高电压技术考试要点
- 格式:docx
- 大小:15.81 KB
- 文档页数:2
绪论1、输电电压一般分为高压,超高压,特高压。
高压指35~220kv,超高压指330~1000kv,特高压指1000kv及以上。
高压直流通常指±600kv及以下的直流输电电压,±600kv以上的称为特高压直流。
2、电介质的极化:通常电介质显中性,但是如果其处于电场中,则电荷质点将顺着电场方向产生位移。
极化时电介质内部电荷总和为零,但会产生一个与外施电场方向相反的内部电场。
3、流过介质中的电流可以分为三部分:纯电容电流分量,吸收电流,电导电流。
4、电介质损耗:处于电场中的绝缘介质,必然会存在一定的能量损耗,而这些由极化、电导等所引起的损耗就称为介质损耗。
5、介质损耗来源①由介质电导形成的漏电流在交变电压下具有有功电流的性质,由它所引起的功率损耗称为介质电导损耗;②由介质中与时间有关的各种极化过程所引起的损耗。
第一章1、电离方式可分为热电离,光电离,碰撞电离。
2、汤逊放电理论的适用范围:汤逊理论是在低气压、pd较小的条件下在放电实验的基础上建立的。
pd过小或过大,放电机理将出现变化,汤逊理论就不在再适用了。
3、电晕放电现象:在极不均匀场中,当电压升高到一定程度后,在空气间隙完全击穿之前,小曲率电极附近会有薄薄的发光层。
4、电晕放电的危害:①引起功率损耗②形成高频电磁波对无线电广播和电视信号产生干扰③产生噪声。
对策:采用分裂导线。
利用:①净化工业废气的静电除尘器②净化水用的臭氧发生器③静电喷涂。
5、下行的负极性雷通常可分为三个阶段:先导放电,主放电和余光。
6、提高气体击穿电压的措施:①电极形状的改进。
②空间电荷对原电场的畸变作用。
③极不均匀场中屏障的作用。
④提高气体压力的作用。
⑤高真空和高电气强度气体SF6的采用。
7、污闪:绝缘子表面污物受潮变成导电层,引发局部放电并发展成闪络。
8、污闪发展过程:①污秽层的形成②污秽层的受潮③干燥带形成与局部电弧产生④局部电弧发展成闪络。
9、等值盐密法:把绝缘子表面的污秽密度,按照其导电性转化为单位面积上NaCl 含量的一种表示方法。
高电压技术1.电介质极化的四种基本类型:电子位移极化、离子位移极化、转向极化、空间电荷极化。
2.电介质极化的性质和特点4.气体中带电质点的产生有撞击电离、光电离、热电离、表面电离和负离子的形成。
5.气体中带电质点的消失的基本形式:①带电质点受电场力的作用流入电极并中和电量;②带电质点的扩散;③带电质点的复合。
6.汤森德气体放电机理主要适用于均匀电场(帕邢定律)和不均匀电场(相似定律)。
7.雷电放电包括雷云对大地、雷云对雷云和雷云内部的放电现象。
8.下行的负极性雷通常分三阶段:先导放电、主放电和余光放电。
9.击穿电压:长时间作用在气隙上能使气隙击穿的最低电压。
10.击穿时间由三部分组成:升压时间t0、统计时延ts和放电发展时间tf。
即tb=t+ts+tf。
11.电压波形分有直流电压(电压的波纹系数不应大于3%)、工频交流电压(有效值应在√2±0.07以内,频率一般在45~65Hz范围内)、雷电冲击电压和操作冲击电压。
12.“50%击穿电压”:是指气隙被击穿的概率为50%的冲击电压峰值。
13.不均匀电场气隙的击穿电压有直流电压作用下、工频电压作用下、雷电冲击电压作用下和操作冲击电压作用下情况。
14.提高气隙击穿电压的方法:①改善电场分布;②采用高度真空;③增高气压;④采用高耐电强度气体;⑤SF6的应用。
15.提高气隙沿面闪络电压的方法:①屏蔽;②屏障;③加电容极板;④消除窄气隙;⑤绝缘表面处理;⑥改变局部绝缘体的表面电阻率;⑦强制固定绝缘沿面各点的电位;⑧附加金具;⑨阻抗调节。
16.影响固体电介质击穿电压的因素:①电压作用时间的影响;②温度的影响;③电场均匀和介质厚度的影响;④电压频率的影响;⑤受潮度的影响;⑥机械力的影响;⑦多层性的影响;⑧累积效应(是指介质的击穿电压随着过去曾经承受过的不完全击穿次数的增加而降低)的影响。
17.固体电介质的老化:①固体介质的环境老化;②固体介质的电老化;③固体介质的热老化。
1、气体中带电质点产生的方式热电离、光电离、碰撞电离、表面电离2、气体中带电质点消失的方式流入电极、逸出气体空间、复合3、电子崩与汤逊理论电子崩的形成、汤逊理论的基本过程及适用范围4、巴申定律及其适用范围6、均匀电场与不均匀电场的划分以最大场强与平均场强之比来划分。
7、极不均匀电场中的电晕放电电晕放电的过程、起始场强、放电的极性效应8、冲击电压作用下气隙的击穿特性雷电和操作过电压波的波形冲击电压作用下的放电延时与伏秒特性50%击穿电压的概念9、电场形式对放电电压的影响均匀电场无极性效应、各类电压形式放电电压基本相同、分散性小极不均匀电场中极间距离为主要影响因素、极性效应明显。
10、电压波形对放电电压的影响电压波形对均匀和稍不均匀电场影响不大对极不均匀电场影响相当大完全对称的极不均匀场:棒棒间隙极大不对称的极不均匀场:棒板间隙11、11、气体的状态对放电电压的影响湿度、密度、海拔高度的影响12、气体的性质对放电电压的影响在间隙中加入高电强度气体,可大大提高击穿电压,主要指一些含卤族元素的强电负性气体,如SF613、提高气体放电电压的措施电极形状的改进空间电荷对原电场的畸变作用极不均匀场中屏障的采用提高气体压力的作用高真空高电气强度气体SF6的采用1、电介质的极化极化:在电场的作用下,电荷质点会沿电场方向产生有限的位移现象,并产生电矩(偶极矩)。
介电常数:电介质极化的强弱可用介电常数的大小来表示,与电介质分子的极性强弱有关。
极性电介质和非极性电介质:极化的基本形式电子式、离子式(不产生能量损失)转向、夹层介质界面极化(有能量损失)2、电介质的电导泄漏电流和绝缘电阻气体的电导:主要来自于外界射线使分子发生电离和强电场作用下气体电子的碰撞电离液体的电导: 离子电导和电泳电导固体的电导:离子电导和电子电导3、电介质的损耗液体电介质损耗和温度、频率之间的关系4、液体电介质的击穿纯净液体介质的电击穿理论纯净液体介质的气泡击穿理论工程用变压器油的击穿理论5、影响液体电介质击穿的因素电击穿、热击穿、电化学击穿的击穿机理及特点8、影响固体电介质击穿电压的主要因素电压作用时间温度电场均匀程度受潮累积效应机械负荷1、绝缘电阻与吸收比的测量用兆欧表来测量电气设备的绝缘电阻吸收比K定义为加压60s时的绝缘电阻与15s时的绝缘电阻比值。
高电压技术总结专题一:高电压下气体、液体、固体放电原理1、绝缘的概念:将不同电位的导体分开,使之在电气上不相连接。
具有绝缘作用的材料称为电介质或绝缘材料。
2、电介质的分类:按状态分为气体、液体和固体三类。
3、极化的概念:在外电场作用下,电介质的表面出现束缚电荷的现象叫做电介质极化。
4、极化的形式:电子式极化、离子式极化、偶极子式极化;夹层式极化。
(前三种极化均是在单一电介质中发生的。
但在高压设备中,常应用多种介质绝缘,如电缆、变压器、电机等)5、电子式极化:由于电子发生相对位移而发生的极化。
特点:时间短,弹性极化,无能量损耗。
[注]:存在于一切材料中。
6、离子式极化:离子式极化发生于离子结构的电介质中。
固体无机化合物(如云母、陶瓷、玻璃等)多属于离子结构。
特点:时间短,弹性极化,无能量损耗。
[注]:存在于离子结构物质中。
7、偶极子极化:有些电介质具有固有的电矩,这种分子称为极性分子,这种电介质称为极性电介质(如胶木、橡胶、纤维素、蓖麻油、氯化联苯等)。
特点:时间较长,非弹性极化,有能量损耗。
[注]:存在于极性材料中。
8、夹层式极化特点:时间很长,非弹性极化,有能量损耗。
[注]:存在于多种材料的交界面;当绝缘受潮时,由于电导增大,极化完成时间将大大下降;对使用过的大电容设备,应将两电极短接并彻底放电,以免有吸收电荷释放出来危及人身安全。
9、为便于比较,将上述各种极化列为下表:10、介电常数:[注]:用作电容器的绝缘介质时,希望大些好。
用作其它设备的绝缘介质时,希望小些好。
11、电介质电导:电介质内部带点质点在电场作用下形成电流。
金属导体:温度升高,电阻增大,电导减小。
绝缘介质:温度升高,电阻减小,电导增大。
12、绝缘电阻:在直流电压作用下,经过一定时间,当极化过程结束后,流过介质的电流为稳定电流称为泄漏电流,与其对应的电阻称为绝缘电阻。
(1)介质绝缘电阻的大小决定了介质中泄漏电流的大小。
(2)泄漏电流大,将引起介质发热,加快介质的老化。
第一章:1、定义2、汤逊理论与流注理论,适用范围与应用解释现象;汤逊理论和流注理论的异同点,并说明各自的适用范围?汤逊放电理论的适用范围:汤逊理论是在低气压、Pd较小的条件下在放电实验的基础上建立的。
Pd过小或过大,放电机理将出现变化,汤逊理论就不再适用了。
Pd过小时,气隙极低(d过小实际是不可能的),电子的平均自由行程远大于间隙距离,碰撞电离来不及发生,击穿电压似乎应不断上升,但实际上电压U上升到一定程度后,场致发射将导致击穿,汤逊的碰撞电离理论不再适用,击穿电压将不再增加。
Pd过大时,气压高,或距离大,这时气体击穿的很多实验现象无法全部在汤逊理论范围内给以解释。
3、极性效应:正棒-负板,负棒-正板,电晕起始电压高低,击穿电压高低?4、强电场根据不同的电离因素,电离有以下几种形式: a.碰撞游离 b.光游离 c.热游离d.金属表面游离5、气体中带电粒子的运动与消失:带电粒子的扩散:带电质点从高浓度区域向低浓度区域运动;带电粒子的复合(中和,空间或器壁):正离子与负离子相遇而互相中和还原成中性原子;附着效应。
6、流注理论对放电现象的解释:阴极材料的影响:根据流注理论,大气条件下气体放电的发展不是依靠正离子使阴极表面电离形成的二次电子维持的,而是靠空间光电离产生电子维持的,故阴极材料对气体击穿电压没有影响。
流注理论要点:认为电子碰撞游离及空间光游离是维持自持放电的主要因素,流注形成便达到了自持放电条件,它强调了空间电符畸变电场的作用和光游离的作用.汤逊理论要点:二次电子主要来源于正离子碰撞阴极的逸出电子。
7、电晕放电的优缺点:1、输电线路的功率损耗2、产生放电脉冲,无线电通信和测量的干扰3、使空气发生化学反应>>臭氧及氧化氮>>臭味,氧化,腐蚀作用。
防止电晕方法:采用分裂导线、扩径导线。
优点:1、削弱输电线路上的雷电冲击波的幅值和陡度;2、使操作过电压产生衰减;3、净化工业废气,制造净化水和空气用的臭氧发生器,发展静电喷涂技术和电除尘等等。
第一章电介质的电气强度1.1气体放电的基本物理过程1.高压电气设备中的绝缘介质有气体、液体、固体以及其他复合介质。
2.气体放电是对气体中流通电流的各种形式统称。
3.电离:指电子脱离原子核的束缚而形成自由电子和正离子的过程。
4.带电质点的方式可分热电离、光电离、碰撞电离、分级电离。
5.带电质点的能量来源可分正离子撞击阴极表面、光电子发射、强场发射、热电子发射。
6.带电质点的消失可分带电质点受电场力的作用流入电极、带电质点的扩散、带电质点的复合。
7.附着:电子与气体分子碰撞时,不但有可能引起碰撞电离而产生出正离子和新电子,也可能发生电子附着过程而形成负离子。
8.复合:当气体中带异号电荷的粒子相遇时,有可能发生电荷的传递与中和,这种现象称为复合。
(1)复合可能发生在电子和正离子之间,称为电子复合,其结果是产生一个中性分子;(2)复合也可能发生在正离子和负离子之间,称为离子复合,其结果是产生两个中性分子。
9.1、放电的电子崩阶段(1)非自持放电和自持放电的不同特点宇宙射线和放射性物质的射线会使气体发生微弱的电离而产生少量带电质点;另一方面、负带电质点又在不断复合,使气体空间存在一定浓度的带电质点。
因此,在气隙的电极间施加电压时,可检测到微小的电流。
由图1-3可知:(1)在I-U 曲线的OA 段: 气隙电流随外施电压的提高而增大,这是因为带电质点向电极运动的速度加快导致复合率减小。
当电压接近 时,电流趋于饱和,因为此时由外电离因素产生的带电质点全部进入电极,所以电流值仅取决于外电离因素的强弱而与电压无关。
(2)在I-U 曲线的B 、C 点:电压升高至 时,电流又开始增大,这是由于电子碰撞电离引起的,因为此时电子在电场作用下已积累起足以引起碰撞电离的动能。
电压继续升高至 时,电流急剧上升,说明放电过程又进入了一个新的阶段。
此时气隙转入良好的导电状态,即气体发生了击穿。
(3)在I-U 曲线的BC 段:虽然电流增长很快,但电流值仍很小,一般在微安级,且此时气体中的电流仍要靠外电离因素来维持,一旦去除外电离因素,气隙电流将消失。
第一章1.气体中带电质点产生的形式有:1,气体分子本身产生电离。
2,气体中的固体和液体表面电离。
消失的形式有:1,带电质点受电场力的作用流入电极并中和电量。
2,带电质点的扩散和复合。
2.电介质的极化、电导、能量损耗的概念答:电介质的极化是电介质在电场作用下,其束缚电荷相应于电场方向产生弹性位移现象和偶极子的取向现象。
这时电荷的偏移大都是在原子或分子的范围内作微观位移,并产生电矩(即偶极矩)。
极化形式有电子位移极化、离子位移极化和空间电荷,极向位移极化。
电导:由电离出来的自由电子、正离子、负离子在电场作用下移动造成的。
损耗:通常均采用介质损耗角正切tgδ来表征介质中比的损耗大小。
为介质中总有功电流密度与总无功电流密度之比。
总损耗功率:第二章3.汤森德放电机理与流注放电机理的差别,联系和适用范围。
答:1.流注理论认为电子撞击电离和空间光电离是自持放电的主要因素,并充分注意到了空间电荷的畸变作用2. 汤森德:时,均匀电场或稍不均匀电场,电子崩经过整个气隙产生的电离总数尚不足以发展成流注。
流注:适用于不均与电场,气隙中能发展成流注,气隙放电过程按流注理论进行。
4.帕型定律:在均匀电场中击穿电压与气体相对密度,极间距离并不具有单独的函数关系,而是仅与它们的积有函数关系,只要乘积不变,也就不变。
5.电晕放电概念,物理过程与效应答;伴随着电离而存在的复合和反激励辐射出大量光子,使在黑暗中可以看到在该区域附近空间有蓝色的晕光,电晕放电是既不均电场所特有的自持放电形式。
过程:随着电压升高:有规律的重复电流脉冲电流脉冲幅值基本不变,平均电流不断增加,频率增加电压升高到一定程度,出现负值大得多的不规则电流脉冲。
效应1声光电效应(2电风(3无线电干扰4)化学反应5)噪声6)能量损耗6.长气隙与短气隙放电过程的异同答:长气隙:1、正先导过程2、负先导过程3、迎面先导过程4、主放电过程7.气隙的沿面放电概念。
答: 沿面放电:沿着气体与固体(或液体)介质的分界面上发展的放电现象闪络:沿面放电发展到贯穿两级,使整个气息沿面击穿.滑闪放电:电压升高到超过某临界值时,放电的性质发生变化,其中某些细线的长度迅速增加,并转为较为明亮的浅紫色的树枝状火花,这种树枝火花具有较强的不稳定性,不断地改变放电通道的路径,并伴有轻微的爆炸声。
高电压技术考试复习知识点高电压技术复习资料1. 原子的电离:中性原子在外界因素作用下,获得足够大的能量,可使原子中的一个或几个电子完全摆脱原子核的束缚,形成自由的电子和正离子的过程。
2. 电离的条件:原子从外界获取的能量大于原子的电离能。
3. 气体原子电离的因素:电子或正离子与气体分子的碰撞、各种光辐射、高温下气体的热能。
4. 电离的形式:碰撞电离、光电离、热电离、表面电离(外界电离因素作用,电子从电极表面释放)。
5. 去电离过程:即带电粒子消失的过程,带电粒子从电离区消失,或者削弱其产生电离。
带电离子的运动、扩散、复合以及电子的附着作用都属于这样的作用。
6. 带电粒子的扩散:带电粒子不断从高浓度区域移向低浓度区域,使各种带电粒子浓度变得均匀的现象。
是由于热运动造成的。
7. 气体放电分类:自持放电与非自持放电。
8. 自持放电:由天然辐射作用产生电离形成正离子和电子,在高电场作用下,电子加速碰撞气体分子,产生新的电子和离子,电离过程像雪崩一样发展,称为电子崩。
正离子撞击阴极又产生新的电子崩,即使外界不传给起始电子,放电过程能持续下去的现象。
不需要其他任何外加电离因素而仅由电场的作用就能维持的放电。
9. 汤逊理论:当外加电压足够高时,一个电子从阴极出发向阳极运动,由于碰撞游离形成电子崩,因碰撞游离而产生的新的正离子在电场作用下向阴极运动,并撞击阴极,至少能从阴极表面释放出一个有效电子,以弥补原来那个产生电子崩并进入阳极的电子,则放电达到自持放电的过程。
10. 汤逊理论适用范围:均匀电场、低气压、Pd 较小的条件下在放电实验的基础上建立的。
11. 汤逊放电理论实质:碰撞电离是气体放电的主要原因,二次电子来源于正离子撞击阴极表面逸出电子,逸出电子是维持气体放电的必要条件,所逸出的电子是否能够接替起始电子是自持放电的判据。
12. 流注理论:解决汤逊理论不能解释的在高气压、Pd 大时的放电外形(具有分支的细通道,而按汤逊理论,整个电极空间连续进行)、放电时间(实测时间比计算值小得多)、击穿电压(击穿电压计算值与实验值不一致)、阴极材料(击穿电压与材料无关)等问题,并在总结这些实验现象的基础上形成。
1.电介质按物质形态分为:气体介质、液体介质、固体介质2.电器设备中:外绝缘:由气体介质和固体介质联合构成内绝缘:由液体介质和固体介质联合构成3.气体的电离类型:碰撞电离、光电离、热电离4.气体的放电现象有击穿和闪络两种现象。
5.Ⅰ气体介质的电气特性一.气体放电分为:自持放电和非自持放电非自持放电:当施加电压U<Uc时,需要外界电离因素才能维持。
自持放电:当施加电压U>Uc时,气隙中的电离过程仅靠外施电压就可以维持,不再需要外部电离因素。
常见气体放电形式;电晕放电、火花放电,辉光放电,电弧放电,沿面放点电晕放电(电晕放电是极不均匀电场所特有的一种自持放电形式):(名词解释)若构成气体间隙的电极曲率半径很小,或电极间距离很大,当电压升到一定数值时,将在电场非常集中的尖端电极处发生局部的类似月亮晕光的光层,这时用仪表可以观测到放电电流。
随着电压的升高,晕光层逐渐扩大,放电电流也增大,这种放电形式称为电晕放电。
二. 汤逊理论和流注理论1. 汤逊理论:放电的主要原因是电子电离,二次电子来源于正离子撞击阴极表面溢出电子,溢出电子是维持气体放电的必要条件。
二次电子能否接替起始电子的作用是气体放电的判据。
用于低气压、短气隙——pd<26.66kPa.cm自持放电的条件:2. 流注理论:流注理论认为气体放电的必要条件是电子崩达到某一程度后,电子崩产生的空间电荷使原有电场发生畸变,大大加强崩头和崩尾处的电场。
另一方面气隙间正负电荷密度大,复合作用频繁,复合后的光子在如此强的电场中很容易形成产生新的光电离的辐射源,二次电子主要来源于光电离。
适用于高气压,长间隙——pd>26.66kPa.cm自持放电的条件:流注:在正电荷区域内形成正负带电粒子的混合通道,这个电离通道称为流注。
三. 不均匀电场的放电附:不均匀电场分为少不均匀电场(球状电场)和极不均匀电场(棒-棒,棒-板)1. 极性效应:由于高场强电极极性的不同,空间电荷的极性也不同,对放电发展的影响也不同,这就造成了不同极性的高场强电极的电晕起始电压和间隙击穿电压的不同。
1.气体放电的汤森德机理与流注机理的主要区别及各自的适用范围?
答:汤森德机理认为电子的碰撞电离和正离子撞击引领科技早就成的表面的电离对自持放电起主要作用;流注机理认为电子的撞击电离和空间光电离是自持放电的主要因素。
汤森德理论只适用于均匀电场和鸭s<0.26的情况,流注理论适用于鸭s>0.26的情况。
2、帕邢定律:在均匀电场中,击穿电压Ub与气体相对密度、极间距离S并不具有单独的函数关系,而是仅与它们的积有关系,只要?S的乘积不变,Ub也就不变。
帕邢定律和汤森德理论相互支持。
3、汤森德理论的不足:汤森德放电理论是在气压较低,S值较小的条件下,进行放电试验的基础上建立起来的,只在一定的S范围内反映实际情况,在空气中,当S>0.26cm时,放电理论就不能用该理论来说明了。
原因是:①汤森德理论没有考虑电离出来的空间电荷会使电场畸变,从而对放电过程产生影响。
②汤森德理论没有考虑光子在放电过程中的作用。
4、气体中电晕放电的几种效应:①声,光,热等效应②在尖端或电极某些突出处形成电风③产生对无线电有干扰的高次谐波④产生某些化学反应⑤产生人可以听到的噪声⑥产生能量损耗
5、滑闪放电现象:在分界面气隙场强法线分量较强的情况下,当电压升高到超过某临界值时,放电的性质发生变化,其中某些细线的长度迅速增长,并转变为较明亮的浅紫色的树枝状火花。
这种树枝状火花具有较强的不稳定性,不断地改变放电通道的路径,并有轻的爆裂声。
6、大气条件对气隙击穿电压的影响:气隙的击穿电压随着大气密度或大气中湿度的增加而升高,大气条件对外绝缘的沿面闪络电压也有类似的影响。
7、提高气隙击穿电压的方法及原理?
答:①改善电场分布。
原理:气隙电场分布越均匀,气隙的击穿电压就越高,适当的改进电极形状,增大电极的曲率半径,改善电场分布,就能提高气隙的击穿电压和预放电电压。
②采用高度真空。
原理:采用高度真空,削弱气隙中撞击电离过程,提高气隙的击穿电压。
③增高气压。
原理:增高气体的压强可以减小电子的平均自由程,阻碍撞击电离的发展,提高气隙的击穿电压。
④采用高耐电强度气体。
原理:SF6,CCL2F2,CCL4等气体耐电强度比空气高得多,采用这类气体或在其他气体总混入一定比例的这类气体,可以大大提高气隙的击穿电压。
8、SF6为何可以作为高压绝缘气体?
答:从SF6的物理化学特性知,SF6稳定性高,要使SF6分子电离,不仅要供给电离能,而且还要供给离解能,绝缘性好。
SF6气体密度大,电子在其中的自由程小,不易从电场积累足够的动能,减小了电子撞击电离的概率。
从而在SF6气体中,单个电子崩中带电粒子的分布与在空气中有很大不同,不利于流注的发展,从而使击穿场强提高。
9.为什么绝缘子采用附加金具?设计时应考虑哪些问题?
答:采用附加金具可以有效的调整该结点附近的电场,改善该结点附近气隙放电和沿面放电的性能。
设计保护金具时应考虑本身的几何形状,结构尺寸,各部件在联接点与绝缘子
链,分裂导线,链端接金具相互位置配合等问题。
10、固体电介质老化的原因和种类?
答:老化原因:电气设备的绝缘材料在运行过程中,由于物理因素如电、热、光、机械力、高能辐射等;化学因素如氧气、臭氧、盐雾、酸、碱、潮湿等;生物因素如微生物、霉菌等,会发生一系列不可逆的变化,从而导致其物理,化学,电和机械等性能的劣化。
种类:①固体介质的环境老化②固体介质的电老化:电离性老化,电导性老化,电解性老化③固体介质的热老化。
11、输电线路的防雷措施?
答:①架设避雷线②降低杆塔接地电阻③架设耦合地线④采用不平衡接线方式⑤装设自动重合闸⑥采用消弧线圈接地方式⑦装设管型避雷器⑧加强绝缘。