大学物理课堂练习
- 格式:ppt
- 大小:500.00 KB
- 文档页数:18
1-1.质点在Oxy 平面内运动,其运动方程为j t i t r )219(22-+=。
求:(1)质点的轨迹方程;(2)s .t 01=时的速度及切向和法向加速度。
1-2.一质点具有恒定加速度j i a 46+=,在0=t 时,其速度为零,位置矢量i r 100=。
求:(1)在任意时刻的速度和位置矢量;(2)质点在oxy 平面上的轨迹方程,并画出轨迹的示意图。
1-3. 一质点在半径为m .r 100=的圆周上运动,其角位置为342t +=θ。
(1)求在s .t 02=时质点的法向加速度和切向加速度。
(2)当切向加速度的大小恰等于总加速度大小的一半时,θ值为多少?(3)t 为多少时,法向加速度和切向加速度的值相等?题3解: (1)由于342t +=θ,则角速度212t dt d ==θω,在t = 2 s 时,法向加速度和切向加速度的数值分别为 222s 2t n s m 1030.2-=⋅⨯==ωr a22s t t s m 80.4d d -=⋅==t r a ω(2)当2t 2n t 212a a a a +==时,有2n 2t 3a a=,即 22212)24(3)r t (tr = s 29.0s 321==t此时刻的角位置为 rad.t 153423=+=θ (3)要使t n a a =,则有2212)24()t (r tr =s .t 550=3-1如图所示,在水平地面上,有一横截面2m 20.0=S 的直角弯管,管中有流速为1s m 0.3-⋅=v 的水通过,求弯管所受力的大小和方向。
解:在t ∆时间内,从管一端流入(或流出)水的质量为t vS m ∆=∆ρ,弯曲部分AB 的水的动量的增量则为()()A B A B v v t vS v v m p -∆=-∆=∆ρ依据动量定理p I ∆=,得到管壁对这部分水的平均冲力()A B v v I F -=∆=Sv t ρ从而可得水流对管壁作用力的大小为N 105.2232⨯-=-=-='Sv F F ρ作用力的方向则沿直角平分线指向弯管外侧。
4、一质点沿y 轴作直线运动,速度j t v)43(+=,t =0时,00=y ,采用SI 单位制,则质点的运动方程为=y mt t 223+;加速度y a = 4m/s 2。
3、质量为m 的子弹以速率0v 水平射入沙土中。
若子弹所受阻力与速率成正比(比例系数为k ),忽略子弹重力的影响,则:(1)子弹射入沙土后,=)(t v t m kev -0;(2)子弹射入沙土的深度=)(t x kmv e k mv t m k0+--。
4、一质量为m 、半径为R 的均匀圆盘,以圆心为轴的转动惯量为221mR ,如以和圆盘相切的直线为轴,其转动惯量为223mR 。
3、一个人在平稳地行驶的大船上抛篮球,则( D )。
A 、向前抛省力;B 、向后抛省力;C 、向侧抛省力;D 、向哪个方向都一样。
13、关于刚体的转动惯量,以下说法正确的是:( A )。
A 、刚体的形状大小及转轴位置确定后,质量大的转动惯量大;B 、转动惯量等于刚体的质量;C 、转动惯量大的角加速度一定大;D 、以上说法都不对。
14、关于刚体的转动惯量,以下说法中哪个是错误的?( B )。
A 、转动惯量是刚体转动惯性大小的量度;B 、转动惯量是刚体的固有属性,具有不变的量值;C 、对于给定转轴,刚体顺转和反转时转动惯量的数值相同;D 、转动惯量是相对的量,随转轴的选取不同而不同。
15、两个质量均匀分布、重量和厚度都相同的圆盘A 、B ,其密度分别为A ρ和B ρ。
若B A ρρ>,两圆盘的旋转轴都通过盘心并垂直盘面,则有( B )。
A 、B A J J >; B 、B A J J <;C 、B A J J =;D 、不能确定A J 、B J 哪个大。
19、均匀细棒OA ,可绕通过其一端而与棒垂直的水平固定光滑轴转动,如右下图所示,今使棒从水平位置由静止开始自由下落,在棒摆到竖直位置的过程中,下述说法正确的是( C )。
A 、角速度从小到大,角加速度不变;B 、角速度从小到大,角加速度从小到大;C 、角速度从小到大,角加速度从大到小;D 、角速度不变,角加速度为零。
习 题 课(一)1-1 在边长为a 的正方体中心处放置一点电荷Q ,设无穷远处为电势零点,则在正方体顶角处的电势为 (A )aQ 034πε (B )a Q 032πε (C )a Q 06πε (D )a Q 012πε1-2 选无穷远处为电势零点,半径为R 的导体球带电后,其电势为U 0,则球外离球心距离为r 处的电场强度的大小为(A )302r U R (B )R U 0 (C )20r RU (D )rU1-3 在一个孤立的导体球壳内,若在偏离球中心处放一个点电荷,则在球壳内、外表面上将出现感应电荷,其分布将是(A )内表面均匀,外表面也均匀。
(B )内表面不均匀,外表面均匀。
(C )内表面均匀,外表面不均匀。
(D )内表面不均匀,外表面也不均匀。
1-4 一平行板电容器充电后仍与电源连接,若用绝缘手柄将电容器两极板间距离拉大,则极板上的电量Q 、电场强度的大小E 和电场能量W 将发生如下变化(A )Q 增大,E 增大,W 增大。
(B )Q 减小,E 减小,W 减小。
(C )Q 增大,E 减小,W 增大。
(D )Q 增大,E 增大,W 减小。
1-5 一半径为R 的均匀带电圆盘,电荷面密度为 ,设无穷远处为电势零点,则圆盘中心O 点的电势U 0 = 。
1-6 图示BCD 是以O 点为圆心,以R 为半径的半圆弧,在A 点有一电量为+q 的点电荷,O 点有一电量为q 的点电荷,线段BA = R ,现将一单位正电荷从B 点沿半圆弧轨道BCD 移到D 点,则电场力所做的功为 。
1-7 两个电容器1和2,串联后接上电源充电。
在电源保证连接的情况下,若把电介质充入电容器2中,则电容器1上的电势差 ,电容器极板上的电量 。
(填增大、减小、不变)1-8 如图所示为一个均匀带电的球层,其电荷体密度为,球层内表面半径为R 1,外表面半径为R 2,设无穷远处为电势零点,求空腔内任一点的电势。
1-9 如图所示,半径分别为R 1和R 2(R 2 > R 1)的两个同心导体薄球壳,分别带电量Q 1和Q 2,今将内球壳用细导线与远处半径为r 的导体球相连,导体球原来不带电,试求相连后导体球所带电量q 。
大学物理练习一一.选择题:1.一质点在平面上运动,已知质点位置矢量的表示式为j bt i at r 22+=(其中a 、b 为常量),则该质点作(A) 匀速直线运动.(B) 变速直线运动.(C) 抛物线运动. (D)一般曲线运动.2.一质点在平面上作一般曲线运动,其瞬时速度为v,瞬时速率为v ,某一段时间内的平均速度为v,平均速率为v ,它们之间的关系必定有[ ](A )v =v ,v =v . (C ) ≠v v ,v≠v .(B ) ≠vv ,v =v .(D ) v =v ,v ≠v .3.质点作半径为R 的变速圆周运动时的加速度大小为(v 表示任一时刻质点的速率)[ ] (A )dtdv . (B)Rv2.(C) dt dv +R v2. (D)21222⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛R v dt dv .4.某物体的运动规律为2kv dt dv -=,式中的k 为大于零的常数。
当t=0时,初速为v 0,则速度v 与时间t 的函数关系是 [ ] (A )v =kt+v 0(B )v =-kt+v 0 (C )11v kt v +=(D )11v kt v+-=5.某人骑自行车以速率v 向正东方行驶,遇到由北向南刮的风(设风速大小也为v ),则他感到风是从[ ] (A )东北方向吹来。
(B )东南方向吹来。
(C )西北方向吹来。
(D )西南方向吹来。
6.一飞机相对空气的速度大小为200h km ,风速为56h km ,方向从西向东,地面雷达测得飞机速度大小为192h km ,方向是[ ](A )南偏西16.30。
(B )北偏东16.30。
(C )向正南或向正北。
(D )西偏北16.30。
(E )东偏南16.30。
二.填空题:1.一物体悬挂在弹簧上,在竖直方向上振动,其振动方程为y = A sin ω t ,其中A 、ω 均为常量,则(1) 物体的速度与时间的函数关系式为_____;(2) 物体的速度与坐标的函数关系式为_。
大学物理习题集上册物理教研室2004年元月目录部分物理常量练习一描述运动的物理量练习二刚体定轴转动的描述相对运动练习三牛顿运动定律非惯性系中的力学练习四动量角动量练习五功和能碰撞练习六刚体定轴转动的转动定律转动惯量练习七刚体定轴转动中的动能及角动量练习八力学习题课练习九状态方程压强公式练习十理想气体的内能分布律练习十一分布律(续) 自由程碰撞频率练习十二热力学第一定律等值过程练习十三循环过程练习十四热力学第二定律熵练习十五热学习题课练习十六谐振动练习十七谐振动能量谐振动合成练习十八阻尼受迫共振波动方程练习十九波的能量波的干涉练习二十驻波多普勒效应练习二十一振动和波习题课练习二十二光的相干性双缝干涉光程练习二十三薄膜干涉劈尖练习二十四牛顿环迈克耳逊干涉仪衍射现象练习二十五单缝圆孔光学仪器的分辨率练习二十六光栅X射线的衍射练习二十七光的偏振练习二十八光学习题课23h3456789101112131415图9.1 161718192021232425(A)图15.12627图17.24. 一平面简谐波沿x 轴负方向传播,已知x=x 0处质点的振动方程为y=A cos(ω t+ϕ0). 若(B)v (m/s)O1 x (m)ωA(A)·图18.3图18.54041距离 (从地上一点看两星的视线间夹角)是(A) 5.3×10-7 rad.(B) 1.8×10-4 rad .(C) 5.3×10-5 rad .(D) 3.2×10-3 rad二.填空题1. 惠更斯引入的概念提出了惠更斯原理,菲涅耳再用的思想补充了惠更斯原理,发展成了惠更斯-菲涅耳原理.2. 如果单缝夫琅和费衍射的第一级暗纹发生在衍射角为30 的方位上,所用单色光波长λ =5×103 Å, 则单缝宽度为m .3. 平行单色光垂直入射于单缝上,观察夫琅和费衍射. 若屏上P点处为第二级暗纹,则单缝处波面相应地可划分为个半波带,若将单缝宽度减小一半, P点将是级纹.三.计算题1. 用波长λ =6328Å 的平行光垂直照射单缝, 缝宽a= 0.15mm , 缝后用凸透镜把衍射光会聚在焦平面上, 测得第二级与第三级暗条纹之间的距离为1.7mm , 求此透镜的焦距.四.问答题1. 在单缝衍射实验中, 当缝的宽度a远大于单色光的波长时, 通常观察不到衍射条纹, 试由单缝衍射暗条纹条件的公式说明这是为什么.练习二十六光栅X射线的衍射一.选择题1. 一束平行单色光垂直入射到光栅上,当光栅常数(a+b) 为下列哪种情况时(a代表每条缝为宽度) ,k =3、6、9等级次的主极大均不出现?(A) a+b=3a.(B) a+b=2a .(C) a+b=4a .(D) a+b=6a .2. 若用衍射光栅准确测定一单色可见光的波长,在下列各种光栅常数的光栅中选用哪一种最好?(A) 1.0×10-1 mm .(B) 5.0×10-1 mm .(C) 1.0×10-2 mm .(D) 1.0×10-3 mm .3. 在双缝衍射实验中,若保持双缝s1和s2的中心之间的距离d不变,而把两条缝的宽度a 42略微加宽,则(A) 单缝衍射的中央主极大变宽,其中所包含的干涉条纹数目变少.(B) 单缝衍射的中央主极大变宽,其中所包含的干涉条纹数目变多.(C) 单缝衍射的中央主极大变窄,其中所包含的干涉条纹数目变少.(D) 单缝衍射的中央主极大变宽,其中所包含的干涉条纹数目不变.(E) 单缝衍射的中央主极大变窄,其中所包含的干涉条纹数目变多.4. 某元素的特征光谱中含有波长分别为 1 = 450 n m 和 2 = 750 n m (1 n m = 10-9 m)的光谱线. 在光栅光谱中,这两种波长的谱线有重叠现象,重叠处 2的谱线的级次数将是(A) 2、3、4、5 …….(B) 2、5、8、11 …….(C) 2、4、6、8 …….(D) 3、6、9、12 …….5. 设光栅平面、透镜均与屏幕平行,则当入射的平行单色光从垂直于光栅平面入射变为斜入射时,能观察到的光谱线的最高级数k(A) 变小.(B) 变大.(C) 不变.(D) 的改变无法确定.二.填空题1. 用波长为5461 Å的平行单色光垂直照射到一透射光栅上,在分光计上测得第一级光谱线的衍射角 = 30 ,则该光栅每一毫米上有条刻痕.2. 可见光的波长范围是400 n m—760 n m,用平行的白光垂直入射到平面透射光栅上时,它产生的不与另一级光谱重叠的完整的可见光光谱是第级光谱.3. 一束平行单色光垂直入射到一光栅上,若光栅的透明缝宽度a与不透明部分宽度b相等,则可能看到的衍射光谱的级次为.三.计算题1. 一块每毫米500条缝的光栅,用钠黄光正入射,观察衍射光谱, 钠黄光包含两条谱线,其波长分别为5896 Å和5890 Å, 求在第二级光谱中这两条谱线互相分离的角度.2. 一衍射光栅,每厘米有200条透光缝,每条透光缝宽为a =2×10-3 c m ,在光栅后放一焦距f =1m 的凸透镜,现以 = 6000 Å的平行单色光垂直照射光栅,求: (1) 透光镜a的单缝衍射中央明条纹宽度为多少?(2) 在该宽度内, 有几个光栅衍射主极大?练习二十七光的偏振一.选择题1. 一束光强为I0的自然光垂直穿过两个偏振片,且此两偏振片的偏振化方向成45 角,若不考虑偏振片的反射和吸收,则穿过两个偏振片后的光强I为4344454647。
《大学物理III 》课堂练习(解答)第一部分:力学1. 一运动质点在某瞬时位于矢径),(y x r的端点处,其速度大小为 。
( 22)()(dtdy dt dx ) 2.一个质点做曲线运动,假定它在任意时刻的位置矢量j t i t r )28(22 ,那么它在任意时刻的加速度为 a 。
( j 4 )3.以下四种运动形式中,加速度a 保持不变的运动是( D )(A )单摆的运动; (B )匀速率圆周运动;(C )行星的椭圆轨道运动; (D )抛体运动。
4. 在以加速度g a 31 匀加速上升的电梯里载有一人质量为m ,下列说法正确的是( D ) (A )人的重力为mg 32; (B )人的重力为mg 34; (C )人对电梯的压力为mg 32; (D )人对电梯的压力为mg 34。
5. 一质点作匀速圆周运动时,则它的( C )(A )动量不变,对圆心角动量也不变; (B )动量不变,对圆心角动量不断改变;(C )动量不断改变,对圆心角动量不变; (D )动量不断改变,对圆心角动量也不断改变。
6. 一颗炮弹在飞行过程中突然炸裂成两块,其中一块做自由下落,则另一块的着地点跟原计划落地点相比(忽略空气阻力)( A )(A )更远; (B )更近; (C )一样远; (D )无法判定。
7. 在升降机天花板上拴有轻绳,其下端系一重物,当升降机以加速度a 1上升时,绳中的张力正好等于绳子所能承受的最大张力的一半,当升降机以加速度a = 上升时,绳子刚好被拉断,设重力加速度为g 。
( 2a 1+g )8. 考察一个空心球和一个实心球,它们的质量和半径都相同,可视为刚体,现它们俩绕某一直径为对称轴做自转, 的转动惯量更大。
( 空心球 )9. 一个质点做半径为0.1m 的圆周运动,其角位移的运动学方程为2214t(SI ),则它的切向加速度大小为 。
( 0.1m/s 2 ) 10. 如图,一个小物体A 靠在一辆小车的竖直前壁上,A 和车壁 间的静摩擦系数是 s ;若要使物体A 不致掉下来,小车的加速度的最小值应为a= 。
大学物理练习题及答案详解-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN大学物理学(上)练习题第一编 力 学 第一章 质点的运动1.一质点在平面上作一般曲线运动,其瞬时速度为,v瞬时速率为v ,平均速率为,v 平均速度为v,它们之间如下的关系中必定正确的是(A) v v ≠,v v ≠; (B) v v =,v v ≠;(C) v v =,v v =; (C) v v ≠,v v = [ ]2.一质点的运动方程为26x t t =-(SI),则在t 由0到4s 的时间间隔内,质点位移的大小为 ,质点走过的路程为 。
3.一质点沿x 轴作直线运动,在t 时刻的坐标为234.52x t t =-(SI )。
试求:质点在(1)第2秒内的平均速度; (2)第2秒末的瞬时速度; (3)第2秒内运动的路程。
4.灯距地面的高度为1h ,若身高为2hv 沿水平直线行走,如图所示,则他的头顶在地上的影子M 面移动的速率M v = 。
5.质点作曲线运动,r表示位置矢量,s 表示路程,t a 表示切向加速度,下列表达式(1)dv a dt =, (2)dr v dt =, (3)ds v dt =, (4)||t dv a dt=. (A )只有(1)、(4)是对的; (B )只有(2)、(4)是对的; (C )只有(2)是对的; (D )只有(3)是对的. [ ]6.对于沿曲线运动的物体,以下几种说法中哪一种是正确的。
(A )切向加速度必不为零; (B )法向加速度必不为零(拐点处除外);(C )由于速度沿切线方向;法向分速度必为零,因此法向加速度必为零; (D )若物体作匀速率运动,其总加速度必为零;(E )若物体的加速度a为恒矢量,它一定作匀变速率运动. [ ]Av B vvv7.在半径为R 的圆周上运动的质点,其速率与时间的关系为2v ct =(c 为常数),则从0t =到t 时刻质点走过的路程()s t = ;t 时刻质点的切向加速度t a = ;t 时刻质点的法向加速度n a = 。