纯电动汽车高压原理设计 - 副本
- 格式:doc
- 大小:681.00 KB
- 文档页数:7
纯电动汽车高压电气系统设计原理来源:线束工程师技术丨编辑 / 小连整理 / 小连本文介绍了纯电动汽车高压电气系统原理设计的各个方面和注意事项,文章对多个研发项目中纯电动汽车高压电系统出现的故障及存在的安全隐患进行分析,并提出一整套针对高压电系统安全防护、故障处理及碰撞安全的设计方案,对纯电动汽车高压系统安全设计具有一定的参考意义。
以下为正文。
一、纯电动汽车电气系统安全分析纯电动轿车电气系统主要包括低压电气系统、高压电气系统及CAN 通讯信息网络系统。
1.低压电气系统采用 12 V 供电系统,除了为灯光照明系统、娱乐系统及雨刷器等常规低压用电器供电外,还为整车控制器、电池管理系统、电机控制器、DC/DC 转换器及电动空调等高压附件设备控制回路供电;2.高压电气系统主要包括动力电池组、电驱动系统、DC/DC 电压转换器、电动空调、电暖风、车载充电系统、非车载充电系统及高压电安全管理系统等;3.CAN 总线网络系统用来实现整车控制器和电机控制器、以及电池管理系统、高压电安全管理系统、电动空调、车载充电机和非车载充电设备等控制单元之间的相互通信。
人体的安全电压及电流纯电动汽车电压和电流等级都比较高,动力电压一般都在300~400 V(直流),电流瞬间能够达到几百安。
人体能承受的安全电压值的大小取决于人体允许通过的电流和人体的电阻。
有关研究表明,人体电阻一般在 1 000~3 000 Ω。
人体皮肤电阻与皮肤状态有关,在干燥、洁净及无破损的情况下,可高达几十千欧,而潮湿的皮肤,特别是受到操作的情况下,其电阻可能降到1 000 Ω 以下。
由于我国安全电压多采用 36 V,大体相当于人体允许电流 30 mA、人体电阻 1 200Ω的情况。
所以要求人体可接触的电动汽车任意2 处带电部位的电压都要小于36 V。
根据国际电工标准的要求,人体没有任何感觉的电流安全阈值是 2 mA,这就要求人体直接接触电气系统任何一处的时候,流经人体的电流应该小于2 mA 才认为整车绝缘合格。
氢能源纯电动汽车高压系统的组成和设计1前言汽车作为重要的交通工具,为人们生活带来便捷和舒适的同时,也带来了诸多负面影响,能源消耗、环境污染和温室效应已经成为全球性难题,寻求替代能源、发展绿色交通刻不容缓。
新能源汽车以汽油、柴油之外的非常规的车用替代燃料或者电能、太阳能等动力能源,具有污染小、噪声低、转换效率高、使用成本低等优点,被视为汽车工业节能减排、减少对石油依存的最有效途径。
我国传统汽车工业基础相对薄弱,技术创新能力较低,许多关键核心技术受制于人,与汽车工业发达国家之间差距仍然较大。
目前,国务院印发的《“十二五”国家战略性新兴产业发展规划》中将新能源汽车列入七大战略新兴产业之一,在国家政策的大力支持下,行业发展迅速,我国汽车工业以纯电驱动作为技术转型的主要战略方向,重点突破电池、电机和电控技术,推进纯电动汽车产业化发展。
2新能源汽车的概述新能源汽车基础的是 EV:Electric vehicle(电动车),顾名思义就是使用电作为动力的汽车。
EV 这个概念是“元概念”。
所谓新能源汽车的分类,就是在“EV”前面,增加了一些修饰性的前缀而已。
2.1纯电动汽车(BEV:Battery Electric Vehicle)BEV 是由电动机驱动的汽车,单纯由车载可充蓄电池或者其他能量储存装置来提供动力的车型。
图 1 纯电动汽车构造图电池有两种方案:三元锂电池和磷酸铁锂电池。
一般来说,乘用车倾向于采用三元锂电池,而商用客车用磷酸铁锂电池会更合适,也有使用钛酸锂电池的案例。
2.2燃料电池电动车(FCEV:Fuel Cell Electric Vehicle)燃料电池车指的就是以燃料电池作为动力电源的汽车。
燃料电池是氢为燃料的静态发电系统,通常还带有一组动力电池作为辅助动力源,燃料电池汽车与纯电动汽车除了动力源不同之外,其驱动电机、传动系统等部件都完全相同。
FCEV 在运行过程中只会产生水,氢燃料电池本身也不会造成污染,所以 FCEV 有很多独特的优势。
纯电动汽车高压原理设计一、电动汽车概述1.1 电动汽车定义及组成电动汽车(EV,electric vehicle)是指以车载电源为动力,由电动机驱动车轮行驶,符合道路交通、安全法规各项要求的车辆。
电动汽车区别于内燃机汽车的最大不同点是动力系统由电力驱动系统组成,电力驱动系统是电动汽车的核心,由驱动电机及其控制器、动力电源、高压配电系统和电力附件组成,电动汽车的其他装置则基本与内燃机汽车相似。
目前,电动汽车上使用的驱动电机广泛采用为永磁无刷或异步交流电机,随着电机和电机控制技术的发展,开关磁阻电机和轮毂电机等势必成为将来电动汽车驱动电机应用的方向。
目前,电动汽车上应用最广泛的动力电源是锂离子动力电池,但随着新型储能装置的发展和技术革新,类似燃料电池、金属电池、超级电池、超级电容等储能装置也将会改变电动汽车应用的进程。
1.2 电动汽车的分类电动汽车的种类:纯电动汽车(BEV,battery electric vehicle )、混合动力汽车(HEV,Hybrid-electric vehicle)、燃料电池汽车(FCEV,Fuel cell electric vehicle)。
纯电动汽车,驱动电机的能源完全来自于车载电力储能装置——动力电池。
混合动力汽车,驱动电机的能源来自于传统或新型燃和电力储能装置。
串联式混合动力汽车(SHEV):车辆的驱动力只来源于电动机。
并联式混合动力汽车(PHEV):车辆的驱动力由电动机及发动机同时或单独供给。
混联式混合动力汽车(CHEV):同时具有串联式、并联式驱动方式。
燃料电池汽车:以燃料电池作为动力电源的汽车。
燃料电池的化学反应过程不会产生有害产物,因此燃料电池车辆是完全无污染的汽车。
1.3 电动汽车的历史早在1873年,由英国人罗伯特·戴维森用一次电池作动力发明了可供实用的电动汽车,这比德国人戴姆勒和本茨发明汽油发动机汽车早了10年以上。
随后,从1881年开始,广泛应用了可以充放电的二次电池,由此电动汽车需求量有了很大提高。
整车高压系统介绍整车高压系统结构:整车高压配电原理图动力电池系统动力电池是电动汽车的动力源,为整车提供电能,支持整车按驾驶员意图运行,支持高压附件系统(电动压缩机、PTC、DC/DC等)正常工作。
动力电池输出电压直流电一般在240-420V之间,输出最大电流可达到200A。
动力电池系统包含电池模组和电池管理系统(BMS),BMS保证动力电池高压安全,作为整个高压系统的控制中心。
PTCA/C 继电器保险丝驱动电机及其控制系统驱动电机总成(EM )、驱动电机控制器总成(PEU )及其连接的高压线束等子部件构成了一个功能完整的系统。
EM 为永磁同步电动机,并且该电机由驱动电机控制器总成进行控制PEU 直流侧额定电压为336VDC ,输出额定工作电流为260A ;最大工作电流为400A 。
EM 可持续功率不小于42kW ,峰值功率不小于95kW ,全功率范围内的最高转速不小于11500r/min 。
Enviroment Water Cooling SystemMountingGear BoxEM (PMSM)UVWResolver Signal Temperature SensorHV harness LV harnessMechanical InterfaceCooling pipe DC/DCInverterPEUEnvironmentGND附件系统附件系统包含分线盒、车载充电机及其高压线束等。
车载充电机必须能够将交流电转化为直流电来为动力电池充电。
输入额定电压为220Vac,频率50Hz,输入电流有效值一般不大于16Aac。
车载充电机的高压直流输出电压应可调,范围为250 V~430 V,以便与动力电池高压范围相匹配。
车载充电机高压直流最大输出电流不得大于10Adc, 输出高压直流最大功率3.3kW。
直流侧高压交流侧高压交流侧高压三个接口:高压输入、高压输出、低压信号充电枪插入时,整车处于充电状态,不得触碰高压部件整车高压安全策略 1.高压配电整车高压各系统都有对应的继电器、保险丝等保护器件,继电器由系统控制模块控制其闭合、断开。
新能源汽车混合动力系统整车高压线束设计随着环保意识的日益增强和汽车行业的不断发展,新能源汽车已经成为未来汽车发展的趋势。
混合动力汽车是新能源汽车的一种,其采用混合动力系统,将内燃机和电动机结合起来使用,既可以减少排放,又可以提高燃油利用率。
而高压线束则是混合动力汽车核心部件之一,是将高压电能从电池传递到电动机的关键部件。
在设计新能源汽车混合动力系统整车高压线束时,需要考虑以下几个方面:1. 材料选择:因为高压线束需要承受高电压和高温,所以线束需要采用高温、高压、耐磨的材料。
常见的材料有特殊橡胶、硅胶、氟橡胶、玻璃纤维布等,而首选材料是聚酰亚胺。
2. 线径选择:高压线束需要承受较高的电压和电流,因此线径要足够粗,以保证电能传输的安全性和可靠性。
而线径的选择需要考虑电池输出电压、电动机功率和线束长度等因素。
3. 接头设计:高压线束的接头设计也是非常关键的,要能够承受高电压和高温,同时还要具备防水、防爆等功能。
根据车辆使用环境,接头采用防护结构设计,比如采用橡胶、硅胶材质,添加密封胶等。
4. 布线方式:由于高压线束需要长距离输送电能,因此需要采用恰当的布线方式,以尽量减少对整车结构的影响。
通常采用丝绸带式布线和膜式布线,能有效减少空间的占用。
综合考虑以上几个方面,在设计新能源汽车混合动力系统整车高压线束时,需要注意以下几点:1. 图纸设计:在进行高压线束设计前,需要制作设计图纸,包括布线方案、电线直径、连接方式等。
2. 测试验证:设计后需要进行测试验证,以确保线束的安全性和可靠性。
3. 尽量减少空间占用:高压线束需要穿过整个车身,需要尽量减少空间占用,以保证车内空间的充裕。
4. 合理的布线方式:应根据车辆的具体结构和使用情况,选择合适的布线方式,以达到最佳的线束布局效果。
总之,设计新能源汽车混合动力系统整车高压线束是一项非常重要的工作,需要综合考虑各个方面的因素,以保证线束的安全性和可靠性。
只有这样,新能源汽车才能更好地为人们的生活带来便利和环保的效益。
新能源汽车高压系统组成工作原理随着环保意识的增强和能源危机的加剧,新能源汽车逐渐成为人们关注的焦点。
新能源汽车通过电能储存和转换,减少对传统燃油的依赖,从而降低尾气排放和对化石能源的消耗。
在新能源汽车的动力系统中,高压系统是其核心组成部分之一。
本文将从新能源汽车高压系统的组成和工作原理两个方面进行阐述。
一、高压系统的组成1. 电池组:新能源汽车的动力源来自电池组,电池组是高压系统最基本的组成部分。
电池组通常采用锂离子电池,它能够高效地存储电能并提供给电动汽车的驱动电机。
2. 高压控制器:高压控制器是用来监控和调节电池组输出的直流电压,并将其转换为交流电,以供电动汽车的电机使用。
高压控制器还具有过流、过压、短路等保护功能,确保电池组和电动汽车的安全运行。
3. 高压载波装置:高压载波装置是用来降低电源线上的电磁干扰和提高能量利用率的装置。
通过高压载波装置,可以降低电压波动和电磁辐射,保证高压系统的稳定和安全运行。
4. 高压线束:高压线束将电池组、高压控制器、电动汽车的驱动电机等连接在一起,传输高压直流电能。
高压线束需要具有良好的绝缘性能和耐高温性能,以防止电能泄漏和线束短路。
5. 高压插头:高压插头是新能源汽车充电时的接口,它能够稳定地传输高压直流电能,快速充电,并且具有防水、防尘等功能。
二、高压系统的工作原理1. 充电阶段:当新能源汽车接入外部电源进行充电时,电能通过高压插头进入电池组,高压控制器将电能转换为适合电机使用的交流电。
在充电过程中,高压控制器会实时监测电池组的电压、电流等参数,确保充电过程稳定可靠。
2. 供能阶段:当新能源汽车需要行驶时,电池组将储存的电能通过高压线束传输至电动汽车的驱动电机,驱动电机将电能转换为机械能,从而推动车辆行驶。
高压控制器会根据车辆驾驶的实时需求,控制电能的输出,并实现能量的高效利用。
3. 能量回收阶段:在行驶或制动过程中,电动汽车的驱动电机会产生一定的电能,这部分电能通过高压线束返回到电池组中进行储存,以实现能量的再生利用。
浅谈纯电动汽车高压线束设计【摘要】纯电动汽车是以动力电池作为能量来源、以驱动电机作为动力来源的可在道路上行驶的无轨车辆。
驱动电机、动力电池、驱动电机控制器、车载充电机、DC-DC等高压电气元件共同构成了纯纯电动汽车的高压电气架构。
随车纯纯电动汽车汽车技术的不断发展,动力电池总成的容量已达到上百千万时,同时动力电池的充电时间也在不断降低,因此必须采用高压大电流充电技术。
作为连接纯电动汽车驱动电机、动力电池等高压电气元件的高压线束,其设计要求也变得更加严格。
本文从高压线束的安全性及可靠性等出发,浅谈高压线束的设计要素。
【关键词】纯电动汽车高压线束安全性可靠性1.国内产品研制情况近年新能源汽车渗透率加速提升。
新能源电动车取消了发动机和发动机线束,通过电机驱动。
燃油车通常使用12V电压,而新能源电动车通常使用400V或更高的驱动电压,低压线束无法满足动力传输需求。
于是在低压线束的基础上,新能源车新增高压线束的需求,主要用在动力电池、驱动电机、车载充电机(OBC)、DC/DC转换器、高压配电盒、电动压缩机以及PTC上,是新增量市场。
国内汽车市场快速发展,吉利、奇瑞、长城、长安、比亚迪等优秀国产品牌正逐渐崛起。
自主品牌本土零部件采购率较高,为国产零部件企业带来发展机遇。
随着同步开发和自主研发的能力的提升,加之成本优势和本地化服务优势,本土汽车零部件供应商在部分汽车零部件领域开始进口替代,我国汽车零部件行业正处于逐步实现国产替代的趋势之中。
2.高压线束的设计随着国内纯电动汽车行业的快速发展,比亚迪、吉利、长安等为摆脱对国外高压线束产品的依赖,纷纷投入一定的研发资金展开高压大电流纯电动汽车所需的高压线束的自主研发工作。
根据纯电动汽车高压电气系统对高压线束的使用要求,纯电动汽车的高压线束首先要高压大电流的使用性要求,其次还要需要满足抗电磁干扰、防水、抗振等安全可靠性要求。
2.1高压线束的设计依据纯电动汽车的用户群体需求可以确定其功能需求及性能指标要求,进而制定出纯电动汽车高压线束的使用要求。
比亚迪高压系统工作原理
一、比亚迪高压系统工作原理
1、比亚迪高压系统主要由机械、电器和控制部件组成,其功能是将能源转换成高压电,提供动力系统使用。
2、在比亚迪高压系统中,控制系统是比亚迪高压系统内核,控制系统的功能就是控制电压变化程度,以及动力系统的电流。
3、其中的几个控制环节是:
(1)电流环节:主要负责测量电源电压、动力系统电流变化情况,并将电流变化情况及时反馈给控制系统。
(2)电压环节:由滤波器和电压变换器两个部件组成,通过滤波器过滤电源电压,然后将电压发送给电压变换器,电压变换器会根据控制系统输入的参数,将电压调整为动力系统所需的指定电压。
(3)调整环节:主要根据实时反馈信息,对动力系统电流及电压进行实时调整,以达到最理想的状态。
4、比亚迪高压系统的优点主要是结构紧凑、性能可靠、降压能力强,能够实现对电源电压的精确调节,可以将高电压转换为低电压,提供高精度的动力输出。
5、比亚迪高压系统的不足之处在于维护成本较高,电压波动范围有限,安装工作量大,需要定期检查和维护。
- 1 -。
纯电动客车的高低压原理
BJ6123C7C4D纯电动客车的高压原理如图3-3所示。
高压电源从电池的整机D+出发,首先通过位于驾驶员控制台的高压开关DK1,该开关受低压控制,作为整车高压电源的总开关以及充电开关。
经线路2可以进行充电操作,经线路3与主电机控制器(通过驱动电机驱动车辆行走)、DC/DC变换器(给低压电源充电)、转向系统控制器(控制转向助力机构)、制动系统控制器(控制和驱动气泵打气提供制动能量)及冷暖一体化空调相连,最后经过分流器FL流回负极,分流器FL的作用是检测高压线路中的电流值。
此外,在电池内部之间装有350A的熔断器F,防止高压回路中电流过大。
纯电动客车动力电池组通过DC/DC变换器将高压直流电转换为低压直流电,为仪表、照明、控制系统和车身附件提供电能,并给辅助蓄电池充电,这构成了整车低压电气系统。
纯电动汽车高压原理设计
一、电动汽车概述
1.1 电动汽车定义及组成
电动汽车(EV,electric vehicle)是指以车载电源为动力,由电动机驱动车轮行驶,符合道路交通、安全法规各项要求的车辆。
电动汽车区别于内燃机汽车的最大不同点是动力系统由电力驱动系统组成,电力驱动系统是电动汽车的核心,由驱动电机及其控制器、动力电源、高压配电系统和电力附件组成,电动汽车的其他装置则基本与内燃机汽车相似。
目前,电动汽车上使用的驱动电机广泛采用为永磁无刷或异步交流电机,随着电机和电机控制技术的发展,开关磁阻电机和轮毂电机等势必成为将来电动汽车驱动电机应用的方向。
目前,电动汽车上应用最广泛的动力电源是锂离子动力电池,但随着新型储能装置的发展和技术革新,类似燃料电池、金属电池、超级电池、超级电容等储能装置也将会改变电动汽车应用的进程。
1.2 电动汽车的分类
电动汽车的种类:纯电动汽车(BEV,battery electric vehicle )、混合动力汽车(HEV,Hybrid-electric vehicle)、燃料电池汽车(FCEV,Fuel cell electric vehicle)。
纯电动汽车,驱动电机的能源完全来自于车载电力储能装置——动力电池。
混合动力汽车,驱动电机的能源来自于传统或新型燃和电力储能装置。
串联式混合动力汽车(SHEV):车辆的驱动力只来源于电动机。
并联式混合动力汽车(PHEV):车辆的驱动力由电动机及发动机同时或单独供给。
混联式混合动力汽车(CHEV):同时具有串联式、并联式驱动方式。
燃料电池汽车:以燃料电池作为动力电源的汽车。
燃料电池的化学反应过程不会产生有害产物,因此燃料电池车辆是完全无污染的汽车。
1.3 电动汽车的历史
早在1873年,由英国人罗伯特·戴维森用一次电池作动力发明了可供实用的
电动汽车,这比德国人戴姆勒和本茨发明汽油发动机汽车早了10年以上。
随后,从1881年开始,广泛应用了可以充放电的二次电池,由此电动汽车需求量有了很大提高。
由于当时车用内燃机技术还相当落后,行驶里程短,故障多,维修困难,而电动汽车却维修方便,所以在19世纪的下半叶成为交通运输的重要产品,当时汽车使用主要有蒸汽机汽车、电动汽车、内燃气车,由于受当时生产力和发展的限制,电动汽车充电时间长、续驶里程短的问题还不突出,在1900年美国制造的汽车数量中,电动汽车为15755辆,蒸汽机汽车1684辆,而汽油机汽车只有936辆。
可是进入20世纪以后,由于内燃机技术的不断进步(启动电机技术的应用、高性能点火装置等),1908年美国福特汽车公司T型车问世,以流水线生产方式大规模批量制造汽车使汽油机汽车开始普及,致使在市场竞争中蒸汽机汽车与电动汽车由于存在着技术及经济性能上的不足,使前者被无情的岁月淘汰,后者则呈萎缩状态。
二、纯电动汽车高压原理设计
2.1 纯电动汽车高压主回路设计
纯电动汽车的高压主回路如图2.1所示,由动力电池、正、负极接触器、预充电回路(预充电接触器和预充电阻)、高压负载(电机控制器和高压器件)组成。
其中,由于电机控制器和一些高压用电设备内部有较大的电容电路,为了高压电路接通瞬间的用电安全,设计了预充电回路,即预充电接触器和预充电阻。
图2.1 纯电动汽车高压主回路图
2.2纯电动汽车的控制回路设计
纯电动汽车的控制回路,是指纯电动汽车高压主回路里面高压接触器的低压控制回路以及控制器等低压控制装置在高压原理图中的控制回路,如图2.2所示,主
要工作电压为12/24V。
图2.3 纯电动汽车的控制回路设计
2.3纯电动汽车的高压检测回路设计
纯电动汽车的高压原理图设计中,需要对高压回路中的电压、电流、绝缘电阻等高压信号进行实时检测,所以高压原理图中的高压检测设计是十分重要的,如图2.3所示。
图2.3高压检测设计
2.4 纯电动汽车高压原理图设计
如图2.4所示,为某车型纯电动汽车的高压原理图。
图中高压原理设计了高压配电系统的开盖互锁、高压接插件互锁、充电互锁、放电控制等高压安
全控制电路。
三、纯电动汽车高压器件选型
3.1 高压接触器选型
高压接触器起着高压回路接通与切断的作用,是高压回路重要开关,在选型时要根据高压电气参数做适当选择,主要指标有电压等级、电流承受能力、带载切断能力与次数、灭弧能力、辅助触点功能、安装方式与结构特点等,如图3.1为美国泰科高压接触器的外形图。
泰科LEV100 泰科EV200
图3.1泰科接触器外形图
3.2 高压熔断器选型
高压熔断器起到对高压回路中高压线束以及高压用电器的过流保护的作用,即在大电流或短路电流通过的时候,及时熔断以保护高压用电器不因大电流的冲击而受到损害盒保护过流导致高压线束的升温甚至熔断起火。
高压熔断器选型也应考虑电压等级,电流分断能力,分断特性等要求,如图3.2为巴斯曼高压熔断器外形图。
图3.2 BUSSMANN熔断器
3.3 预充电阻和预充时间的确定
前面说过了,为了避免内含较大容量电容的用电设备在上电时产生大电流冲
击高压用电器、高压接触器和高压熔断器,设计了预充电回路,但是选择多大的预充电阻和控制多长的预充电时间,还需要经过科学的计算,如式3-3所示,为预充电回路设计的理论计算依据。
根据公式Vc=E(1-e-(t/R*C))………………………………………………(式3-3)式3-3中,Vc为预充电容两端电压,E为动力电池两端电压,C为预充总电容,t为充电时间,R为预充电阻。
由上式计算出充电电阻R和预充电时间t。
3.4 放电电阻和时间的确定
同理,在高压系统下电后,那些内部含有大容量电容的高压用电设备还储存有大量的电能,对整车和人员的安全产生极大的危险,所以需要设计放电电路泄放掉大容量电容内的电能,一般要求高压用电设备自带泄放回路,但安装不满这一要求用电设备的车辆,就需要单独设计泄放回路,泄放回路中电阻和时间的确定也是有科学的理论计算依据的,如3.4式。
根据公式Vc=E* e-(t/R*C)………………………………………………(式3-4)式3-4中,Vc=36V(安全电压),E为动力电池两端电压,C为高压回路总电容值,t为放电时间,R为放电电阻。
由式3-4计算出放电电阻R和放电时间t。
四、高压原理设计中的改进和创新
4.1 互锁设计
顾名思义,互锁就是指某两种功能或状态的相互锁定,即通过软件或硬件手段实现的,同一时刻或工况下只能有一种状态存在的可能。
前面已经在高压原理设计中体现了高压系统内的互锁设计:充电互锁、开盖互锁、插接件互锁等。
4.2 预充与放电设计
4.3 绝缘电阻实时监测设计
绝缘电阻是指绝缘物在规定条件下的直流电阻。
绝缘电阻是电气设备和电气线路最基本的绝缘指标,在本应电气隔离的两个介质中加直流电压,经过一定时间极化过程结束后,流过电介质的泄漏电流对应的电阻称绝缘电阻。
对于纯电动汽车,国家标准GB/T 18384中对动力电池及高压用电器的绝缘
电阻有着明确的规定和要求。
4.4 专利
在工作中,处处存在着问题和解决问题的情况,善于总结就会从平凡的工作中体会到不平凡的发现和改善,结合科学的手段,不难就可以从中得到颇丰的收获。