灰色关联分析详解+结果解读
- 格式:docx
- 大小:1.07 MB
- 文档页数:4
灰色关联分析及理论灰色系统分析“白”指信息完全确知,“黑”指信息完全不确知,“灰”则指信息部分确知,部分不确知,或者说信息不完全。
这是“灰”的基本含义。
对于不同问题,在不同的场合,“灰”可以引伸为别的含义。
如:从表象看:“明”是白,“暗”是黑,那么“半明半暗或若明若暗”就是灰。
从态度看:“肯定”是白,“否定”是黑,那么“部分肯定,部分否定”就是灰。
从性质看:“纯”是白,“不纯”是黑,那么“多种成分”就是灰。
从结果看:“唯一”是白,“无数”是黑,那么“非唯一”就是灰。
从过程看:“新”是白,“旧”是黑,那么“新旧交替”就是灰。
从目标看:“单目标”是白,“无目标”是黑,那么“多目标”就是灰。
类似地可以举出许多例子,就其基本含义而言,“灰”是信息不完全性与非唯一性。
信息不完全性与非唯一性在人们认识与改造客观世界的过程中会经常遇到的。
客观世界是物质世界,也是信息世界。
所谓系统是指:由客观世界中相同或相似的事物按一定的秩序相互关联、相互制约而构成的整体。
例如工程技术系统,社会系统,经济系统等等。
所谓白色系统是指:信息完全明确的系统。
如,一个家庭,其人口、收入、支出、父子、母女上下间的关系等等完全明确;一个工厂。
其职工、设备、技术条件、产值、产量等等信息完全明确。
像家庭、工厂这样的系统就是白色系统。
所谓黑色系统是指:信息完全不明确的系统。
如遥远的某个星球,其重量、体积、是否有生命等等全然不知;湖北原始森林神农架的野人,其生活习性、群体关系,交换信息的方法等等完全不清楚,这样一类的系统都是黑色系统,还有飞碟、百暮三角洲等等目前只能看成黑色系统。
所谓灰色系统是指:介于白色系统与黑色系统之间的系统(Grey System),即系统内部信息和特性是部分已知的另一部分是未知的。
例如人体,其身高、体重、年龄、血压、脉搏、体温等等都是已知的,而人体的穴位的多少,穴位的生物、化学、物理性能;生物信息的传递;温度场;意识流等等尚未确知或者知道不透彻。
灰色关联分析灰色关联分析是一种常用于研究和预测多个影响因素之间关联程度的方法。
该分析方法可以通过对各个因素的数值进行比较,得出它们之间的关联强度,从而为决策提供依据。
下面将详细介绍灰色关联分析的原理、应用以及优势。
灰色关联分析的原理基于灰色系统理论,该理论是中国科学家陈纳德于1982年提出的一种对部分已知和部分未知信息进行分析的数学方法。
灰色关联分析将各个影响因素的数据进行标准化处理,然后计算各个因素之间的关联度。
通过对关联度进行排序,即可得出影响因素之间的关联程度大小。
灰色关联分析在各个领域都有广泛的应用,比如经济学、管理学、环境科学等。
在经济学领域,可以使用灰色关联分析来研究不同经济指标之间的关联程度,从而预测未来的经济趋势。
在管理学中,可以利用灰色关联分析来研究不同管理指标之间的关联程度,进而指导管理决策。
在环境科学领域,可以运用灰色关联分析来分析各个环境因素对生态系统的影响程度,以及控制污染等。
灰色关联分析相对于其他分析方法有一些独特的优势。
首先,它不要求数据分布满足正态分布等数学假设,可以对数据进行较好的处理。
其次,灰色关联分析可以处理样本量较小的情况,对于样本量不足的数据分析也有较好的适用性。
此外,由于灰色关联分析能够捕捉到数据之间的内在联系,因此对于某些非线性关系的分析,其结果可能更加准确。
然而,灰色关联分析也存在一些限制和不足之处。
首先,该分析方法依赖于数据的稳定性,对于非稳态的数据可能会导致分析结果不准确。
其次,灰色关联分析无法处理存在时间滞后效应的数据。
此外,该方法对数据的标准化要求较高,如果数据质量较差或者存在异常值,也会影响分析结果。
综上所述,灰色关联分析是一种研究和预测多个影响因素之间关联程度的有效方法。
它的原理基于灰色系统理论,可以在各个领域中广泛应用。
灰色关联分析相对于其他分析方法有一些独特的优势,但也存在一定限制。
在实际应用中,我们应该结合具体情况,合理选择分析方法,并充分考虑其适用性和局限性,以提高分析和决策的准确性。
灰色关联度分析法为了适应瞬息万变的市场需求, 企业不断调整自己的核心能力, 在产品的开发设计中更重视供应商的作用。
作为供应链合作关系运行的基础, 供应商的评价选择是一个至关重要的问题, 供应商的业绩对企业的影响越来越大,影响着企业的生存与发展。
因此, 进行科学全面的供应商评价就显得十分必要。
(1)确定比较对象产品质量、技术水平、供应能力、经济效益、市场影响度指标属于效益型指标;产品价格、地理位置、售后服务指标属于成本型指标。
i 指五个待选供应商编号,,5,,1 =i j 指八个指标8,,1j =,ij a 是第i 个供应商第j 个指标变量为了使每个属性变换后的最优值为1 且最差值为0,对数据进行标准0-1变换利润型指标标准化公式)/()(min maxmin j j j ij ij a a a a b --=成本型指标标准化公式)/()(min max max j j ij j ij a a a a b --=数据结果见下表。
(2)计算灰色关联系数)()(max max )()()()(max max )()(min min )(0000t x t x k x k x t x t x t x t x k s tsi s ts s ts -+--+-=ρρξ为比较数列对参考数列在第个指标上的关联系数,其中为]1,0[∈ρ分辨系数。
称式中)()(min min 0t x t x s ts-、)()(max max 0t x t x s ts-分别为两级最小差及两级最大差。
一般来讲,分辨系数ρ越大,分辨率越大;ρ越小,分辨率越小。
在这里ρ取0.5。
(3)计算灰色加权关联度 灰色加权关联度的计算公式为∑==nk i i k w r 1)(ξ这里i r 为第i 个评价对象对理想对象的灰色加权关联度。
关联系数和关联度值(4)评价分析根据灰色加权关联度的大小,对各评价对象进行排序,可建立评价对象的关联序,关联度越大其评价结果越好。
灰色关联分析法原理及解题步骤---------------研究两个因素或两个系统的关联度(即两因素变化大小,方向与速度的相对性)关联程度——曲线间几何形状的差别程度灰色关联分析是通过灰色关联度来分析和确定系统因素间的影响程度或因素对系统主行为的贡献测度的一种方法。
灰色关联分析的基本思想是根据序列曲线几何形状的相似程度来判断其联系是否紧密1> 曲线越接近,相应序列之间的关联度就越大,反之就越小 2> 灰色关联度越大,两因素变化态势越一致分析法优点它对样本量的多少和样本有无规律都同样适用,而且计算量小,十分方便,更不会出现量化结果与定性分析结果不符的情况。
灰色系统关联分析的具体计算步骤如下 1》参考数列和比较数列的确定参考数列——反映系统行为特征的数据序列比较数列——影响系统行为的因素组成的数据序列2》无量纲化处理参考数列和比较数列(1) 初值化——矩阵中的每个数均除以第一个数得到的新矩阵(2) 均值化——矩阵中的每个数均除以用矩阵所有元素的平均值得到的新矩阵(3) 区间相对值化3》求参考数列与比较数列的灰色关联系数ξ(Xi) 参考数列X0比较数列X1、X2、X3……………比较数列相对于参考数列在曲线各点的关联系数ξ(i)称为关联系数,其中ρ称为分辨系数,ρ?(0,1),常取0.5.实数第二级最小差,记为Δmin。
两级最大差,记为Δmax。
为各比较数列Xi曲线上的每一个点与参考数列X0曲线上的每一个点的绝对差值。
记为Δoi(k)。
所以关联系数ξ(Xi)也可简化如下列公式:4》求关联度ri关联系数——比较数列与参考数列在各个时刻(即曲线中的各点)的关联程度值,所以它的数不止一个,而信息过于分散不便于进行整体性比较。
因此有必要将各个时刻(即曲线中的各点)的关联系数集中为一个值,即求其平均值,作为比较数列与参考数列间关联程度的数量表示,关联度ri公式如下:5》排关联序因素间的关联程度,主要是用关联度的大小次序描述,而不仅是关联度的大小。
灰⾊关联分析
灰⾊关联分析法
对于有m个评价对象,n个评价指标的问题,⽤灰⾊关联分析来选择,可以针对⼤量的不确定因素以及相互关系,⽤定性和定量有机结合的⽅式,使原本复杂的决策问题变得更加清晰简单,⽽且计算⽅便,主要是排除了决策者的主观任意性,得出的结论很客观,有⼀定的参考价值。
主要步骤
1. 确定评价对象和评价标准。
(以⼀个评价对象为例)
评价对象为x={x(k)|k=1,2,3,...,n},评价标准为x0={x(k)|k=1,2,3,...,n}
k是指该评价对象的第k个评价指标
2. 确定各个评价指标的权重
主要是为了最后对求出的各个指标的灰⾊关联系数进⾏总和,若⽆权重也可以直接求平均值
3. 计算灰⾊关联系数
将每⼀个评价对象的评价指标都与评价标准相减并求绝对值,即
令c=|x(k)−x0(k)|
那么我们可以得到⼀个新的矩阵C
取C中的每⼀列中的最⼩值在每⼀⾏中的最⼩值,即两级最⼩差
a=min i min j c ij
再取每⼀列中的最⼤值在每⼀⾏中的最⼤指,即两级最⼤差
b=max i max j c ij
灰⾊关联系数为
ξi(j)=a+ρb c ij+ρb
式中,ρ⼀般取0.5,ρ属于0到1.
4. 计算灰⾊加权关联度
就是计算每⼀个评价对象的灰⾊关联度的加权和
r i=
n
∑
j=1w i∗ξi(j)
灰⾊关联度越⼤则效果越好Processing math: 100%。
灰色关联分析法对于两个系统之间的因素,其随时间或不同对象而变化的关联性大小的量度,称为关联度。
在系统发展过程中,若两个因素变化的趋势具有一致性,即同步变化程度较高,即可谓二者关联程度较高;反之,则较低。
因此,灰色关联分析方法,是根据因素之间发展趋势的相似或相异程度,亦即“灰色关联度”,作为衡量因素间关联程度的一种方法。
应用于综合评价(灰色综合评价)步骤:(1) 确定比较对象(评价对象)和参考数列(评价标准)。
设评价对象有m 个,评价指标有n 个,参考数列为{}00()|1,2,,x x k k n ==⋅⋅⋅,比较数列为{}()|1,2,,,1,2,,i i x x k k n i m ==⋅⋅⋅=⋅⋅⋅。
(2) 对参考数列和比较数列进行无量纲化处理由于系统中各因素的物理意义不同,导致数据的量纲也不一定相同,不便于比较,或在比较时难以得到正确的结论。
因此在进行灰色关联度分析时,一般都要进行无量纲化的数据处理。
设无量纲化后参考数列为{}00()|1,2,,x x k k n ''==⋅⋅⋅,无量纲化后比较数列为{}()|1,2,,,i i x x k k n ''==⋅⋅⋅1,2,,i m =⋅⋅⋅。
(3) 确定各指标值对应的权重。
可用层次分析法等确定各指标对应的权重[]12,,,n w w w w =⋅⋅⋅,其中(1,2,,)k w k n =⋅⋅⋅为第k 个评价指标对应的权重。
(4) 计算灰色关联系数:0000min min ()()max max ()()()()()max max ()()s s s t s t i i s s tx t x t x t x t k x k x k x t x t ρξρ''''-+-=''''-+- 为比较数列i x 对参考数列0x 在第k 个指标上的关联系数,其中[]0,1ρ∈为分辨系数,称0min min ()()s s t x t x t ''-、0max max ()()s s tx t x t ''-分别为两级最小差及两级最大差。
灰色关联分析
1、作用
对于两个系统之间的因素,其随时间或不同对象而变化的关联性大小的量度,称为关联度。
在系统发展过程中,若两个因素变化的趋势具有一致性,即同步变化程度较高,即可谓二者关联程度较高;反之,则较低。
因此,灰色关联分析是指对一个系统发展变化态势的定量描述和比较的方法,其基本思想是通过确定参考数据列和若干个比较数据列的几何形状相似程度来判断其联系是否紧密,它反映了曲线间的关联程度。
2、输入输出描述
输入:特征序列为至少两项或以上的定量变量,母序列(关联对象)为 1 项定量变量。
输出:反应考核指标与母序列的关联程度。
3、案例示例
案例:分析 09-18 年内,影院数量,观影人数,票价、电影上线数量这些因素对全年电影票房的影响。
其中电影票房是母序列,影院数量,观影人数,票价、电影上线数量是特征序列。
4、案例数据
灰色关联分析案例数据
5、案例操作
Step1:新建分析;
Step2:上传数据;
Step3:选择对应数据打开后进行预览,确认无误后点击开始分析;
step4:选择【灰色关联分析】;
step5:查看对应的数据数据格式,【灰色关联分析】要求特征序列为定量变量,且至少有一项;要求母序列为定量变量,且只有一项。
step6:设置量纲处理方式(包括初值化、均值化、无处理)、分辨系数(ρ越
小,分辨力越大,一般ρ的取值区间为 ( 0 ,1 ),具体取值可视情况而定。
当ρ≤ 0.5463 时,分辨力最好,通常取ρ = 0.5 )
step7:点击【开始分析】,完成全部操作。
6、输出结果分析
输出结果 1:灰色关联系数
图表说明:关联系数代表着该子序列与母序列对应维度上的关联程度值(数字越大,代表关联性越强)。
输出结果 2:关联系数图
分析:输出结果 1 和输出结果 2 是一样的,输出结果 1 用了表格形式来呈现关联系数,输出结果 2 用了图表形式来呈现关联系数。
图表很直观地展现了,大多数年份的银幕数量和电影上线数量对票房影响更大。
输出结果 3:关联系数图
分析:针对本次 4 个评价项,银幕数量评价最高(关联度为:0.882),其次是电影上线数量(关联度为:0.873)。
这说明对票房影响最大的是银幕数量,其次是电影上线数量、票价,观影人数对电影票房的影响程度较小。
7、注意事项
在选择量纲处理方式时,一般地,初值化方法适用于稳定递增或递减的数据,而均值化适合没有明显升降趋势现象的数据;
灰色关联分析时,数据一定需要大于 0,原因在于如果小于 0 进行计算时会出现‘抵消’现象,并不符合灰色关联分析的计算原理。
如果出现小于 0 数据,建议作为空值处理或者填补;
母序列是指标的参照对比项,比如研究 5 个指标与母序列的关联程度,通常研究者需要自己提供母序列数据。