式:- 常用极限:$\lim_{x→∞} (1 + \frac{1}{x})^x = e$,$\lim_{x→0} \frac{\sin x}{x} = 1$2. 导数与微分:- 导数定义:$f'(x) = \lim_{\Delta x→0} \frac{f(x+\Delta x) -f(x)}{\Delta x}$- 常见导数:$(x^n)' = nx^{n-1}$,$(e^x)' = e^x$,$(\ln x)' = \frac{1}{x}$3. 积分公式:- 不定积分:$\int f(x) dx = F(x) + C$,其中$F'(x) = f(x)$- 定积分:$\int_a^b f(x) dx = F(b) - F(a)$,其中$F'(x) = f(x)$4. 泰勒展开:- 函数$f(x)$在$x=a$处的$n$次泰勒展开式:$f(x) = f(a) +f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \cdots + \frac{f^{(n)}(a)}{n!}(x-a)^n$三、概率统计1. 概率公式:- 事件发生的概率:$P(A) = \frac{n(A)}{n(S)}$,其中$A$为事件,$n(A)$为事件$A$发生的次数,$n(S)$为样本空间的大小 - 条件概率:$P(A|B) = \frac{P(A∩B)}{P(B)}$,其中$A$与$B$为两个事件,$P(A∩B)$为事件$A$与事件$B$同时发生的概率2. 随机变量:- 离散型随机变量期望:$E(X) = \sum_{i} x_i P(X=x_i)$,其中$X$为随机变量,$x_i$为取值,$P(X=x_i)$为对应取值的概率 - 连续型随机变量期望:$E(X) = \int_{-\infty}^{\infty} xf(x) dx$,其中$X$为随机变量,$f(x)$为概率密度函数3. 分布定律:- 二项分布:$P(X=k) = C_n^k p^k (1-p)^{n-k}$,其中$X$为二项分布随机变量,$n$为试验次数,$p$为每次试验成功的概率 - 正态分布:$P(a ≤ X ≤ b) = \int_{a}^{b}\frac{1}{\sqrt{2π}\sigma} e^{-\frac{(x-μ)^2}{2σ^2}} dx$,其中$X$为正态分布随机变量,$μ$为均值,$σ$为标准差四、数学分析1. 一元函数极值:- 极值判定条件:若$f'(x_0) = 0$,且$f''(x_0)≠0$,则$f(x)$在$x=x_0$处取极值- 极值判定定理:若$f'(x_0) = 0$,且$f''(x)$在$x=x_0$的某一领域内恒为正(负),则$f(x)$在$x=x_0$处取极小(大)值2. 多元函数极值:- 极值判定条件:若所有一阶偏导数为0,且海森矩阵$H(x_0)$正定(负定),则$f(x)$在$x=x_0$处取极小(大)值以上仅为一部分考研数学常用公式,考生还需对更多公式进行系统学习与记忆。
考研数学公式总结考研数学是众多考生面临的一大挑战,而熟练掌握各种公式是取得好成绩的关键。
以下为大家总结了考研数学中一些重要的公式。
一、高等数学部分1、函数、极限与连续(1)极限的四则运算法则:若 lim f(x) = A,lim g(x) = B,则 lim f(x) ± g(x) = lim f(x) ± lim g(x) = A ± B;lim f(x) · g(x) = lim f(x) · lim g(x) = A · B;lim f(x) / g(x) = lim f(x) / lim g(x) = A / B (B ≠ 0)(2)两个重要极限:lim (sin x / x) = 1 (x → 0);lim (1 +1/x)^x = e (x → ∞)(3)无穷小量的性质:有限个无穷小量的和、差、积仍是无穷小量;无穷小量与有界量的乘积是无穷小量。
2、导数与微分(1)基本导数公式:(C)'= 0 (C 为常数);(x^n)'= nx^(n 1) ;(sin x)'= cos x ;(cos x)'= sin x ;(e^x)'= e^x ;(ln x)'= 1 / x ;(log_a x)'= 1 /(x ln a)(2)导数的四则运算法则:u(x) ± v(x)'= u'(x) ± v'(x) ;u(x) · v(x)'= u'(x) · v(x) + u(x) · v'(x) ;u(x) / v(x)'= u'(x) · v(x) u(x) · v'(x) / v(x)^2 (v(x) ≠ 0)(3)复合函数求导法则:设 y = fg(x),则 y' = f'g(x) · g'(x)(4)隐函数求导法则:方程 F(x, y) = 0 确定 y 是 x 的隐函数,两边对 x 求导,解出 y' 。
高等数学 考研公式大全导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin ududx x tg u u u x u u x +==+-=+=, , , ax x aa a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x Cx dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:·倍角公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x xxx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xxx x x x·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin ===·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。
考研数学基础知识整理这100个公式不敢上战场在备考考研数学过程中,数学公式是我们必须要熟练掌握的基础知识。
它们扎实的基础常常是我们在考试中做题的关键。
这篇文章将为大家整理100个考研数学公式,帮助大家复习和掌握这些重要的数学知识。
下面就让我们一起来了解这100个公式吧!1. 代数基础公式- 二项式定理:$(a+b)^n = \binom{n}{0}a^n b^0 + \binom{n}{1}a^{n-1} b^1 + \binom{n}{2}a^{n-2} b^2 + \cdots + \binom{n}{n}a^0 b^n$ - 解一元二次方程:$ax^2 + bx + c = 0, x = \frac{-b \pm \sqrt{b^2 -4ac}}{2a}$- 解三角方程:$a \sin x + b \cos x = c, x = \arccos\left(\frac{c}{\sqrt{a^2+b^2}}\right)$2. 几何基础公式- 直线方程:$Ax+By+C=0$- 点到直线的距离:$d = \frac{|Ax_0+By_0+C|}{\sqrt{A^2+B^2}}$ - 圆的面积:$S = \pi r^2$3. 微积分基础公式- 极限定义:$\lim_{x \to a} f(x) = L$- 导数定义:$f'(x) = \lim_{h \to 0} \frac{f(x+h)-f(x)}{h}$- 积分定义:$\int_a^b f(x)dx = \lim_{\Delta x_i \to 0} \sum_{i=1}^nf(x_i) \Delta x_i$- 常见导数公式:$\sin'(x) = \cos(x), \cos'(x) = -\sin(x), (e^x)' = e^x, (\ln x)' = \frac{1}{x}$4. 概率统计基础公式- 事件概率:$P(A) = \frac{{\text{事件}A\text{发生的次数}}}{{\text{总次数}}}$- 条件概率:$P(A|B) = \frac{P(A \cap B)}{P(B)}$- 期望定义:$E(X) = \sum_{i=1}^n x_i P(X=x_i)$5. 线性代数基础公式- 矩阵乘法:$C = AB, c_{ij} = \sum_{k=1}^n a_{ik} b_{kj}$- 线性方程组解法:$AX = B, X = A^{-1} B$- 特征值和特征向量:$A\mathbf{x} = \lambda \mathbf{x}$6. 复变函数基础公式- 欧拉公式:$e^{i\theta} = \cos \theta + i \sin \theta$- 复变函数导数:$f'(z) = \lim_{\Delta z \to 0} \frac{f(z+\Delta z) -f(z)}{\Delta z}$- 柯西-黎曼方程:$\frac{\partial u}{\partial x} = \frac{\partialv}{\partial y}, \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$7. 实分析基础公式- 极限定义:$\lim_{n \to \infty} a_n = a$- 无穷级数求和:$\sum_{n=1}^\infty a_n = \lim_{N \to \infty}\sum_{n=1}^N a_n$- 泰勒公式:$f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \cdots$通过复习和掌握这100个重要的数学公式,我们可以更好地解答考研数学中的各种题目。
2024考研数学常必背公式汇总
在准备2024考研数学的过程中,掌握一些常用的公式是非常重要的。
这些公式不仅可以帮助我们更快地解题,还能提高我们的答题准确性。
下
面是2024考研数学一、数学二、数学三需要背诵的常用公式的汇总:
一、基本数学公式:
1.平方差公式:
(a+b)^2 = a^2 + 2ab + b^2
(a-b)^2 = a^2 - 2ab+ b^2
2.二次方程的求根公式:
若ax^2+bx+c=0(a≠0),则x = (-b ± √(b^2-4ac))/2a
3.数列的通项公式:
递推公式:a(n+1)=a(n)+d
通项公式:a(n)=a(1)+(n-1)d
二、高等数学公式:
1.常用三角函数公式:
sin²θ + cos²θ = 1
tanθ = sinθ / cosθ
cotθ = cosθ / sinθ
2.常用反三角函数公式:
sin²θ + cos²θ = 1
tanθ = sinθ / cosθ
cotθ = cosθ / sinθ
3.常用指数函数公式:
a^m*a^n=a^(m+n)
(a^m)^n = a^(mn)
a^(-m)=1/a^m
4.常用对数函数公式:
log_a(m * n) = log_a(m) + log_a(n)
log_a(m^n) = n * log_a(m)
log_a(m/n) = log_a(m) - log_a(n)
log_a(1) = 0
5.常用复数公式:
i²=-1
复数的共轭:若z = a + bi,则z的共轭为a - bi
三、线性代数公式:
1.行列式的加减法:
A±B,=,A,±,B
2.行列式的乘法:
A*B,=,A,*,B
3.矩阵的逆:
若,A,≠0,则A存在逆矩阵A^(-1),且AA^(-1)=A^(-1)A=I
4.特征值与特征向量:
设A是n阶矩阵,若存在数λ和非零向量x,使得Ax=λx,则λ称为矩阵A的特征值,x称为λ对应的特征向量
5.向量的内积:
a ·
b = ,a,,b,cosθ
其中,a、b分别为向量,θ为a、b之间的夹角
四、概率与统计公式:
1.事件的概率公式:
对于一个随机事件A,其概率满足0≤P(A)≤1
2.加法公式:
P(A∪B)=P(A)+P(B)-P(A∩B)
3.乘法公式:
P(A∩B)=P(A)P(B,A)=P(B)P(A,B)
4.全概率公式:
P(A)=P(An)P(A,An)+P(A2)P(A,A2)+...+P(Am)P(A,Am)
其中,A1,A2,...,Am为一组互斥且全体之并为样本空间Ω的事件
5.贝叶斯公式:
P(A,B)=P(AnB)/P(B)=P(An)P(B,An)/[P(A1)P(B,A1)+P(A2)P(B,A2)+...+P(An)P(B,An)]
其中,A1,A2,...,An与前述全概率公式的条件相同。
以上是2024考研数学常必背公式的汇总,这些公式涵盖了数学一、数学二和数学三的各个分支,掌握这些公式将有助于我们在考试中更高效地解题。
拿出一些时间静心记忆这些公式,相信会给你的考研复习带来很大帮助。
无论是做选择题还是计算题,这些公式都将成为你的得力工具。