文都考研数学公式手册蔡子华
- 格式:doc
- 大小:228.00 KB
- 文档页数:15
目录一、高等数学0(一) 函数、极限、连续0(二)一元函数微分学4(三)一元函数积分学12(四)向量代数和空间解析几何20(五)多元函数微分学29(六)多元函数积分学36(七)无穷级数40(八)常微分方程48二、线性代数53(一) 行列式53(二)矩阵54(三)向量57(四)线性方程组60(五)矩阵的特征值和特征向量62(六)二次型63三、概率论与数理统计66(一)随机事件和概率66(二)随机变量及其概率分布70(三)多维随机变量及其分布72(四)随机变量的数字特征75(五)大数定律和中心极限定理78(六)数理统计的基本概念79(七)参数估计81(八)假设检验84经常用到的初等数学公式86平面几何91一、高等数学(一)函数、极限、连续β(x) ()(()k x c c x αβ=常用的等阶无穷小:当arcsin tan ,x x x x ⎫⎪⎪⎪⎪2121(1)1x x xn +- 有限个无穷小的代数和为无穷小有限个无穷小的乘积为无穷小A B ;0)≠ x 0的邻域内,恒有(11n m a x b x --++++++2π(二) 一元函数微分学对应公式、定理、概念00)()limx x f x x→+-000()lim x x f f x x →-- 处的左、右导数分别定义为:0()lim x x f x x -→--()f x -(m -n+(1)!nn x - )莱布尼兹公式:若()u x ,v ,其中(0)u()(0)!n fn +与x 之间.(11!n x n +1!nx n +sin !2n x n n π+3sin !2n x n n π++cos !n x n n π+2cos !n x x n ++231(1)3n x -+-+-2311(1)23n x x -+-+-21)(1)(1)2!!m m m n x n ---+++111)(1)(1)(1)!n m n m n x n ξ+---+++ 或2(1)2!m m x -+1)(1)()!nn m n x o x n -++函数单调性的判断:()f x 在(,a b 区间内可导,如果对(或'()f x <,则函数()f x 在(加的(或单调减少)(取极值的必要条件(三)一元函数积分学131,2221321,23n n n n n n π----当为偶数当为奇数,cos 0,n nx mxdx n π⎧=⎨≠⎩cos 0mxdx =b()g x dx±⎰)]'()x ϕ则上的一个原函数]上连续,F(2()bag x dx ⎰]上连续三角形示意图理式和简单无理函数的积分,广义积分和定积分的应用22a x-sinx a t=22a x+tanx a t=22x a-secx a t=有理函数积分(1)ln||Adx A x a Cx a=-+-⎰11(2)(1)()1()n nA Adx C n x a n x a-=-+≠---⎰(四) 向量代数和空间解析几何a 的大小.a 。
高等数学公式导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xxx x x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。
高等数学公式导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x aa a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:函数 角A sin cos tg ctg -α -sinα cosα -tgα -ctgα 90°-α cosα sinαctgαtgα 90°+α cosα -sinα -ctgα -tgα 180°-α sinα-cosα -t gα-ctgα 180°+α -sinα -cosα tgα ctgα 270°-α -cosα -sinα ctgα tgα 270°+α -cosα sinα -ctgα -tgα360°-α -sinα cosα -tgα -ctgα 360°+αsinαcosαtgαctgα·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xxx x x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。
考研高等数学公式手册高等数学复习公式kaoyan高等数学公式导数公式:2(tgx)??secx(ctgx)???cscx(secx)??secx?tg x(cscx)???cscx?ctgx(a)??alna(logaxx2(arc sinx)??(arccosx)???(arctgx)??11?x11?x11? x222x)??1xlna(arcctgx)???11?x2基本积分表:?tgxdx?ctgxdx?sec?a?x?a???ln cosx?C?lnsinx?C?cos?sindx2xx???sec?csc 2xdx?tgx?Cxdx??ctgx?Cdx22xdx?lnsecx?t gx?C?cscxdx?lncscx?ctgx?Cdx2?secx?tgx dx?cscx?ctgxdx?ax?secx?C??cscx?C?C?x dx?adx?xdx22???1a1arctglnlnxa?C?C?Cx ?ax?aa?xa?xxadx?axlna222a12a?shxdx?ch xdx??2?chx?C?shx?C?ln(x?x?a)?C2222a? x2?arcsin?Cdxx?a22?2In??sin02nxdx??co sxdx?0nn?1naaa2In?2x?a)?Cx?axa?C2222 ???2u1?ux?adx?x?adx?a?xdx?22222x2x2x 2x?a?x?a?a?x?22222222ln(x?lnx?arcsin22?C2三角函数的有理式积分:sinx?,cosx?21?u1?u2,u?tg2x2,dx?2du1?u2 第 1 页共15 页高等数学复习公式一些初等函数:两个重要极限:e?e2e?e2shxchx2x?xx?x双曲正弦:shx?双曲余弦:chx?双曲正切:thx?arshx?ln(x?archx??ln(x?arthx?12ln 1?x1?xlimsinxx1xx?0?1)?e? 59045...lim(1?x???e?ee?exx?x?xx?1)x?1)2三角函数公式:·诱导公式:函数角A -α 90°-α 90°+α 180°-α 180°+α 270°-α 270°+α 360°-α 360°+α sin cos tg -tgα ctgα ctg -ctgα tgα -ctgα ctgα tgα -ctgα ctgα -sinα cosα cosα cosα sinα sinα -sinα -ctgα -tgα -cosα -tgα -sinα -cosα tgα -cosα -sinα ctgα -cosα sinα -sinα cosα sinα cosα -tgα tgα -ctgα -tgα ·和差角公式:·和差化积公式:sin(???)?sin?cos??cos?sin?cos(???)?cos?c os??sin?sin?tg(???)?tg??tg?1?tg??tg?ctg?? ctg??1ctg??ctg?sin??sin??2sinsin??sin??2cos???2cossin???2???2???2cos??cos??2cos cos??cos??2sin???2cossin???2ctg(???)???? 2???2 第 2 页共15 页高等数学复习公式·倍角公式:sin2??2sin?cos?cos2??2cos??1?1?2sin??co s??sin?ctg2??tg2??ctg??12ctg?2tg?1?tg?2 22222sin3??3sin??4sin?cos3??4cos??3cos ?tg3??3tg??tg?1?3tg?2333 ·半角公式:sintg?2????1?cos?21?cos?1?cos?asinA 1?cos?sin?bsinB?cosctg?2??1?cos?21?cos?1?cos?22 ?1?c os?sin?2?2??csin?1?cos??2???sin?1?cos?·正弦定理:?sinC?2R·余弦定理:c?a?b?2abcosC ·反三角函数性质:arcsinx??2?arccosxarctgx??2?arcctgx 高阶导数公式——莱布尼兹公式:n(uv)?u(n)??Ck?0knu(n?k)v(k)(n)v?nu(n?1)v??n(n?1)2!u(n?2)v?????n(n?1)?(n?k?1)k! u(n?k)v(k)???uv(n)中值定理与导数应用:拉格朗日中值定理:柯西中值定理:f(b)?f(a)?f?(?)(b?a)?f?(?)F?(?)拉格朗日中值定理。
考研数学必背公式总结考研数学是很多考生们的重点科目之一。
为了更好地备考数学,考生们需要掌握并熟记数学中的各种公式。
下面是一些考研数学必背公式的总结:一、高等数学1.极限公式:(1)对数函数极限:lim(log(1+x)/x)=1,当x趋于0时(2)三角函数极限:lim(sin(x)/x)=1,当x趋于0时lim((1-cos(x))/x)=0,当x趋于0时2.牛顿-莱布尼茨公式:∫abf(x)dx=F(b)-F(a),其中F(x)是f(x)的一个原函数3.泰勒公式:f(x)=f(a)+f'(a)(x-a)+f''(a)(x-a)^2/2!+...+f^n(a)(x-a)^n/n!+ Rn(x)其中,Rn(x)是余项,有Lagrange余项和Cauchy余项两种形式。
二、线性代数1.向量公式:(1)向量的模:|a|=√(x1^2+x2^2+...+xn^2)(2)向量的点积:a·b=x1y1+x2y2+...+xnyn(3)向量的叉积:a×b=(y1z2-y2z1)i-(x1z2-x2z1)j+(x1y2-x2y1)k2.矩阵公式:(1)矩阵的乘积:C=AB,其中Cij=∑(k=1到n)AikBkj(2)矩阵的逆:若A是可逆矩阵,则A的逆矩阵A^-1满足AA^-1=A^-1A=E(3)矩阵的秩:矩阵的秩是指它的行与列的最大线性无关组数,也就是矩阵中含有的一个最大的非零子式的阶数。
三、概率论与数理统计1.概率公式:(1)全概率公式:P(B)=P(AB)+P(AcBc),其中A和B是两个事件,Ac和Bc是它们的补事件(2)条件概率公式:P(A|B)=P(AB)/P(B),其中A和B是两个事件2.数理统计公式:(1)样本平均数:x=(x1+x2+...+xn)/n(2)样本方差:S^2=[(x1-x)^2+(x2-x)^2+...+(xn-x)^2]/(n-1)(3)样本标准差:S=√[S^2]以上公式是考研数学中一些必背的公式总结。
考研数学必背公式数学是考研的一门重要科目,无论是理工科还是文科,数学都是考研必考科目之一、在备考期间,掌握并背诵一些重要的数学公式是非常重要的,因为公式是解题的基础,可以帮助我们快速解决问题。
下面是一些考研数学中常见的重要公式,供大家背诵和复习使用:1.三角函数公式:sin(x ± y) = sinxcosy ± cosxsinycos(x ± y) = cosxcosy ∓ sinxsinytan(x ± y) = (tanx ± tany) / (1 ∓ tanxtany)sin²x +cos²x = 11 + tan²x = sec²x1 + cot²x = csc²x2.指数和对数公式:ab × ac = ab+c(ab)c = abca⁰=1,a¹=aaⁿ×aⁿ=aⁿ⁺ⁿ(a/b)ⁿ=aⁿ/bⁿalogba = alogba + logbc = logba*clogba - logbc = logba/c3.三角函数的基本关系:sin(π/2 - x) = cosxcos(π/2 - x) = sinxtan(π/2 - x) = cotxcot(π/2 - x) = tanxsin²x + cos²x = 1secx = 1/cosxcscx = 1/sinxcotx = 1/tanx4.高中数学知识:三角函数的定义:sinx = y/r, cosx = x/r, tanx = y/x, cotx = x/y, secx = r/x, cscx = r/ysin(-x) = -sinx, cos(-x) = cosx, tan(-x) = -tanxsin(π + x) = -sinx, cos(π + x) = -cosx, tan(π + x) = tanx sin(2π - x) = sinx, cos(2π - x) = cosx, tan(2π - x) = tanxsin(π/2 + x) = cosx, cos(π/2 + x) = -sinx, tan(π/2 + x) = -cotxsin(3π/2 - x) = -cosx, cos(3π/2 - x) = sinx, tan(3π/2 - x) = -cotx5.极限公式:lim(x→0) (sinx / x) = 1lim(x→0) (1 - cosx) / x = 0lim(x→∞) (1 + 1/x)^x = elim(x→0) (a^x - 1) / x = ln(a)6.求导公式:(d/dx) (c) = 0(d/dx) (x^n) = nx^(n-1)(d/dx) (sinx) = cosx(d/dx) (cosx) = -sinx(d/dx) (tanx) = sec²x(d/dx) (cotx) = -csc²x(d/dx) (secx) = secxtanx(d/dx) (cscx) = -cscxcotx(d/dx) (e^x) = e^x(d/dx) (lnx) = 1/x7.积分公式:∫(k)dx = kx + C∫(x^n)dx = (x^(n+1)) / (n+1) + C (n ≠ -1)∫(cosx)dx = sinx + C∫(sinx)dx = -cosx + C∫(sec²x)dx = tanx + C∫(csc²x)dx = -cotx + C∫(secx * tanx)dx = secx + C∫(cscx * cotx)dx = -cscx + C∫(e^x)dx = e^x + C∫(1/x)dx = ln,x, + C。
主持⼈:各位友⼤家好,欢迎光临搜狐嘉宾聊天室。
今天来到现场的是⽂都的考研数学辅导专家蔡⼦华⽼师,⾸先请蔡⽼师针对最后的冲刺阶段给⼤家说⼀下总体的情况。
蔡⼦华:现在离考试时间只有⼀个⽉多⼀点,这个阶段同学们的疑问很多,特别是最后应该做些什么事情,我认为⾸先应该系统地把知识再过⼀点,这是⾮常重要的。
不少考⽣反映,前⼀段时间做的题现在觉得不会做了,原因是前⼀段时间做题出现两个问题,⼀个是没有看完⼀部分内容之后紧接着做题,这样做题⽐较逊⾊⼀些。
现在时间⽐较多了之后,有很多内容就不像原来那么清晰了,所以做题出现混乱,这是正常的。
第⼆个原因,前段时间做题过程当中没有认真归纳总结,造成印象不深,所以现在再拿出同样的题,还不会做。
同学们应该将整个知识系统理⼀遍,第⼆,做题过程当中应当注意归纳总结解题⽅法。
主持⼈:这个⽉的复习重点应该放在基础上⾯吗? 蔡⼦华:对。
应该放在基础,不光是这个⽉的重点,⽽是整个复习的重点都应该放在基础上,扎实的基础上应该下⼯夫。
最后这个⽉我已经说过,要做两件事。
第⼀件事,有必要对整个考试的内容做⼀次清理,必须要把你不清楚的地⽅搞清楚。
第⼆件事,整个数学知识的观点性要搞清楚,很多知识通过对⽐是可以知道它们的相同或者不同。
举例来说⼀元函数微分学和多元函数微分学,它们有相同的地⽅,也有不同的地⽅。
把相同、不同的地⽅辨别清楚了,那么你的概念就很清晰,印象也就很深刻,不会容易犯错误。
我前⼀段时间在成都做考前的讲座,我出了⼏个题⽬,专门考察学⽣的概念清不清楚。
结果⼤部分学⽣根本不知道,这个不是很难的问题。
这些问题⼜是历年考试中很常见的⼀些问题,说明考⽣只重视做题,⽽不重视数学理论的理解。
友:在时间分配上,数学试卷应该按怎样的⽐例分才算是⽐较合理的,怎样才能在考场上把握好时间? 蔡⼦华:主要是客观和主观的答题时间,按照过去考试成功同学的经验,客观题花的时间应该占30?45分钟之间⽐较合适。
蔡子华指导考研数学冲刺:考前测试用真题临近考试,很多考生把复习的重点转到了政治、专业课、英语等需要记忆的科目的复习上了。
那么在最后这一段时间里,对于数学能否放松呢?数学应怎样复习呢?下面是文都学校考研数学辅导老师蔡子华给大家的复习建议。
复习重点要放在基础上记者:临近考试的最后一段时间里,考生应该把复习重点放在什么地方?蔡子华:离最后考试时间已经不长了,这时候考生的复习重点还是要放在基础上,在扎实的基础上下工夫。
这一阶段要做好两件事:第一,对整个数学理论的复习做到系统化,具体做法是从头开始把整个内容过一遍,把不清楚的地方搞清楚。
只有把基本内容搞清楚,才能提高分析问题的能力,才能提高答题速度和准确性。
第二件事,要重视归纳总结,虽然题目的形式在变,但根本的东西没有变,因而对于常见题的求解方法一定要做好归纳总结。
用真题进行考前测试记者:考前进行测试是有必要的,那么用真题好还是模拟题好?蔡子华:最好保留三套真题进行考前测试,这三套题难度应是难、中、易各一套。
第一套题最好是1998年的题。
1998年的题难度比较大,做了之后,对发现的问题进行查遗补缺。
第二套建议做2021年的题,从题目的数量和难度上应该和2021年的试卷是最接近的。
第三套题是2002年的题,这是最近几年来最简单的,做了之后会满怀信心上考场。
这样做既能够查遗补缺,又能够增强信心。
但是真题反映能力的真实程度比较差,因为这些真题很多题目都已经见过了,所以如果有时间,最好再做三套和考研难度相近的模拟题。
复习时间不能间断记者:在考前很多考生把主要精力放在政治上,又怕丢掉以前学过的数学知识,那么应该如何分配时间?蔡子华:对数学的复习不能间断。
很多往届考生吃亏就在这里,开始阶段数学下的工夫比较大,效果也很好,满以为自己很行了,后来把数学放下来了去复习别的科目。
等到临考前几天再来抓数学已经晚了,一个是遗忘了,第二个是做题时手感很差,人有一个遗忘过程,遗忘之后再回过头拣起来就太难了。
考研高等数学公式和十大考点考研数学常考的十种题型列出如下:一、运用洛必达法则和等价无穷小量求极限问题,直接求极限或给出一个分段函数讨论基连续性及间断点问题。
二、运用导数求最值、极值或证明不等式。
三、微积分中值定理的运用,证明一个关于“存在一个点,使得……成立”的命题或者证明不等式。
四、重积分的计算,包括二重积分和三重积分的计算及其应用。
五、曲线积分和曲面积分的计算。
六、幂级数问题,计算幂级数的和函数,将一个已知函数用间接法展开为幂级数。
七、常微分方程问题。
可分离变量方程、一阶线性微分方程、伯努利方程等的通解、特解及幂级数解法。
八、解线性方程组,求线性方程组的待定常数等。
九、矩阵的相似对角化,求矩阵的特征值,特征向量,相似矩阵等。
十、概率论与数理统计。
求概率分布或随机变量的分布密度及一些数字特征,参数的点估计和区间估计。
导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin ududx x tg u u u x u u x +==+-=+=, , , 一些初等函数: 两个重要极限:ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x Cx dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。
一、高等数学(一) 函数、极限、连续β(x) ()(()k x c c x αβ=,x 211xxn-A B;≠0)m-1(二) 一元函数微分学00)(x x f x x→+-00()lim x x f f x x →-- 处的左、右导数分别定义为:1)(1)! n-!n +!x n +21!x x n ++sin !n x n n π+3sin !n x n ++cos !x n n +cos !n +313x -+3(x -+-(1)m m -+111)(1n m n x ξ+--+ 或1)(nx o x +函数单调性的判断:(三)一元函数积分学,2221321,23n n n n n ---当为偶数当为奇数,cos 0,n nx mxdx n π⎧=⎨≠⎩ϕ)]'()x则上的一个原函数a g x dx⎰]上连续(()(四) 向量代数和空间解析几何a . 向量的坐标表示:若向量用坐标表示 2a x =+4向量的运算法则:2}.zⅡ.数乘运算 00,a a a a a λλλ⎧⎪⎪<即与反向 设,则11,}.y z λ矢量的数积(点积,内积)cos a b =111{,,}x y z =,{,,}x y z =,则a b x x ⋅=+矢量的向量积(叉积,外积):设有两个向量asin(c a b =,c a c b ⊥⊥,即c 垂直于a ,b ,c 成右手系.则称矢量为矢量a 111{,,}x y z 1112222i j y z x x x i k y x y z ==-+则这样的数积称为矢量a ,b ,c 的混合积,记为(,,)a b c ,即(a 333{,,}x y z =,1z//0x a b a b ⇔⨯=⇔,,y z 之中有一个为“0)矢量a 与b 的夹角,可由下式求出12122x x y x y +++0b vc +=或者(,a b 单位向量:模为1的向量2,a x =⎨+⎪⎩向量的方向余弦:单位向量的方向余弦:显然若方程中某个坐标不出现,则平面就平行于该坐标轴,i=A (3)两点式方程平面间的关系设有两个平面:0 01i j kxl m n M M M P⨯=准线为各种形式的柱面方程的求法(五)多元函数微分学x v xu y v y +∂∂∂+∂∂∂,dx v dx+∂称之为(,,),(,),x u v u x y v z f f u f x v x u f v y v y ϕ=∂∂∂∂+∂∂∂∂∂∂+∂∂∂复合函数一定要设中间变量,抽象函数的高阶偏导数,00dy dz dx==⇒(cos ,cos α)))cos l gradf grad =〈0)"(,y f x y的一个极值点(六)多元函数积分学(,)y f x y 2)如果积分域D 关于轴对称,为(,)f x y σ⎰⎰则二重积分dL⎰⇔存在函数(,u x 00(,)(,),)x y x y x y Pdx =⎰L⎰⎰L是空间中的有界闭区域,由分块光滑的曲面所,,),(,,x y z R x y zRdz(,,)P x y z 点处的散度为div A x y z =++∂∂∂ 均有连续的一阶偏导数,则旋度rot A 为:ik x y z P ∂=∂∂∂(七)无穷级数1ρ∞⎧>⎪∑时,则交错级数收敛,其和1,S u ≤1n 利用多项式的长除法可得:00,a C C b =∞,(!!n nu u n n ∞++∑21(21)!(2n u n n ++++42(2)!(2nnnu u u n n ∞+31,(11n n u u u n n +∞+++!un +)02n a =+∑[-,]l l 为周期的函数,且在上可积,则以)cos n x b π+02n a =+∑[-,]ππ在上满足条件:除有限个第一类间断点外都连续。
高等数学公式导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x Cx dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xxx xx x·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin(·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。
时,柯西中值定理就是当柯西中值定理:拉格朗日中值定理:x x F f a F b F a f b f a b f a f b f =''=---'=-)(F )()()()()()())(()()(ξξξ曲率:.1;0.)1(lim M s M M :.,13202aK a K y y ds d s K M M sK tg y dx y ds s =='+''==∆∆='∆'∆∆∆==''+=→∆的圆:半径为直线:点的曲率:弧长。
:化量;点,切线斜率的倾角变点到从平均曲率:其中弧微分公式:ααααααααααααααα23333133cos 3cos 43cos sin 4sin 33sin tg tg tg tg --=-=-=αααααααααααααα222222122212sin cos sin 211cos 22cos cos sin 22sin tg tg tg ctg ctg ctg -=-=-=-=-==定积分的近似计算:⎰⎰⎰----+++++++++-≈++++-≈+++-≈ban n n ban n ba n y y y y y y y y nab x f y y y y n a b x f y y y nab x f )](4)(2)[(3)(])(21[)()()(1312420110110 抛物线法:梯形法:矩形法:定积分应用相关公式:⎰⎰--==⋅=⋅=bab a dt t f a b dx x f a b y k rmm k F Ap F sF W )(1)(1,2221均方根:函数的平均值:为引力系数引力:水压力:功:空间解析几何和向量代数:。
代表平行六面体的体积为锐角时,向量的混合积:例:线速度:两向量之间的夹角:是一个数量轴的夹角。
是向量在轴上的投影:点的距离:空间ααθθθϕϕ,cos )(][..sin ,cos ,,cos Pr Pr )(Pr ,cos Pr )()()(2222222212121*********c b a c c c b b b a a a c b a c b a r w v b a c b b b a a a kj ib ac b b b a a a b a b a b a b a b a b a b a b a a j a j a a j u j z z y y x x M Md zyx z y xzy xzyxz y xzy x z y x zz y y x x z z y y x x u u⋅⨯==⋅⨯=⨯=⋅==⨯=++⋅++++=++=⋅=⋅+=+=-+-+-==(马鞍面)双叶双曲面:单叶双曲面:、双曲面:同号)(、抛物面:、椭球面:二次曲面:参数方程:其中空间直线的方程:面的距离:平面外任意一点到该平、截距世方程:、一般方程:,其中、点法式:平面的方程:113,,22211};,,{,1302),,(},,,{0)()()(1222222222222222222220000002220000000000=+-=-+=+=++⎪⎩⎪⎨⎧+=+=+===-=-=-+++++==++=+++==-+-+-cz b y a x c z b y a x q p z q y p x c z b y a x ptz z nty y mtx x p n m s t p z z n y y m x x C B A DCz By Ax d czb y a x D Cz By Ax z y x M C B A n z z C y y B x x A多元函数微分法及应用zy z x y x y x y x y x F F y zF F x z z y x F dx dy F F y F F x dx y d F F dx dy y x F dy y v dx x v dv dy y u dx x u du y x v v y x u u xvv z x u u z x z y x v y x u f z tvv z t u u z dt dz t v t u f z y y x f x y x f dz z dz zu dy y u dx x u du dy y z dx x z dz -=∂∂-=∂∂=⋅-∂∂-∂∂=-==∂∂+∂∂=∂∂+∂∂===∂∂⋅∂∂+∂∂⋅∂∂=∂∂=∂∂⋅∂∂+∂∂⋅∂∂==∆+∆=≈∆∂∂+∂∂+∂∂=∂∂+∂∂=, , 隐函数+, , 隐函数隐函数的求导公式: 时,,当 :多元复合函数的求导法全微分的近似计算: 全微分:0),,()()(0),(),(),()],(),,([)](),([),(),(22),(),(1),(),(1),(),(1),(),(1),(),(0),,,(0),,,(y u G F J y v v y G F J y u x u G F J x v v x G F J x u G G F F vG uG v FuFv u G F J v u y x G v u y x F vu v u ∂∂⋅-=∂∂∂∂⋅-=∂∂∂∂⋅-=∂∂∂∂⋅-=∂∂=∂∂∂∂∂∂∂∂=∂∂=⎩⎨⎧== 隐函数方程组:微分法在几何上的应用:),,(),,(),,(30))(,,())(,,())(,,(2)},,(),,,(),,,({1),,(0),,(},,{,0),,(0),,(0))(())(())(()()()(),,()()()(000000000000000000000000000000000000000000000000000z y x F z z z y x F y y z y x F x x z z z y x F y y z y x F x x z y x F z y x F z y x F z y x F n z y x M z y x F G G F F G G F F G G F F T z y x G z y x F z z t y y t x x t M t z z t y y t x x z y x M t z t y t x z y x z y x z y x yx y x x z x z z y z y -=-=-=-+-+-==⎪⎩⎪⎨⎧====-'+-'+-''-='-='-⎪⎩⎪⎨⎧===、过此点的法线方程::、过此点的切平面方程、过此点的法向量:,则:上一点曲面则切向量若空间曲线方程为:处的法平面方程:在点处的切线方程:在点空间曲线ωψϕωψϕωψϕ方向导数与梯度:上的投影。