当前位置:文档之家› 2019-2020中考数学试卷(及答案)

2019-2020中考数学试卷(及答案)

2019-2020中考数学试卷(及答案)
2019-2020中考数学试卷(及答案)

2019-2020中考数学试卷(及答案)

一、选择题

1.地球与月球的平均距离为384 000km ,将384 000这个数用科学记数法表示为( ) A .3.84×103 B .3.84×104 C .3.84×105 D .3.84×106

2.如图,矩形ABCD 中,AB=3,BC=4,动点P 从A 点出发,按A→B→C 的方向在AB 和BC 上移动,记PA=x ,点D 到直线PA 的距离为y ,则y 关于x 的函数图象大致是( )

A .

B .

C .

D .

3.下列各式中能用完全平方公式进行因式分解的是( ) A .x 2+x+1

B .x 2+2x ﹣1

C .x 2﹣1

D .x 2﹣6x+9

4.一元二次方程(1)(1)23x x x +-=+的根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .只有一个实数根

D .没有实数根

5.如图,矩形ABCD 中,O 为AC 中点,过点O 的直线分别与AB 、CD 交于点E 、F ,连结BF 交AC 于点M ,连结DE 、BO .若∠COB=60°,FO=FC ,则下列结论:①FB 垂直平分OC ;②△EOB ≌△CMB ;③DE=EF ;④S △AOE :S △BCM =2:3.其中正确结论的个数是( )

A .4个

B .3个

C .2个

D .1个

6.有31位学生参加学校举行的“最强大脑”智力游戏比赛,比赛结束后根据每个学生的最后得分计算出中位数、平均数、众数和方差,如果去掉一个最高分和一个最低分,则一定不发生变化的是( ) A .中位数

B .平均数

C .众数

D .方差

7.在同一坐标系内,一次函数y ax b =+与二次函数2y ax 8x b =++的图象可能是

A .

B .

C .

D .

8.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10cm ,正方形A 的边长为6cm 、B 的边长为5cm 、C 的边长为5cm ,则正方形D 的边长为( )

A 14

B .4cm

C 15

D .3cm

9.我们将在直角坐标系中圆心坐标和半径均为整数的圆称为“整圆”.如图,直线l :3x 轴、y 轴分别交于A 、B ,∠OAB=30°,点P 在x 轴上,⊙P 与l 相切,当P 在线段OA 上运动时,使得⊙P 成为整圆的点P 个数是( )

A.6B.8C.10D.12

10.如图,某小区规划在一个长16m,宽9m的矩形场地ABCD上,修建同样宽的小路,使其中两条与AB平行,另一条与AD平行,其余部分种草,如果使草坪部分的总面积为112m2,设小路的宽为xm,那么x满足的方程是()

A.2x2-25x+16=0B.x2-25x+32=0C.x2-17x+16=0D.x2-17x-16=0 11.如图,已知////

AB CD EF,那么下列结论正确的是()

A.AD BC

DF CE

=B.BC DF

CE AD

=C.

CD BC

EF BE

=D.

CD AD

EF AF

=

12.如图,已知⊙O的半径是2,点A、B、C在⊙O上,若四边形OABC为菱形,则图中阴影部分面积为()

A.2

3

π﹣23B.

1

3

π﹣3C.

4

3

π﹣23D.

4

3

π﹣3

二、填空题

13.如果a是不为1的有理数,我们把

1

1a

-

称为a的差倒数如:2的差倒数是

1

1

12

=-

-

,-1

的差倒数是

11

1(1)2

=

--

,已知

1

4

a=,

2

a是

1

a的差倒数,

3

a是

2

a的差倒数,

4

a是

3

a的差

倒数,…,依此类推,则

2019

a=___________.

14.如图,直线a、b被直线l所截,a∥b,∠1=70°,则∠2= .

15.半径为2的圆中,60°的圆心角所对的弧的弧长为_____.

16.如图,是将菱形ABCD以点O为中心按顺时针方向分别旋转90°,180°,270°后形成的图形.若∠BAD=60°,AB=2,则图中阴影部分的面积为.

17.在一次班级数学测试中,65分为及格分数线,全班的总平均分为66分,而所有成绩及格的学生的平均分为72分,所有成绩不及格的学生的平均分为58分,为了减少不及格的学生人数,老师给每位学生的成绩加上了5分,加分之后,所有成绩及格的学生的平均分变为75分,所有成绩不及格的学生的平均分变为59分,已知该班学生人数大于15人少于30人,该班共有_____位学生.

18.在学习解直角三角形以后,某兴趣小组测量了旗杆的高度.如图,某一时刻,旗杆AB 的影子一部分落在水平地面L的影长BC为5米,落在斜坡上的部分影长CD为4米.测得斜CD的坡度i=1:.太阳光线与斜坡的夹角∠ADC=80°,则旗杆AB的高度

_____.(精确到0.1米)(参考数据:sin50°=0.8,tan50°=1.2,=1.732)

19.如图,在△ABC中,BC边上的垂直平分线DE交边BC于点D,交边AB于点E.若△EDC的周长为24,△ABC与四边形AEDC的周长之差为12,则线段DE的长为_____.

20.农科院新培育出A、B两种新麦种,为了了解它们的发芽情况,在推广前做了五次发芽实验,每次随机各自取相同种子数,在相同的培育环境中分别实验,实验情况记录如

下:

种子数量10020050010002000

A

出芽种子数961654919841965

发芽率0.960.830.980.980.98

B

出芽种子数961924869771946

发芽率0.960.960.970.980.97

下面有三个推断:

①当实验种子数量为100时,两种种子的发芽率均为0.96,所以他们发芽的概率一样;

②随着实验种子数量的增加,A种子出芽率在0.98附近摆动,显示出一定的稳定性,可以估计A种子出芽的概率是0.98;

③在同样的地质环境下播种,A种子的出芽率可能会高于B种子.其中合理的是

__________(只填序号).

三、解答题

21.某大学生利用业余时间参与了一家网店经营,销售一种成本为30元/件的文化衫,根据以往的销售经验,他整理出这种文化衫的售价y1(元/件),销量y2(件)与第x(1≤x<90)天的函数图象如图所示(销售利润=(售价-成本)×销量).

(1)求y1与y2的函数解析式.

(2)求每天的销售利润W与x的函数解析式.

(3)销售这种文化衫的第多少天,销售利润最大,最大利润是多少?

22.甲、乙两公司为“见义勇为基金会”各捐款60000元.已知甲公司的人数比乙公司的人数多20℅,乙公司比甲公司人均多捐20元.甲、乙两公司各有多少人?

23.解方程:

x2

1 x1x

-= -

.

24.如图,在平面直角坐标系中,直线AB与函数y=k

x

(x>0)的图象交于点A(m,

2),B(2,n).过点A作AC平行于x轴交y轴于点C,在y轴负半轴上取一点D,使

OD=1

2

OC,且△ACD的面积是6,连接BC.

(1)求m,k,n的值;(2)求△ABC的面积.

25.某公司销售两种椅子,普通椅子价格是每把180元,实木椅子的价格是每把400元.(1)该公司在2019年第一月销售了两种椅子共900把,销售总金额达到了272000元,求两种椅了各销售了多少把?

(2)第二月正好赶上市里开展家俱展销活动,公司决定将普通椅子每把降30元后销售,实木椅子每把降价2a%(a>0)后销售,在展销活动的第一周,该公司的普通椅子销售量比上

一月全月普通椅子的销售量多了10

3

a%:实木椅子的销售量比第一月全月实木椅子的销售

量多了a%,这一周两种椅子的总销售金额达到了251000元,求a的值.

【参考答案】***试卷处理标记,请不要删除

一、选择题

1.C

解析:C

【解析】

试题分析:384 000=3.84×105.故选C.

考点:科学记数法—表示较大的数.

2.B

解析:B

【解析】

【分析】

①点P在AB上时,点D到AP的距离为AD的长度,②点P在BC上时,根据同角的余角相等求出∠APB=∠PAD,再利用相似三角形的列出比例式整理得到y与x的关系式,从而得解.

【详解】

①点P在AB上时,0≤x≤3,点D到AP的距离为AD的长度,是定值4;

②点P在BC上时,3<x≤5,

∵∠APB+∠BAP=90°, ∠PAD+∠BAP=90°, ∴∠APB=∠PAD, 又∵∠B=∠DEA=90°, ∴△ABP∽△DEA,

∴AB DE =AP AD AB AP

DE AD =,

即34

x y =, ∴y=

12x

, 纵观各选项,只有B 选项图形符合, 故选B .

3.D

解析:D 【解析】

根据完全平方公式的特点:两项平方项的符号相同,另一项是两底数积的2倍,对各选项解析判断后利用排除法求解:

A 、x 2+x+1不符合完全平方公式法分解因式的式子特点,故选项错误;

B 、x 2+2x ﹣1不符合完全平方公式法分解因式的式子特点,故选项错误;

C 、x 2﹣1不符合完全平方公式法分解因式的式子特点,故选项错误;

D 、x 2﹣6x+9=(x ﹣3)2,故选项正确. 故选D .

4.A

解析:A 【解析】 【分析】

先化成一般式后,在求根的判别式,即可确定根的状况. 【详解】

解:原方程可化为:2240x x --=,

1a \=,2b =-,4c =-,

2(2)41(4)200∴?=--??-=>, ∴方程由两个不相等的实数根.

故选:A .

【点睛】

本题运用了根的判别式的知识点,把方程转化为一般式是解决问题的关键.

5.A

解析:A

【解析】

【分析】

①利用线段垂直平分线的性质的逆定理可得结论;②证△OMB≌△OEB得△EOB≌△CMB;

③先证△BEF是等边三角形得出BF=EF,再证?DEBF得出DE=BF,所以得DE=EF;④由②可知△BCM≌△BEO,则面积相等,△AOE和△BEO属于等高的两个三角形,其面积比就等于两底的比,即S△AOE:S△BOE=AE:BE,由直角三角形30°角所对的直角边是斜边的一半得出BE=2OE=2AE,得出结论S△AOE:S△BOE=AE:BE=1:2.

【详解】

试题分析:

①∵矩形ABCD中,O为AC中点,∴OB=OC,∵∠COB=60°,∴△OBC是等边三角形,∴OB=BC,

∵FO=FC,∴FB垂直平分OC,故①正确;

②∵FB垂直平分OC,∴△CMB≌△OMB,∵OA=OC,∠FOC=∠EOA,∠DCO=∠BAO,∴△FOC≌△EOA,

∴FO=EO,易得OB⊥EF,∴△OMB≌△OEB,∴△EOB≌△CMB,故②正确;

③由△OMB≌△OEB≌△CMB得∠1=∠2=∠3=30°,BF=BE,∴△BEF是等边三角形,∴BF=EF,

∵DF∥BE且DF=BE,∴四边形DEBF是平行四边形,∴DE=BF,∴DE=EF,故③正确;

④在直角△BOE中∵∠3=30°,∴BE=2OE,∵∠OAE=∠AOE=30°,∴AE=OE,∴

BE=2AE,

∴S△AOE:S△BOE=1:2,

又∵FM:BM=1:3,

∴S△BCM =3

4

S△BCF=

3

4

S△BOE

∴S△AOE:S△BCM=2:3

故④正确;

所以其中正确结论的个数为4个

考点:(1)矩形的性质;(2)等腰三角形的性质;(3)全等三角形的性质和判定;(4)线段垂直平分线的性质

6.A

解析:A

【解析】

【分析】

根据中位数的定义:位于中间位置或中间两数的平均数可以得到去掉一个最高分和一个最低分不影响中位数.

【详解】

去掉一个最高分和一个最低分对中位数没有影响,故选A.

【点睛】

考查了统计量的选择,解题的关键是了解中位数的定义.

7.C

解析:C

【解析】

【分析】

x=0,求出两个函数图象在y轴上相交于同一点,再根据抛物线开口方向向上确定出a>0,然后确定出一次函数图象经过第一三象限,从而得解.

【详解】

x=0时,两个函数的函数值y=b,

所以,两个函数图象与y轴相交于同一点,故B、D选项错误;

由A、C选项可知,抛物线开口方向向上,

所以,a>0,

所以,一次函数y=ax+b经过第一三象限,

所以,A选项错误,C选项正确.

故选C.

8.A

解析:A

【解析】

运用直角三角形的勾股定理,设正方形D的边长为x,则

22222

+++=,x=(负值已舍),故选A

(65)(5)10

x

9.A

解析:A

【解析】

试题解析:∵直线l:与x轴、y轴分别交于A、B,

∴B(0,

在RT△AOB中,∠OAB=30°,

∴,

∵⊙P与l相切,设切点为M,连接PM,则PM⊥AB,

∴PM=1

2 PA,

设P(x,0),∴PA=12-x,

∴⊙P的半径PM=1

2

PA=6-

1

2

x,

∵x为整数,PM为整数,

∴x可以取0,2,4,6,8,10,6个数,

∴使得⊙P成为整圆的点P个数是6.

故选A.

考点:1.切线的性质;2.一次函数图象上点的坐标特征.

10.C

解析:C

【解析】

解:设小路的宽度为xm,那么草坪的总长度和总宽度应该为(16-2x)m,(9-x)m;根据题意即可得出方程为:(16-2x)(9-x)=112,整理得:x2-17x+16=0.故选C.

点睛:本题考查了一元二次方程的运用,弄清“草坪的总长度和总宽度”是解决本题的关键.

11.A

解析:A

【解析】

【分析】

已知AB∥CD∥EF,根据平行线分线段成比例定理,对各项进行分析即可.

【详解】

∵AB∥CD∥EF,

∴AD BC DF CE

故选A.

【点睛】

本题考查平行线分线段成比例定理,找准对应关系,避免错选其他答案.12.C

解析:C

【解析】

分析:连接OB和AC交于点D,根据菱形及直角三角形的性质先求出AC的长及∠AOC 的度数,然后求出菱形ABCO及扇形AOC的面积,则由S菱形ABCO﹣S扇形AOC可得答案.详解:连接OB和AC交于点D,如图所示:

∵圆的半径为2,

∴OB=OA=OC=2,

又四边形OABC是菱形,

∴OB⊥AC,OD=1

2

OB=1,

在Rt△COD中利用勾股定理可知:22

213

-=,3

∵sin∠COD=

3

2 CD

OC

=,

∴∠COD=60°,∠AOC=2∠COD=120°,

∴S菱形ABCO=1

2

B×AC=

1

2

×2×33

S扇形AOC=

2

12024

3603

π

π

??

=,

则图中阴影部分面积为S菱形ABCO﹣S扇形AOC=4

23 3

π-

故选C.

点睛:本题考查扇形面积的计算及菱形的性质,解题关键是熟练掌握菱形的面积=1

2 a?b

(a、b是两条对角线的长度);扇形的面积=

2

360

n rπ

,有一定的难度.

二、填空题

13.【解析】【分析】利用规定的运算方法分别算得a1a2a3a4…找出运算结果的循环规律利用规律解决问题【详解】∵a1=4a2=a3=a4=…数列以4?三个数依次不断循环∵2019÷3=673∴a2019

解析:3 4 .

【解析】

【分析】

利用规定的运算方法,分别算得a1,a2,a3,a4…找出运算结果的循环规律,利用规律解决

问题. 【详解】 ∵a 1=4 a 2=

1111

1143

a ==---, a 3=2

1

13

11413a ?? ??=

?

=

---, a 4=311

4

3114

a ==--

, …

数列以4,?13

34

,三个数依次不断循环,

∵2019÷3=673, ∴a 2019=a 3=

3

4, 故答案为:34

. 【点睛】

此题考查规律型:数字的变化类,倒数,解题关键在于掌握运算法则找到规律.

14.110°【解析】∵a ∥b ∴∠3=∠1=70°∵∠2+∠3=180°∴∠2=110°

解析:110° 【解析】

∵a ∥b ,∴∠3=∠1=70°,∵∠2+∠3=180°,∴∠2=110°

15.【解析】根据弧长公式可得:=故答案为 解析:2π3

【解析】

根据弧长公式可得:602180π??=2

3

π, 故答案为

2

3

π. 16.12﹣4【解析】【分析】【详解】试题分析:如图所示:连接ACBD 交于点E 连接DFFMMNDN ∵将菱形ABCD 以点O 为中心按顺时针方向分别旋转90°180°270°后形成的图形∠BAD=60°AB=2

解析:12﹣

【解析】 【分析】 【详解】

试题分析:如图所示:连接AC,BD交于点E,连接DF,FM,MN,DN,

∵将菱形ABCD以点O为中心按顺时针方向分别旋转90°,180°,270°后形成的图形,∠BAD=60°,AB=2,

∴AC⊥BD,四边形DNMF是正方形,∠AOC=90°,BD=2,AE=EC=3,

∴∠AOE=45°,ED=1,

∴AE=EO=3,DO=3﹣1,

∴S正方形DNMF=2(3﹣1)×2(3﹣1)×1

2

=8﹣43,

S△ADF=1

2

×AD×AFsin30°=1,

∴则图中阴影部分的面积为:4S△ADF+S正方形DNMF=4+8﹣43=12﹣43.

故答案为12﹣43.

考点:1、旋转的性质;2、菱形的性质.

17.28【解析】【分析】设加分前及格人数为x人不及格人数为y人原来不及格加分为及格的人数为n人所以72x+58y=66(x+y)75(x+n)+59(y-

n)=(66+5)(x+y)用n分别表示xy得到

解析:28

【解析】

【分析】

设加分前及格人数为x人,不及格人数为y人,原来不及格加分为及格的人数为n人,所以,用n分别表示x、y得到x+y=n,然后利用15<n<30,n为正整数,n为整数可得到n=5,从而得到x+y的值.

【详解】

设加分前及格人数为x人,不及格人数为y人,原来不及格加分为为及格的人数为n人,根据题意得,

解得,

所以x+y=n,

而15<n<30,n为正整数,n为整数,

所以n=5,

所以x+y=28,

即该班共有28位学生.

故答案为28.

【点睛】

本题考查了加权平均数:熟练掌握加权平均数的计算方法.构建方程组的模型是解题关键.

18.2m【解析】【分析】延长AD交BC的延长线于点E作DF⊥CE于点F解直角三角形求出EFCF即可解决问题【详解】延长AD交BC的延长线于点E作

DF⊥CE于点F在△DCF中∵CD=4mDF:CF=1:3

解析:2m.

【解析】

【分析】

延长AD交BC的延长线于点E,作DF⊥CE于点F.解直角三角形求出EF,CF,即可解决问题.

【详解】

延长AD交BC的延长线于点E,作DF⊥CE于点F.

在△DCF中,∵CD=4m,DF:CF=1:,

∴tan∠DCF=,

∴∠DCF=30°,∠CDF=60°.

∴DF=2(m),CF=2(m),

在Rt△DEF中,因为∠DEF=50°,

所以EF=≈1.67(m)

∴BE=EF+FC+CB=1.67+2+5≈10.13(m),

∴AB=BE?tan50°≈12.2(m),

故答案为12.2m.

【点睛】

本题主要考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形

解决问题.

19.6【解析】试题解析:∵DE是BC边上的垂直平分线∴BE=CE∵△EDC的周长为24∴ED+DC+EC=24①∵△ABC与四边形AEDC的周长之差为12∴(AB+AC+BC)-(AE+ED+DC+AC

解析:6

【解析】

试题解析:∵DE是BC边上的垂直平分线,

∴BE=CE.

∵△EDC的周长为24,

∴ED+DC+EC=24,①

∵△ABC与四边形AEDC的周长之差为12,

∴(AB+AC+BC)-(AE+ED+DC+AC)=(AB+AC+BC)-(AE+DC+AC)-DE=12,

∴BE+BD-DE=12,②

∵BE=CE,BD=DC,

∴①-②得,DE=6.

考点:线段垂直平分线的性质.

20.②③【解析】分析:根据随机事件发生的频率与概率的关系进行分析解答即可详解:(1)由表中的数据可知当实验种子数量为100时两种种子的发芽率虽然都是96但结合后续实验数据可知此时的发芽率并不稳定故不能确

解析:②③

【解析】分析:

根据随机事件发生的“频率”与“概率”的关系进行分析解答即可.

详解:

(1)由表中的数据可知,当实验种子数量为100时,两种种子的发芽率虽然都是96%,但结合后续实验数据可知,此时的发芽率并不稳定,故不能确定两种种子发芽的概率就是96%,所以①中的说法不合理;

(2)由表中数据可知,随着实验次数的增加,A种种子发芽的频率逐渐稳定在98%左右,故可以估计A种种子发芽的概率是98%,所以②中的说法是合理的;

(3)由表中数据可知,随着实验次数的增加,A种种子发芽的频率逐渐稳定在98%左右,而B种种子发芽的频率稳定在97%左右,故可以估计在相同条件下,A种种子发芽率大于B种种子发芽率,所以③中的说法是合理的.

故答案为:②③.

点睛:理解“随机事件发生的频率与概率之间的关系”是正确解答本题的关键.

三、解答题

21.(1)y2与x的函数关系式为y2=-2x+200(1≤x<90);(2)

W=

2

2x180x2?000(1x50),

120?x12?000(50x90).

?-++≤<

?

-+≤<

?

 

 

(3)销售这种文化衫的第45天,销售利润最大,最

大利润是6050元.

【解析】

【分析】

(1)待定系数法分别求解可得;

(2)根据:销售利润=(售价-成本)×销量,分1≤x<50、50≤x<90两种情况分别列函数关系式可得;

(3)当1≤x<50时,将二次函数关系式配方后依据二次函数性质可得此时最值情况,当50≤x<90时,依据一次函数性质可得最值情况,比较后可得答案.

【详解】

(1)当1≤x<50时,设y1=kx+b,

将(1,41),(50,90)代入,

k b41,

50k b90,

+=

?

?

+=

?

解得

k1,

b40,

=

?

?

=

?

∴y1=x+40,

当50≤x<90时,y1=90,

故y1与x的函数解析式为y1=

x40(1x50), 90(50x90);

+≤<

?

?

≤<

? 

设y2与x的函数解析式为y2=mx+n(1≤x<90),将(50,100),(90,20)代入,

50m n100,

90m n20,

+=

?

?

+=

?

解得:

m2,

n200,

=-

?

?

=

?

故y2与x的函数关系式为y2=-2x+200(1≤x<90).(2)由(1)知,当1≤x<50时,

W=(x+40-30)(-2x+200)=-2x2+180x+2000;

当50≤x<90时,

W=(90-30)(-2x+200)=-120x+12000;

综上,W=

2

2x180x2?000(1x50), 120?x12?000(50x90).?-++≤<

?

-+≤<

?

 

 

(3)当1≤x<50时,∵W=-2x2+180x+2000=-2(x-45)2+6050,

∴当x=45时,W取得最大值,最大值为6050元;

当50≤x<90时,W=-120x+12000,

∵-120<0,W随x的增大而减小,

∴当x=50时,W取得最大值,最大值为6000元;

综上,当x=45时,W取得最大值6050元.

答:销售这种文化衫的第45天,销售利润最大,最大利润是6050元.

22.甲公司有600人,乙公司有500人.

【解析】

分析:根据题意,可以设乙公司人数有x人,则甲公司有(1+20%)x人;由乙公司比甲公司

人均多捐20元列分式方程,解之即可得出答案.

详解:设乙公司有x人,则甲公司就有(1+20%)x人,即1.2x人,

根据题意,可列方程:60000

x

60000

1.2x

-=20

解之得:x=500

经检验:x=500是该方程的实数根.

23.2

x=.

【解析】

【分析】

分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.

【详解】

去分母得:x2-2x+2=x2-x,

解得:x=2,

检验:当x=2时,方程左右两边相等,

所以x=2是原方程的解.

【点睛】

此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.

24.(1) m=4,k=8,n=4;(2)△ABC的面积为4.

【解析】

试题分析:(1)由点A的纵坐标为2知OC=2,由OD=OC知OD=1、CD=3,根据△ACD 的面积为6求得m=4,将A的坐标代入函数解析式求得k,将点B坐标代入函数解析式求得n;

(2)作BE⊥AC,得BE=2,根据三角形面积公式求解可得.

试题解析:(1)∵点A的坐标为(m,2),AC平行于x轴,

∴OC=2,AC⊥y轴,

∵OD=OC,

∴OD=1,

∴CD=3,

∵△ACD的面积为6,

∴CD?AC=6,

∴AC=4,即m=4,

则点A的坐标为(4,2),将其代入y=可得k=8,

∵点B(2,n)在y=的图象上,

∴n=4;

(2)如图,过点B作BE⊥AC于点E,则BE=2,

∴S△ABC=AC?BE=×4×2=4,

即△ABC的面积为4.

考点:反比例函数与一次函数的交点问题.

25.(1)普通椅子销售了400把,实木椅子销售了500把;(2)a的值为15.

【解析】

【分析】

(1)设普通椅子销售了x把,实木椅子销售了y把,根据总价=单价×数量结合900把椅子的总销售金额为272000元,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)根据销售总价=销售单价×销售数量,即可得出关于a的一元二次方程,解之取其正值即可得出结论.

【详解】

(1)设普通椅子销售了x把,实木椅子销售了y把,

依题意,得:

900 180400272000 x y

x y

+=

?

?

+=

?

解得:

400

500 x

y

=

?

?

=

?

答:普通椅子销售了400把,实木椅子销售了500把.

(2)依题意,得:(180﹣30)×400(1+10

3

a%)+400(1﹣2a%)×500(1+a%)=

251000,

整理,得:a2﹣225=0,

解得:a1=15,a2=﹣15(不合题意,舍去).

答:a的值为15.

【点睛】

本题考查了二元一次方程组的应用以及一元二次方程的应用,找准等量关系,正确列出二元一次方程组和一元二次方程是解题关键.

东莞市数学中考试卷

2014年广东省初中毕业生学业考试 数 学 一.选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1. 在1,0,2,-3这四个数中,最大的数是( ) 2. 在下列交通标志中,既是轴对称图形,又是中心对称图形的是( ) A. B. C. D. 3. 计算3a -2a 的结果正确的是( ) 4. 把3 9x x -分解因式,结果正确的是( ) A.() 29x x - B.()23x x - C.()2 3x x + D.()()33x x x +- 5. 一个多边形的内角和是900°,这个多边形的边数是( ) 6. 一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是( ) A. 47 B.37 C.34 D.13 7. 如图7图,□ABCD 中,下列说法一定正确的是( ) =BD ⊥BD =CD =BC 题7图 8. 关于x 的一元二次方程2 30x x m -+=有两个不相等的实数根,则实数m 的取值范围为( ) A.94m > B.94m < C.94m = D.9 -4 m < 9. 一个等腰三角形的两边长分别是3和7,则它的周长为( ) 或17 10. 二次函数()2 0y ax bx c a =++≠的大致图象如题10图所示, 关于该二次函数,下列说法错误的是( ) A B C D

A.函数有最小值 B.对称轴是直线x =2 1 C.当x < 2 1 ,y 随x 的增大而减小 D.当 -1 < x < 2时,y >0 二. 填空题(本大题6小题,每小题4分,共24 答题卡相应的位置上. 11. 计算3 2x x ÷= ; 12. 据报道,截止2013年 12月我国网民规模达618 000 000人.将618 000 000 用科学计数法表示为 ; 13. 如题13图,在△ABC 中,点D ,E 分别是AB ,AC 的中点,若 BC=6,则DE= ; 题16图 O 8的距离为 ; 81+2 x >16. 如题16图,△ABC 绕点A 顺时针旋转45°得到△C B A ''若∠BAC=90°, AB=AC=2, 则图中阴影部分的面积等于 . 三.解答题(一)(本大题3小题,每小题6分,共18分) 17. ()1 1412-?? -+-- ??? 18. 先化简,再求值:()22 1111x x x ??+?- ?-+?? ,其中13x = 19. 如题19图,点D 在△ABC 的AB 边上,且∠ACD=∠A. (1)作∠BDC 的平分线DE ,交BC 于点E (用尺规作图法,保留作图痕迹,不要求写作法); (2)在(1)的条件下,判断直线DE 与直线 AC 的位置关系(不要求证明). 题19图 四.解答题(二)(本大题3小题,每小题7分,共21分) 20. 如题20图,某数学兴趣小组想测量一棵树CD 的高度,他们先在点A 处测得树顶C 的仰角为30°,然后沿AD 方向前行10m ,到达B 点,在B 处测得树顶C 的仰角高度为60°(三点在同一直线上)。请你根据他们测量数据计算这棵树CD 的高度(结果精确到)。(参考数据:2≈,3 B B C

2019年浙江温州中考数学试卷及详细答案解析(word版)

2019年浙江省温州市中考数学试卷 一、选择题(本题有10小题,每小题4分,共40分,每小题只有一个选项是正确的,不选、多选、错选,均不给分) 1.(4分)计算:(﹣3)×5的结果是( ) A .﹣15 B .15 C .﹣2 D .2 2.(4分)太阳距离银河系中心约为250 000 000 000 000 000公里,其中数据250 000 000 000 000 000用科学记数法表示为( ) A .0.25×1018 B .2.5×1017 C .25×1016 D .2.5×1016 3.(4分)某露天舞台如图所示,它的俯视图是( ) A . B . C . D . 4.(4分)在同一副扑克牌中抽取2张“方块”,3张”梅花”,1张“红桃”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为( ) A .1 6 B .1 3 C .1 2 D .2 3 5.(4分)对温州某社区居民最爱吃的鱼类进行问卷调查后(每人选一种),绘制成如图所示统计图.已知选择鲳鱼的有40人,那么选择黄鱼的有( ) A .20人 B .40人 C .60人 D .80人 6.(4分)验光师测得一组关于近视眼镜的度数y (度)与镜片焦距x (米)的对应数据如下表,根据表中数据,可得y 关于x 的函数表达式为( )

近视眼镜的度数y (度) 200 250 400 500 1000 镜片焦距x (米) 0.50 0.40 0.25 0.20 0.10 A .y = 100 x B .y = x 100 C .y = 400 x D .y = x 400 7.(4分)若扇形的圆心角为90°,半径为6,则该扇形的弧长为( ) A .3 2π B .2π C .3π D .6π 8.(4分)某简易房示意图如图所示,它是一个轴对称图形,则坡屋顶上弦杆AB 的长为( ) A . 95sinα 米 B . 9 5cosα 米 C . 5 9sinα 米 D . 5 9cosα 米 9.(4分)已知二次函数y =x 2﹣4x +2,关于该函数在﹣1≤x ≤3的取值范围内,下列说法正确的是( ) A .有最大值﹣1,有最小值﹣2 B .有最大值0,有最小值﹣1 C .有最大值7,有最小值﹣1 D .有最大值7,有最小值﹣2 10.(4分)如图,在矩形ABCD 中,E 为AB 中点,以BE 为边作正方形BEFG ,边EF 交CD 于点H ,在边BE 上取点M 使BM =BC ,作MN ∥BG 交CD 于点L ,交FG 于点N ,欧几里得在《几何原本》中利用该图解释了(a +b )(a ﹣b )=a 2﹣b 2,现以点F 为圆心,FE 为半径作圆弧交线段DH 于点P ,连结EP ,记△EPH 的面积为S 1,图中阴影部分的面积为S 2.若点A ,L ,G 在同一直线上,则S 1 S 2的值为( )

【典型题】中考数学试卷及答案

【典型题】中考数学试卷及答案 一、选择题 1.下列四个实数中,比1-小的数是() A.2-B.0 C.1 D.2 2.地球与月球的平均距离为384 000km,将384 000这个数用科学记数法表示为()A.3.84×103 B.3.84×104 C.3.84×105 D.3.84×106 3.预计到2025年,中国5G用户将超过460 000 000,将460 000 000用科学计数法表示为() A.9 4.610 ?B.7 4610 ?C.8 4.610 ?D.9 0.4610 ? 4.在Rt△ABC中,∠C=90°,AB=4,AC=1,则cosB的值为() A . 15 4 B. 1 4 C. 15 15 D. 417 17 5.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y尺,则符合题意的方程组是() A. 5 {1 5 2 x y x y =+ =- B. 5 {1 +5 2 x y x y =+ = C. 5 { 2-5 x y x y =+ = D. -5 { 2+5 x y x y = = 6.下列图形是轴对称图形的有() A.2个B.3个C.4个D.5个 7.如图,在平面直角坐标系中,菱形ABCD的顶点A,B在反比例函数 k y x =(0 k>,0 x>)的图象上,横坐标分别为1,4,对角线BD x ∥轴.若菱形ABCD的面积为 45 2 ,则k的值为()

中考数学试卷含答案

扬州市初中毕业、升学统一考试数学试题 第Ⅰ卷(共24分) 一、 选择题:(本大题共8个小题,每小题3分,共24分.) 二、 1.若数轴上表示1-和3的两点分别是点A 和点B ,则点A 和点B 之间的距离是( ) A .4- B .2- C .2 D .4 2.下列算式的运算结果为4a 的是( ) A .4a a ? B .()22a C .33a a + D .4a a ÷ 3.一元二次方程2720x x --=的实数根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .没有实数根 D .不能确定 4.下列统计量中,反映一组数据波动情况的是( ) A .平均数 B .众数 C.频率 D .方差 5.经过圆锥顶点的截面的形状可能是( ) A . B . C. D . 6.若一个三角形的两边长分别为2和4,则该三角形的周长可能是( ) A .6 B .7 C. 11 D .12 7.在一列数:1a ,2a ,3a ,???,n a 中,13a =,27a =,从第三个数开始,每一个数都等于它前两个数之积的个位数字,则这一列数中的第2017个数是( ) A .1 B .3 C.7 D .9 8.如图,已知C ?AB 的顶点坐标分别为()0,2A 、()1,0B 、()C 2,1,若二次函数21y x bx =++的图象与 阴影部分(含边界)一定有公共点,则实数b 的取值范围是( ) A .2b ≤- B .2b <- C. 2b ≥- D .2b >- 第Ⅱ卷(共126分) 二、填空题(每题3分,满分30分,将答案填在答题纸上) 9.2017年5月18日,我国在南海北部神弧海域进行的可燃冰试开采成功,标志着 我国成为全球第一个在海域可燃冰开采中获得连续稳定的国家.目前每日的天然气 试开采量约为16000立方米,把16000立方米用科学记数法表示为 立方米. 10.若2a b =,6b c =,则a c = .11.因式分解:2327x -= .

2020年广东省东莞市中考数学试卷答案解析

2020年东莞市初中毕业生水平考试 《数学》参考答案 一、选择题: 1-5CBDCA 6-10CBDAD 二、填空题: 12.10 14.110° 15.5 16.7 17.64(填62亦可) 三、解答题(一) 18.解:原式122212 =--+?- 4=- 19.解:原式2(1)1(1)(1) x x x x -=?-- 1x = 当x = = = 20.解:(1)如图,EF 为AB 的垂直平分线; (2)∵EF 为AB 的垂直平分线 ∵152 AE AB ==,90AEF ∠=? ∵在Rt ABC ?中,8AC =,10AB = ∵6BC = ∵90C AEF ∠=∠=?,A A ∠=∠ ∵AFE ABC ??∽ ∵AE EF AC BC =, 即 586EF =

∵154 EF = 四、解答题(二) 21.解:(1)108° (2) (3) ∵机会均等的结果有AB 、AC 、AD 、BA 、BC 、BD 、CA 、CB 、CD 、DA 、DB 、DC 等共12种情况,其中所选的项目恰好是A 和B 的情况有2种; ∵P (所选的项目恰好是A 和B )21126 ==. 22.解:(1)设乙厂每天能生产口罩x 万只,则甲厂每天能生产口罩1.5x 万只, 依题意,得:606051.5x x -=, 解得:4x =, 经检验,4x =是原方程的解,且符合题意, ∵甲厂每天可以生产口罩:1.546?=(万只). 答:甲、乙厂每天分别可以生产6万和4万只口罩. (3)设应安排两个工厂工作y 天才能完成任务, 依题意,得:()64100y +≥, 解得:10y ≥. 答:至少应安排两个工厂工作10天才能完成任务. 23.(1)证明:过点O 作OM BC ⊥,交AD 于点M , ∵MC MB =,90OMA ∠=?, ∵OA OD =,OM AD ⊥, ∵MA MD =

2016年浙江省温州市中考数学试卷(含答案解析)

2016年浙江省温州市中考数学试卷 一、(共10小题,每小题4分,满分40分,在每小题给出的四个选项中,只有一个是符合题意的,请把正确的选项填在题后的括号内) 1.(4分)计算(+5)+(﹣2)的结果是() A.7 B.﹣7 C.3 D.﹣3 2.(4分)如图是九(1)班45名同学每周课外阅读时间的频数直方图(每组含前一个边界值,不含后一个边界值).由图可知,人数最多的一组是() A.2~4小时B.4~6小时C.6~8小时D.8~10小时 3.(4分)三本相同的书本叠成如图所示的几何体,它的主视图是() A.B.C.D. 4.(4分)已知甲、乙两数的和是7,甲数是乙数的2倍.设甲数为x,乙数为y,根据题意,列方程组正确的是() A.B.C.D. 5.(4分)若分式的值为0,则x的值是() A.﹣3 B.﹣2 C.0 D.2 6.(4分)一个不透明的袋中,装有2个黄球、3个红球和5个白球,它们除颜色外都相同.从袋中任意摸出一个球,是白球的概率是()A.B.C.D. 7.(4分)六边形的内角和是()

A.540°B.720°C.900° D.1080° 8.(4分)如图,一直线与两坐标轴的正半轴分别交于A,B两点,P是线段AB 上任意一点(不包括端点),过P分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数表达式是() A.y=x+5 B.y=x+10 C.y=﹣x+5 D.y=﹣x+10 9.(4分)如图,一张三角形纸片ABC,其中∠C=90°,AC=4,BC=3.现小林将纸片做三次折叠:第一次使点A落在C处;将纸片展平做第二次折叠,使点B 落在C处;再将纸片展平做第三次折叠,使点A落在B处.这三次折叠的折痕长依次记为a,b,c,则a,b,c的大小关系是() A.c>a>b B.b>a>c C.c>b>a D.b>c>a 10.(4分)如图,在△ABC中,∠ACB=90°,AC=4,BC=2.P是AB边上一动点,PD⊥AC于点D,点E在P的右侧,且PE=1,连结CE.P从点A出发,沿AB方向运动,当E到达点B时,P停止运动.在整个运动过程中,图中阴影部分面积S1+S2的大小变化情况是() A.一直减小B.一直不变C.先减小后增大D.先增大后减小 二、填空题(共6小题,每小题5分,满分30分)

2020年中考数学试题(及答案)

2020年中考数学试题(及答案) 一、选择题 1.华为Mate20手机搭载了全球首款7纳米制程芯片,7纳米就是0.000000007米.数据 0.000000007用科学记数法表示为( ). A .7710?﹣ B .8 0.710?﹣ C .8710?﹣ D .9710?﹣ 2.预计到2025年,中国5G 用户将超过460 000 000,将460 000 000用科学计数法表示为 ( ) A .94.610? B .74610? C .84.610? D .90.4610? 3.在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的( ) A .众数 B .方差 C .平均数 D .中位数 4.三张外观相同的卡片分别标有数字1,2,3,从中随机一次性抽出两张,则这两张卡片上的数字恰好都小于3的概率是( ) A . 1 9 B . 16 C . 13 D . 23 5.点 P (m + 3,m + 1)在x 轴上,则P 点坐标为( ) A .(0,﹣2) B .(0,﹣4) C .(4,0) D .(2,0) 6.如图,直线l 1∥l 2,将一直角三角尺按如图所示放置,使得直角顶点在直线l 1上,两直角边分别与直线l 1、l 2相交形成锐角∠1、∠2且∠1=25°,则∠2的度数为( ) A .25° B .75° C .65° D .55° 7.在某篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场,设有x 个队参赛,根据题意,可列方程为() A . ()1 1362 x x -= B . ()1 1362 x x += C .()136x x -= D .()136x x += 8.甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;丙超市一次性降价30%.则顾客到哪家超市购买这种商品更合算( ) A .甲 B .乙 C .丙 D .一样 9.下列计算错误的是( ) A .a 2÷ a 0?a 2=a 4 B .a 2÷(a 0?a 2)=1 C .(﹣1.5)8÷(﹣1.5)7=﹣1.5 D .﹣1.58÷(﹣1.5)7=﹣1.5

广东省2020年东莞市中考数学模拟试题(含答案)

广东省2020年东莞市中考数学模拟试题 含答案 一、选择题(本大题10小题,每小题3分,共30分) 1.﹣2的相反数是() A. 2 B.-2 C. 1 2 D. 1 2 2.下列“慢行通过,禁止行人通行,注意危险,禁止非机动车通行”四个交通标志图(黑白阴影图片)中为轴对称图形的是() A B C D 3.某种细胞的直径是0.000067厘米,将0.000067用科学记数法表示为() A. 0.67×10-5 B. 67×10-6 C.6.7×10-6 D.6.7×10-5 4.下列运算正确的是() A. 2a+3b=5ab B. 5a﹣2a=3a C. a2?a3=a6 D. (a+b)2=a2+b2 5.一组数据6,﹣3,0,1,6的中位数是() A. 0 B. 1 C.2 D. 6 6.如图,已知AB∥CD,∠C=70°,∠F=30°,则∠A的度数为() A. 30° B. 35° C. 40° D. 45° 7.不等式组的解集在数轴上表示正确的是() A B C D 8.一个几何体的三视图如图所示,则这个几何体是()

A. 三棱锥 B. 三棱柱 C. 圆柱 D. 长方体 9.如图,在⊙O 中, = ,∠AOB=50°,则∠ADC 的度数是( ) A .50° B .40° C .30° D .25° 10.已知二次函数c bx ax y ++=2 的图象如下面左图所示,则一次函数c ax y +=的图象大致 是( ) 二、填空题(本大题6小题,每小题4分,共24分) 11.在函数y= 中,自变量x 的取值范围是______________. 12.分解因式:2a 2 ﹣4a+2= . 13.计算:18?2 1 2 等于 . 14.圆心角为120°的扇形的半径为3,则这个扇形的面积为 。 15.如果关于x 的方程x 2 -2x +k =0(k 为常数)有两个不相等的实数根,那么k 的取值范围是 . 16.如图所示,双曲线k y x = 经过Rt △BOC 斜边上的点A,且满足2 3 AO AB =,与BC 交于点D, 21BOD S ?=,求k= 三、解答题(一)(本大题3小题,每小题6分,共18分) 17.解方程组 . 18.先化简,再求值: ÷( + 1),其中x 满足022 =--x x 19.如图,BD 是矩形ABCD 的一条对角线.

2018年中考数学试卷及答案

2018四川高级中等学校招生考试 数 学 试 卷 学校: 姓名: 准考证号: 一、选择题(本题共30分,每小题3分) 第1-10题均有四个选项,符合题意的选项只有..一个. 1.如图所示,点P 到直线l 的距离是 A.线段P A 的长度 B. A 线段PB 的长度 C.线段PC 的长度 D.线段PD 的长度 2.若代数式 4 x x -有意义,则实数x 的取值范围是 A. x =0 B. x =4 C. 0x ≠ D. 4x ≠ 3.右图是某几何体的展开图,该几何体是 A.三棱柱 B.圆锥 C.四棱柱 D.圆柱 4.实数a,b,c,d 在数轴上的点的位置如图所示,则正确的结论是 A.4a >- B. 0ab > C. a d > D. 0 a c +> 5.下列图形中,是轴对称图形不是中心.. 对称图形的是 6.若正多边形的一个内角是150°,则该正方形的边数是 A.6 B. 12 C. 16 D.18

7.如果2210 a a +-=,那么代数式 2 4 2 a a a a ?? -? ?- ?? 的值是 A.-3 B. -1 C. 1 D.3 8.下面统计图反映了我国与“一带一路”沿线部分地区的贸易情况. 根据统计图提供的信息,下列推断不合理 ...的是 A.与2015年相比,2016年我国与东欧地区的贸易额有所增长 B.2016—2016年,我国与东南亚地区的贸易额逐年增长 C. 2016—2016年,我国与东南亚地区的贸易额的平均值超过4 200亿美元 D.2016年我国与东南亚地区的贸易额比我国与东欧地区的贸易额的3倍还多 9.小苏和小林在右图的跑道上进行4×50米折返跑.在整个过程中, 跑步者距起跑线的距离y(单位:m)与跑步时间t(单位:s)的 对应关系如下图所示。下列叙述正确的是 A. 两个人起跑线同时出发,同时到达终点 B.小苏跑全程的平均速度大于小林跑全程的平均速度 C.小苏前15s跑过的路程大于小林15s跑过的路程 D.小林在跑最后100m的过程中,与小苏相遇2次

中考数学试卷及答案解析word版完整版

中考数学试卷及答案解 析w o r d版 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

2015年北京市中考数学试卷 一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一.个.是符合题意的 1.(3分)(2015?北京)截止到2015年6月1日,北京市已建成34个地下调蓄设施,蓄水能力达到140000立方米,将140000用科学记数法表示应为()A.14×104B.×105C.×106D.14×106 考 点: 科学记数法—表示较大的数. 专 题: 计算题. 分 析: 将140000用科学记数法表示即可. 解答:解:140000=×105,故选B. 点评:此题考查了科学记数法﹣表示较大的数,较小的数,以及近似数与有效数字,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值. 2.(3分)(2015?北京)实数a,b,c,d在数轴上的对应点的位置如图所示,这四个数中,绝对值最大的是() A.a B.b C.c D.d 考 点: 实数大小比较. 分析:首先根据数轴的特征,以及绝对值的含义和性质,判断出实数a,b,c,d的绝对值的取值范围,然后比较大小,判断出这四个数中,绝对值最大的是哪个数即可. 解答:解:根据图示,可得 3<|a|<4,1<|b|<2,0<|c|<1,2<|d|<3,所以这四个数中,绝对值最大的是a. 故选:A. 点评:此题主要考查了实数大小的比较方法,以及绝对值的非负性质的应用,要熟练掌握,解答此题的关键是判断出实数a,b,c,d的绝对值的取值范围. 3.(3分)(2015?北京)一个不透明的盒子中装有3个红球,2个黄球和1个绿球,这些球除了颜色外无其他差别,从中随机摸出一个小球,恰好是黄球的概率为() A.B.C.D. 考 点: 概率公式. 专 题: 计算题. 分 析: 直接根据概率公式求解. 解 答: 解:从中随机摸出一个小球,恰好是黄球的概率==. 故选B. 点本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出

东莞市中考数学试卷及答案

★ 机密·启用前 2008年广东省初中毕业生学业考试 数 学 说明:1.全卷共4页,考试用时100分钟,满分为120分. 2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号,姓名、试室号、座位号.用2B 铅笔把对应该号码的标号涂黑. 3.选择题每小题选出答案后,用用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上. 4.非选择题必须用黑色字迹钢笔或签字笔作答、答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效. 5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回. 一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一 个是正确的,请把答题卡上对应题目所选的选项涂黑. 1.2 1 - 的值是 A .2 1 - B .21 C .2- D .2 2.2008年5月10日北京奥运会火炬接力传递活动在美丽的海滨城市汕头举行,整个火炬传递 路线全长约40820米,用科学计数法表示火炬传递路程是 A .2 102.408?米 B .3 1082.40?米 C .4 10082.4?米 D .5 104082.0?米 3.下列式子中是完全平方式的是 A .2 2 b ab a ++ B .222 ++a a C .2 22b b a +- D .122++a a 4.下列图形中是轴对称图形的是 5.下表是我国部分城市气象台对五月某一天最高温度的预报,当天预报最高温度数据的中 位 数是 A .28 B . C .29 D .

2018年浙江省温州市中考数学试卷答案解析(Word版本)

2018年浙江省温州市中考数学试卷答案解析(Word版本) 一、选择题 1. ( 2分) 给出四个实数,2,0,-1,其中负数是() A. B.2 C.0 D.-1 【答案】D 【考点】正数和负数的认识及应用 【解析】【解答】解根据题意:负数是-1,故答案为:D。【分析】根据负数的定义,负数小于0 即可得出答案。 2. ( 2分) 移动台阶如图所示,它的主视图是() A. B. C. D. 【答案】B 【考点】简单组合体的三视图 【解析】【解答】解:A、是其俯视图,故不符合题意;B是其主视图,故符合题意;C是右视图,故不符合题意;D是其左视图,故不符合题意。故答案为:B。【分析】根据三视图的定义,其主视图,就是从前向后看得到的正投影,根据看的情况一一判断即可。 3. ( 2分) 计算的结果是() A. B. C. D. 【答案】C 【考点】同底数幂的乘法 【解析】【解答】解: a 6 · a 2=a8故答案为:C。【分析】根据同底数幂的乘法,底数不变,指数相加即可得出答案。 4. ( 2分) 某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是() A. 9分 B. 8分 C. 7分 D. 6分 【答案】C 【考点】中位数 【解析】【解答】解:将这组数据按从小到大排列为:6<7<7<7<8<9<9,故中位数为:7分,故答案为:C。【分析】根据中位数的定义,首先将这组数据按从小到大的顺序排列起来,由于这组数据共有7个,故处于最中间位置的数就是第四个,从而得出答案。 5. ( 2分) 在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为() A. B. C. D.

2020中考数学试卷及答案

2020中考数学试卷及答案 精心选一选(本大题共10小题,每题3分,共30分. 在每题所给出的四个选项中,只有一项是符合题意的. 把所选项前的字母代号填在括号内. 相信你一定会选对!) 1、函数24-=x y 中自变量x 的取值范围是() A 、2>x B 、2≥x C 、2≠x D 、2

4、如图1,天平右盘中的每个砝码的质量都是1g ,则正视图左视图俯视图A A 图1 物体A 的质量m(g)的取值范围,在数轴上可表示为() 5、把分式方程 12121=----x x x 的两边同时乘以(x-2), 约去分母,得( ) A .1-(1-x)=1 B .1+(1-x)=1

.1-(1-x)=x-2 D .1+(1-x)=x-2 6、在一副52张扑克牌中(没有大小王)任意抽取一张牌,抽出的这张牌是方块的机会是() A 、21 B 、41 C 、31 D 、0 7.将函数762++=x x y 进行配方正确的结果应为()A 2)3(2++=x y B 2)3(2+-=x y C 2)3(2-+=x y D 2)3(2--=x y 8、一个形式如圆锥的冰淇淋纸筒,其底面直径为cm 6, 母线长为cm 5,围成这样的冰淇淋纸筒所需纸片的面积是() A 、266cm π B 、230cm π C 、228cm π D 、B 0 A C D 9、某村的粮食总产量为a (a 为常量)吨,设该村粮食的人均产量为y (吨),人口数为x ,则y 与x 之间的函数图象应为图中的()10、在圆环形路上有均匀分布的四家工厂甲、乙、丙、丁,每家工厂都有足够的仓库供产品储存. 现要将所有产品集中到一家工厂的仓库储存,已知甲、乙、丙、丁四家工厂的产量之比为1∶2∶3∶5. 若运费与路程、运的数量成正比例,为使选定的工厂仓库储存所有产品时总的运费最省,应选的工厂是() A 、甲B 、乙 C 、丙D 、丁 二、细心填一填(本大题共有5小题,每 空4分,共20分.) 11、分解因式:3x 2-12y 2= . 12.如图9,D 、E 分别是∶ABC 的边AC 、AB 上的点,请你添加一个条件,使∶ADE 与∶ABC 相似.你添加的条件 甲乙丙丁

2020年广东省东莞市中考数学一模试卷 解析版

2020年广东省东莞市中考数学一模试卷 一.选择题(共10小题) 1.计算|﹣2|的结果是() A.2B.C.﹣D.﹣2 2.下列图形中,既是轴对称图形,又是中心对称图形的是() A.B.C.D. 3.我市2019年参加中考的考生人数约为52400人,将52400用科学记数法表示为()A.524×102B.52.4×103C.5.24×104D.0.524×105 4.下列运算正确的是() A.a﹣2a=a B.(﹣a2)3=﹣a6 C.a6÷a2=a3D.(x+y)2=x2+y2 5.函数y=中自变量x的取值范围是() A.x≥﹣1且x≠1B.x≥﹣1C.x≠1D.﹣1≤x<1 6.如图,P A、PB分别与⊙O相切于A、B两点,若∠C=65°,则∠P的度数为() A.65°B.130°C.50°D.100° 7.实验学校九年级一班十名同学定点投篮测试,每人投篮六次,投中的次数统计如下:5,4,3,5,5,2,5,3,4,1,则这组数据的中位数,众数分别为() A.4,5B.5,4C.4,4D.5,5 8.一个多边形每个外角都等于30°,这个多边形是() A.六边形B.正八边形C.正十边形D.正十二边形9.如图在同一个坐标系中函数y=kx2和y=kx﹣2(k≠0)的图象可能的是()

A.B. C.D. 10.如图,在等腰△ABC中,AB=AC=4cm,∠B=30°,点P从点B出发,以cm/s的速度沿BC方向运动到点C停止,同时点Q从点B出发,以1cm/s的速度沿BA﹣AC方向运动到点C停止,若△BPQ的面积为y(cm2),运动时间为x(s),则下列最能反映y 与x之间函数关系的图象是() A.B. C.D. 二.填空题(共7小题) 11.实数81的平方根是. 12.分解因式:3x3﹣12x=. 13.抛物线y=2x2+8x+12的顶点坐标为. 14.如图,Rt△ABC中,∠B=90°,AB=4,BC=3,AC的垂直平分线DE分别交AB,AC于D,E两点,则CD的长为.

2019-2020中考数学试卷带答案

2019-2020中考数学试卷带答案 一、选择题 1.在数轴上,与表示6的点距离最近的整数点所表示的数是() A.1B.2C.3D.4 2.已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论中正确的是( ) A.abc>0B.b2﹣4ac<0C.9a+3b+c>0D.c+8a<0 3.老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示: 接力中,自己负责的一步出现错误的是() A.只有乙B.甲和丁C.乙和丙D.乙和丁 4.为了绿化校园,30名学生共种78棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x人,女生有y人,根据题意,所列方程组正确的是() A. 78 3230 x y x y += ? ? += ? B. 78 2330 x y x y += ? ? += ? C. 30 2378 x y x y += ? ? += ? D. 30 3278 x y x y += ? ? += ? 5.如图,把一个正方形三次对折后沿虚线剪下,得到的图形是() A.B.C.D. 6.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是()

A.12 B.24 C.123D.163 7.直线y=﹣kx+k﹣3与直线y=kx在同一坐标系中的大致图象可能是()A.B.C.D. 8.如图,某小区规划在一个长16m,宽9m的矩形场地ABCD上,修建同样宽的小路,使其中两条与AB平行,另一条与AD平行,其余部分种草,如果使草坪部分的总面积为112m2,设小路的宽为xm,那么x满足的方程是() A.2x2-25x+16=0B.x2-25x+32=0C.x2-17x+16=0D.x2-17x-16=0 9.如图,点A,B在反比例函数y=(x>0)的图象上,点C,D在反比例函数y=(k >0)的图象上,AC∥BD∥y轴,已知点A,B的横坐标分别为1;2,△OAC与△CBD的面积之和为,则k的值为() A.2B.3C.4D. 10.如图,已知⊙O的半径是2,点A、B、C在⊙O上,若四边形OABC为菱形,则图中阴影部分面积为()

2020年中考数学试卷(含答案)

2020年中考数学试卷(含答案) 一、选择题 1.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①a+b+c<0;②a﹣b+c<0;③b+2a<0;④abc>0.其中所有正确结论的序号是( ) A.③④B.②③C.①④D.①②③ 2.如图,在矩形ABCD中,AD=2AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:①∠AED=∠CED; ②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正确的有() A.2个B.3个C.4个D.5个 3.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是() A.15°B.22.5°C.30°D.45° 4.已知平面内不同的两点A(a+2,4)和B(3,2a+2)到x轴的距离相等,则a的值为( ) A.﹣3B.﹣5C.1或﹣3D.1或﹣5 5.我们将在直角坐标系中圆心坐标和半径均为整数的圆称为“整圆”.如图,直线l:3x轴、y轴分别交于A、B,∠OAB=30°,点P在x轴上,⊙P与l相切,当P 在线段OA上运动时,使得⊙P成为整圆的点P个数是()

A .6 B .8 C .10 D .12 6.将一个矩形纸片按如图所示折叠,若∠1=40°,则∠2的度数是( ) A .40° B .50° C .60° D .70° 7.估6的值应在( ) A .3和4之间 B .4和5之间 C .5和6之间 D .6和7之间 8.某公司计划新建一个容积V(m 3)一定的长方体污水处理池,池的底面积S(m 2)与其深度h (m )之间的函数关系式为()0S V h h = ≠,这个函数的图象大致是( ) A . B . C . D . 9.如图中的几何体是由一个圆柱和个长方体组成的,该几何体的俯视图是( )

2017年度广东地区东莞市中考数学试卷(含详解)

2017年广东省东莞市中考数学试卷 一、选择题(本大题共10小题,每小题3分,共30分) 1.5的相反数是() A.B.5 C.﹣D.﹣5 2.“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃,据商务部门发布的数据显示,2016年广东省对沿线国家的实际投资额超过4000000000美元,将4000000000用科学记数法表示为() A.0.4×109B.0.4×1010C.4×109D.4×1010 3.已知∠A=70°,则∠A的补角为() A.110°B.70°C.30°D.20° 4.如果2是方程x2﹣3x+k=0的一个根,则常数k的值为() A.1 B.2 C.﹣1 D.﹣2 5.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的平分分别为:90,85,90,80,95,则这组数据的众数是() A.95 B.90 C.85 D.80 6.下列所述图形中,既是轴对称图形又是中心对称图形的是() A.等边三角形 B.平行四边形 C.正五边形D.圆 7.如图,在同一平面直角坐标系中,直线y=k1x(k1≠0)与双曲线 y=(k2≠0) 相交于A,B两点,已知点A的坐标为(1,2),则点B的坐标为() A.(﹣1,﹣2)B.(﹣2,﹣1)C.(﹣1,﹣1)D.(﹣2,﹣2)8.下列运算正确的是() A.a+2a=3a2B.a3?a2=a5 C.(a4)2=a6D.a4+a2=a4

9.如图,四边形ABCD内接于⊙O,DA=DC,∠CBE=50°,则∠DAC的大小为() A.130°B.100°C.65°D.50° 10.如图,已知正方形ABCD,点E是BC边的中点,DE与AC相交于点F,连接BF,下=S△ADF;②S△CDF=4S△CEF;③S△ADF=2S△CEF;④S△ADF=2S△CDF,其中正确的是列结论:①S △ABF () A.①③B.②③C.①④D.②④ 二、填空题(本大题共6小题,每小题4分,共24分) 11.分解因式:a2+a=. 12.一个n边形的内角和是720°,则n=. 13.已知实数a,b在数轴上的对应点的位置如图所示,则a+b0.(填“>”,“<”或“=”) 14.在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5,随机摸出一个小球,摸出的小球标号为偶数的概率是. 15.已知4a+3b=1,则整式8a+6b﹣3的值为. 16.如图,矩形纸片ABCD中,AB=5,BC=3,先按图(2)操作:将矩形纸片ABCD沿过点A的直线折叠,使点D落在边AB上的点E处,折痕为AF;再按图(3)操作,沿过点F 的直线折叠,使点C落在EF上的点H处,折痕为FG,则A、H两点间的距离为.

浙江省温州市2017年中考数学试卷(含答案)

2017年浙江省温州市初中毕业生学业考试(数学试卷) (考试时间:120分钟,满分 150分) 2017-6-18 一、选择题(共10小题,每小题4 分,共40分): 1.6- 的相反数是( ) A .6 B .1 C .0 D .6- 2.某校学生到校方式情况的统计图如图所示,若该校步行到校的 学生有100人,则乘公共汽车到校的学生有( ) A .75人 B .100人 C .125人 D .200人 3.某运动会颁奖台如图所示,它的主视图是( ) C . D . 4 最接近的是( ) A .3 B .4 C .5 D .6 5.温州某企业车间有50名工人,某一天他们生产的机器零件个数统计如下表: 表中表示零件个数的数据中,众数是( ) A .5个 B .6个 C .7个 D .8个 6.已知点(1-,1y ),(4)在一次函数32y x =-的图象上,则1y ,2y ,0的大小关系是( ) A .120 y y << B .120y y << C .120y y << D .210y y << 7.如图,一辆小车沿倾斜角为α的斜坡向上行驶13米,已知12 cos 13 α=,则小车上升的高度是( ) A .5米 B .6米 C .6.5米 D .12米 乘公共 汽车40% 步行20% 其他 15%骑自行车25%(第2题

8.我们知道方程2 230x x +-=的解是11x =,23x =-,现给出另一个方程 2(23)2(23)30x x +++-=,它的解是( ) A .11x =,23x = B .11x =,23x =- C .11x =- ,23x = D .11x =-, 23x =- 9.四个全等的直角三角形按图示方式围成正方形ABCD ,过各较长直角边的中点作垂线,围成面积为S 的小正方形EFGH ,已知AM 为Rt △ABM 较长直角边,AM =,则正方形ABCD 的面积为( ) A .12s B .10s C .9s D .8s 10.我们把1,1,2,3,5,8,13,21,…这组数称为斐波那契数列,为了进一步研究, 依次以这列数为半径作90°圆弧?12 PP ,?23P P ,?34P P ,…得到斐波那契螺旋线,然后顺次连结12P P ,23P P ,34P P ,…得到螺旋折线(如图),已知点1P (0,1),2P (1-,0),3P (0,1-),则该折线上的点9P 的坐标为( ) A .(6-,24) B .(6-,25) C .(5-,24) D .(5-,25) D B (第9题图) (第10题图) 二、填空题(共6小题,每小题5分,共30分): 11.分解因式:2 4m m +=_______________. 12.数据1,3,5,12,a ,其中整数a 是这组数据的中位数,则该组数据的平均数是__________. 13.已知扇形的面积为3π,圆心角为120°,则它的半径为________.

历年全国中考数学试题及答案

班级 姓名 学号 成绩 一、精心选一选 1.下列运算正确的是( ) A.()11a a --=-- B.( ) 2 3624a a -= C.()2 22a b a b -=- D.3 2 5 2a a a += 2.如图,由几个小正方体组成的立体图形的左视图是( ) 3.下列事件中确定事件是( ) A.掷一枚均匀的硬币,正面朝上 B.买一注福利彩票一定会中奖 C.把4个球放入三个抽屉中,其中一个抽屉中至少有2个球 D.掷一枚六个面分别标有1,2,3,4,5,6的均匀正方体骰子,骰子停止转动后奇数点朝上 4.如图,AB CD ∥,下列结论中正确的是( ) A.123180++=∠ ∠∠ B.123 360++=∠ ∠∠ C.1322+=∠∠∠ D.132+=∠∠∠ 5.已知24221 x y k x y k +=??+=+?,且10x y -<-<,则k 的取值范围为( ) A.112 k -<<- B.102 k << C.01k << D. 1 12 k << 6.顺次连接矩形各边中点所得的四边形( ) A.是轴对称图形而不是中心对称图形 B.是中心对称图形而不是轴对称图形 C.既是轴对称图形又是中心对称图形 D.没有对称性 7.已知点()3A a -,,()1B b -,,()3C c ,都在反比例函数4 y x = 的图象上,则a ,b ,c 的大小关系为( ) A.a b c >> B.c b a >> C.b c a >> D.c a b >> 8.某款手机连续两次降价,售价由原来的1185元降到580元.设平均每次降价的百分率为x ,则下面列出的方程中正确的是( ) A.2 1185580x = B.()2 11851580x -= C.( )2 11851580x -= D.()2 58011185x += A. B. C. D. A B D C 3 2 1 第4题图

相关主题
相关文档 最新文档