数字电路与逻辑设计实验报告
- 格式:docx
- 大小:108.70 KB
- 文档页数:10
一、实验目的1. 理解数字逻辑的基本概念和基本原理。
2. 掌握数字逻辑电路的基本分析方法,如真值表、逻辑表达式等。
3. 熟悉常用数字逻辑门电路的功能和应用。
4. 提高数字电路实验技能,培养动手能力和团队协作精神。
二、实验原理数字逻辑电路是现代电子技术的基础,它主要研究如何用数字逻辑门电路实现各种逻辑功能。
数字逻辑电路的基本元件包括与门、或门、非门、异或门等,这些元件可以通过组合和连接实现复杂的逻辑功能。
1. 与门:当所有输入端都为高电平时,输出端才为高电平。
2. 或门:当至少有一个输入端为高电平时,输出端为高电平。
3. 非门:将输入端的高电平变为低电平,低电平变为高电平。
4. 异或门:当输入端两个高电平或两个低电平时,输出端为低电平,否则输出端为高电平。
三、实验内容1. 实验一:基本逻辑门电路的识别与测试(1)认识实验仪器:数字电路实验箱、逻辑笔、示波器等。
(2)识别与测试与门、或门、非门、异或门。
(3)观察并记录实验现象,分析实验结果。
2. 实验二:组合逻辑电路的设计与分析(1)设计一个简单的组合逻辑电路,如加法器、减法器等。
(2)根据真值表列出输入输出关系,画出逻辑电路图。
(3)利用逻辑门电路搭建电路,进行实验验证。
(4)观察并记录实验现象,分析实验结果。
3. 实验三:时序逻辑电路的设计与分析(1)设计一个简单的时序逻辑电路,如触发器、计数器等。
(2)根据电路功能,列出状态表和状态方程。
(3)利用触发器搭建电路,进行实验验证。
(4)观察并记录实验现象,分析实验结果。
四、实验步骤1. 实验一:(1)打开实验箱,检查各电路元件是否完好。
(2)根据电路图连接实验电路,包括与门、或门、非门、异或门等。
(3)使用逻辑笔和示波器测试各逻辑门电路的输出,观察并记录实验现象。
2. 实验二:(1)根据实验要求,设计组合逻辑电路。
(2)列出真值表,画出逻辑电路图。
(3)根据逻辑电路图连接实验电路,包括所需逻辑门电路等。
一、实验目的1. 理解和掌握数字逻辑设计的基本原理和方法。
2. 熟悉数字电路的基本门电路和组合逻辑电路。
3. 培养动手能力和实验技能,提高逻辑思维和解决问题的能力。
4. 熟悉数字电路实验设备和仪器。
二、实验原理数字逻辑设计是计算机科学与技术、电子工程等领域的基础课程。
本实验旨在通过实际操作,让学生掌握数字逻辑设计的基本原理和方法,熟悉数字电路的基本门电路和组合逻辑电路。
数字逻辑电路主要由逻辑门组成,逻辑门是数字电路的基本单元。
常见的逻辑门有与门、或门、非门、异或门等。
根据逻辑门的功能,可以将数字电路分为组合逻辑电路和时序逻辑电路。
组合逻辑电路的输出只与当前输入有关,而时序逻辑电路的输出不仅与当前输入有关,还与之前的输入有关。
三、实验内容1. 逻辑门实验(1)实验目的:熟悉逻辑门的功能和特性,掌握逻辑门的测试方法。
(2)实验步骤:① 将实验箱中的逻辑门连接到测试板上。
② 根据实验要求,将输入端分别连接高电平(+5V)和低电平(0V)。
③ 观察输出端的变化,记录实验数据。
④ 分析实验结果,验证逻辑门的功能。
2. 组合逻辑电路实验(1)实验目的:掌握组合逻辑电路的设计方法,熟悉常用组合逻辑电路。
(2)实验步骤:① 根据实验要求,设计组合逻辑电路。
② 将电路连接到实验箱中。
③ 根据输入端的不同组合,观察输出端的变化,记录实验数据。
④ 分析实验结果,验证电路的功能。
3. 时序逻辑电路实验(1)实验目的:掌握时序逻辑电路的设计方法,熟悉常用时序逻辑电路。
(2)实验步骤:① 根据实验要求,设计时序逻辑电路。
② 将电路连接到实验箱中。
③ 观察电路的输出变化,记录实验数据。
④ 分析实验结果,验证电路的功能。
四、实验结果与分析1. 逻辑门实验结果:通过实验,验证了逻辑门的功能和特性,掌握了逻辑门的测试方法。
2. 组合逻辑电路实验结果:通过实验,掌握了组合逻辑电路的设计方法,熟悉了常用组合逻辑电路。
3. 时序逻辑电路实验结果:通过实验,掌握了时序逻辑电路的设计方法,熟悉了常用时序逻辑电路。
数字电路与逻辑设计实验报告学院:班级:姓名:学号:日期:一.实验名称:实验一:QuartusII 原理图输入法设计与实现实验二:用VHDL 设计与实现组合逻辑电路实验三:用VHDL 设计与实现时序逻辑电路实验四:用VHDL 设计与实现数码管动态扫描控制器二.实验所用器件及仪器:1.计算机2.直流稳压电源3.数字系统与逻辑设计实验开发板三.实验要求:实验一:(1)用逻辑门设计实现一个半加器,仿真验证其功能,并生成新的半加器图形模块单元。
(2)用(1)实现的半加器和逻辑门设计实现一个全加器,仿真并验证其功能,并下载到实验板上测试。
要求用拨码开关设定输入信号,发光二极管显示输出信号。
(3)用3—8线译码器和逻辑门设计实现函数F=/C/B/A+/CB/A+C/B/A+CBA,仿真验证其功能并下载到实验板测试。
要求用拨码开关设定输入信号,发光二极管显示输出信号。
注:实验时将三个元器件放在一个new block diagram中实现。
实验二:(1)用VHDL语言设计实现一个共阴极7段数码译码器,仿真验证其功能,并下载到实验板测试。
要求用拨码开关设定输入信号,7段数码管显示输出信号。
(2)用VHDL语言设计实现一个8421码转余三码的代码器,仿真验证其功能,并下载到实验板测试。
要求用拨码开关设定输入信号,发光二极管显示输出信号。
(3)用VHDL语言设计实现一个4位二进制奇校验器,输入奇数个‘1’时,输出1,否则出0;仿真验证其功能,并下载到实验板测试。
要求用拨码开关设定输入信号,发光二极管显示输出信号。
实验三:(1)用VHDL语言设计实现一个带异步复位的8421 十进制计数器,仿真验证其功能,并下载到实验板测试。
要求用按键设定输入信号,发光二极管显示输出信号。
(2)用VHDL语言设计实现一个分频系数为12,输出信号占空比为50%的分频器,仿真验证其功能。
注:实验时将(1)、(2)和数码管译码器 3 个电路进行链接,并下载到实验板显示计数结果。
北京邮电大学电路实验中心<数字电路与逻辑设计实验(下)>实验报告班级: xxx 学院: xxx实验室: xxx 审阅教师:姓名(班内序号): xxx 学号: xxx实验时间: xxx评定成绩:目录一、任务要求 (2)1.基本要求 (2)2.提高要求 (2)二、系统设计 (2)1.设计思路 (2)2.总体框图 (4)3.分块设计 (5)(1)分频器模块 (5)(2)4×4键盘输入模块 (5)(3)数码管显示模块 (6)(4)8×8 LED点阵显示模块 (6)(5)LCD液晶屏显示模块 (6)(6)中心模块 (6)三、仿真波形及波形分析 (6)1.分频器模块 (6)2.4×4键盘输入模块 (7)3.数码管显示模块 (7)4.8×8 LED点阵显示模块 (8)5.LCD液晶屏显示模块 (8)6.中心模块 (8)四、源程序 (9)1.分频器模块 (9)2.4×4键盘输入模块 (9)3.数码管显示模块 (11)4.8×8 LED点阵显示模块 (12)5.LCD液晶屏显示模块 (19)6.中心模块 (23)五、功能说明及资源利用情况 (26)六、故障及问题分析 (27)七、总结和结论 (27)一、任务要求本电路可供甲乙二人进行猜拳游戏。
通过不同的按键控制,选择多种出拳方式,显示猜拳的结果,实现猜拳游戏,防止了作弊的可能。
1.基本要求1、甲乙双方各用4×4 键盘中的三个按键模拟“石头”、“剪刀”、“布”,一个按键为“确认”。
4×4 键盘第一行为甲,第二行为乙;2、裁判用4×4 键盘第三行的一个按键模拟“开”,一个按键为“准备”,一个按键为“复位”;3、裁判宣布“准备”后,甲乙双方分别选择出拳方式并确认;4、裁判“开”以后,用点阵的左右三列同时显示甲乙双方的猜拳选择(如下图所示),并用两个数码管显示甲乙的猜拳比分;图1甲“布”,乙“剪刀”;甲“剪刀”,乙“石头”5、猜拳游戏为五局三胜制。
数字电路与逻辑设计实验报告数字电路与逻辑设计实验报告摘要:本实验旨在通过设计和实现数字电路和逻辑门电路,加深对数字电路和逻辑设计的理解。
实验过程中,我们使用了逻辑门电路、多路选择器、触发器等基本数字电路元件,并通过实际搭建电路和仿真验证,验证了电路的正确性和可靠性。
引言:数字电路和逻辑设计是计算机科学与工程领域的重要基础知识。
在现代科技发展中,数字电路的应用范围非常广泛,涉及到计算机、通信、控制等各个领域。
因此,深入理解数字电路和逻辑设计原理,掌握其设计和实现方法,对于我们的专业学习和未来的工作都具有重要意义。
实验一:逻辑门电路的设计与实现逻辑门电路是数字电路中最基本的元件之一,通过逻辑门电路可以实现各种逻辑运算。
在本实验中,我们通过使用与门、或门、非门等逻辑门电路,设计并实现了一个简单的加法器电路。
通过搭建电路和进行仿真验证,我们验证了加法器电路的正确性。
实验二:多路选择器的设计与实现多路选择器是一种常用的数字电路元件,可以根据控制信号的不同,选择不同的输入信号输出。
在本实验中,我们通过使用多路选择器,设计并实现了一个简单的数据选择电路。
通过搭建电路和进行仿真验证,我们验证了数据选择电路的正确性。
实验三:触发器的设计与实现触发器是一种常用的数字电路元件,可以存储和传输信息。
在本实验中,我们通过使用触发器,设计并实现了一个简单的二进制计数器电路。
通过搭建电路和进行仿真验证,我们验证了二进制计数器电路的正确性。
实验四:时序逻辑电路的设计与实现时序逻辑电路是一种特殊的数字电路,其输出不仅与输入信号有关,还与电路的状态有关。
在本实验中,我们通过使用时序逻辑电路,设计并实现了一个简单的时钟电路。
通过搭建电路和进行仿真验证,我们验证了时钟电路的正确性。
实验五:数字电路的优化与综合数字电路的优化与综合是数字电路设计中非常重要的环节。
在本实验中,我们通过使用逻辑代数和Karnaugh图等方法,对已有的数字电路进行了优化和综合。
《数字电路与逻辑设计》课程实验报告系(院):计算机与信息学院专业:班级:姓名:学号:指导教师:学年学期: 2018 ~ 2019 学年第一学期实验一基本逻辑门逻辑以及加法器实验一、实验目的1.掌握TTL与非门、与或非门和异或门输入与输出之间的逻辑关系。
2.熟悉TTL中、小规模集成电路的外型、管脚和使用方法。
二、实验所用器件和仪表1.二输入四与非门74LS00 1片2.二输入四或非门74LS28 1片3.二输入四异或门74LS86 1片三、实验内容1.测试二输入四与非门74LS00一个与非门的输入和输出之间的逻辑关系。
2.测试二输入四或非门74LS28一个或非门的输入和输出之间的逻辑关系。
3.测试二输入四异或门74LS86一个异或门的输入和输出之间的逻辑关系。
4.掌握全加器的实现方法。
用与非门74LS00和异或门74LS86设计一个全加器。
四、实验提示1.将被测器件插入实验台上的14芯插座中。
2.将器件的引脚7与实验台的“地(GND)”连接,将器件的引脚14与实验台的+5V 连接。
3.用实验台的电平开关输出作为被测器件的输入。
拨动开关,则改变器件的输入电平。
4.将被测器件的输出引脚与实验台上的电平指示灯连接。
指示灯亮表示输出电平为1,指示灯灭表示输出电平为0。
五、实验接线图及实验结果74LS00中包含4个二与非门,74LS28中包含4个二或非门,74LS86中包含4个异或门,下面各画出测试第一个逻辑门逻辑关系的接线图及测试结果。
测试其他逻辑门时的接线图与之类似。
测试时各器件的引脚7接地,引脚14接+5V。
图中的K1、K2是电平开关输出,LED0是电平指示灯。
1.测试74LS00逻辑关系接线图及测试结果(每个芯片的电源和地端要连接)图1.1 测试74LS00逻辑关系接线图表1.1 74LS00真值表输 入输 出 引脚1引脚2 引脚3 L L HL H H HL H HHL2. 测试74LS28逻辑关系接线图及测试结果i.ii.iii. 图1.2 测试74LS28逻辑关系接线图表1.2 74LS28真值表i. 输 入 ii. 输 出 iii. 引脚2 iv. 引脚3v. 引脚1 vi. L vii. L viii. H ix. L x. H xi. L xii. Hxiii. L xiv. L xv. H xvi. Hxvii. L3.测试74LS86逻辑关系接线图及测试结果图1.3 测试74LS86逻辑关系接线图表1.3 74LS68真值表输 入输 出 引脚1引脚2 引脚3 L L L L H H H L H HHL4. 使用74LS00和74LS86设计全加器(输入来源于开关K2、K1和K0,输出送到LED 灯LED1和LED0 上,观察在不同的输入时LED 灯的亮灭情况)。
数字电路逻辑实验报告数字电路逻辑实验报告引言:数字电路逻辑实验是电子工程专业学生必修的一门实践课程,通过该实验可以加深对数字电路基本原理和逻辑设计的理解。
本文将对我所进行的数字电路逻辑实验进行详细报告,包括实验目的、实验原理、实验步骤、实验结果以及实验总结等内容。
实验目的:本次实验的主要目的是通过设计和实现一些基本的数字逻辑电路,如门电路、触发器电路等,加深对数字电路原理的理解。
同时,通过实验操作,掌握数字电路的搭建过程、信号的传输规律以及故障排除等技能。
实验原理:数字电路是由逻辑门组成的,逻辑门是根据布尔代数的运算规则实现逻辑运算的基本元件。
常见的逻辑门有与门、或门、非门等。
在实验中,我们将通过搭建逻辑门电路,实现不同的逻辑运算。
实验步骤:1. 实验前准备:检查实验设备的连接是否正确,确保电源和接地正常。
2. 搭建与门电路:根据逻辑与门的真值表,按照电路图连接与门电路。
3. 搭建或门电路:根据逻辑或门的真值表,按照电路图连接或门电路。
4. 搭建非门电路:根据逻辑非门的真值表,按照电路图连接非门电路。
5. 搭建触发器电路:根据触发器的真值表,按照电路图连接触发器电路。
6. 进行实验测试:将不同的输入信号输入电路,观察输出信号的变化。
实验结果:经过实验测试,我们得到了以下结果:1. 与门电路:当输入信号A和B同时为高电平时,输出信号为高电平;否则输出信号为低电平。
2. 或门电路:当输入信号A和B中至少有一个为高电平时,输出信号为高电平;否则输出信号为低电平。
3. 非门电路:当输入信号为高电平时,输出信号为低电平;当输入信号为低电平时,输出信号为高电平。
4. 触发器电路:触发器电路可以实现存储功能,当输入信号满足特定条件时,输出信号的状态会发生改变。
实验总结:通过本次实验,我对数字电路逻辑的原理和设计有了更深入的理解。
通过搭建不同的逻辑门电路和触发器电路,我熟悉了数字电路的搭建过程,并掌握了信号的传输规律。
数字电路与逻辑设计实验报告实验目的:本实验旨在通过实际操作,加深对数字电路与逻辑设计原理的理解,掌握数字电路的基本原理和设计方法,提高学生的动手能力和实际应用能力。
实验一,二极管的正向导通特性实验。
实验原理:二极管是一种半导体器件,具有单向导电特性。
当二极管的正向电压大于其开启电压时,二极管将处于导通状态;反之,当反向电压作用于二极管时,二极管将处于截止状态。
实验步骤:1. 将二极管连接到直流电源电路中;2. 通过改变电源电压,观察二极管的正向导通特性;3. 记录不同电压下二极管的导通情况。
实验结果与分析:通过实验,我们发现二极管在正向电压大于其开启电压时会导通,而在反向电压作用下会截止。
这验证了二极管的正向导通特性。
实验二,基本逻辑门的实验。
实验原理:基本逻辑门包括与门、或门、非门等,它们是数字电路的基本组成单元,通过不同的输入信号产生不同的输出信号。
实验步骤:1. 搭建与门、或门、非门的实验电路;2. 分别输入不同的逻辑信号,观察输出信号的变化;3. 记录实验结果。
实验结果与分析:通过实验,我们发现与门、或门、非门在不同的输入信号下产生了不同的输出信号,验证了基本逻辑门的工作原理。
实验三,触发器的实验。
实验原理:触发器是一种存储器件,具有记忆功能,可以存储一个比特的信息。
常见的触发器包括RS触发器、D触发器、JK触发器等。
实验步骤:1. 搭建RS触发器、D触发器、JK触发器的实验电路;2. 分别输入触发信号,观察触发器的输出变化;3. 记录实验结果。
实验结果与分析:通过实验,我们发现不同类型的触发器在接收不同触发信号时,产生了不同的输出变化,验证了触发器的存储功能。
结论:通过本次实验,我们深入理解了数字电路与逻辑设计的基本原理,掌握了数字电路的实际应用技能。
数字电路与逻辑设计是现代电子技术的基础,通过实验的学习,我们将能更好地理解和应用数字电路与逻辑设计的知识,为今后的学习和工作打下坚实的基础。
竭诚为您提供优质文档/双击可除数字电路与逻辑设计实验报告篇一:北邮数字电路与逻辑设计实验报告北京邮电大学数字电路与逻辑设计实验报告学院:班级:姓名:学号:实验一QuartusII原理图输入法设计与实现一、实验目的:(1)熟悉QuartusII原理图输入法进行电路设计和仿真;(2)掌握QuartusII图形模块单元的生成与调用;(3)熟悉实验板的使用;二、实验所用器材:(1)计算机;(2)直流稳压电源;(3)数字系统与逻辑设计实验开发板。
三、实验任务要求(1)用逻辑门设计实现一个半加器,仿真验证其功能,并生成新的半加器图形模块单元。
(2)用(1)中生成的半加器模块和逻辑门设计实现一个全加器,仿真验证其功能,并下载到实验板测试,要求用拨码开关设定输入信号,发光二极管显示输出信号。
(3)用3线-8线译码器(74Ls138)和逻辑门设计实现函数,仿真验证其功能,并下载到实验板测试。
要求用拨码开关设定输入信号,发光二极管显示输出信号。
四、实验原理图及仿真波形图(1)半加器半加器原理图仿真波形仿真波形图分析:根据仿真波形对比半加器真值表,可以确定电路实现了半加器的功能。
但我们也可以发现输出so出现了静态功能冒险,要消除该冒险可以加入相应的选通脉冲。
(2)全加器全加器原理图仿真波形仿真波形图分析:根据仿真波形对比半加器真值表,可以确定电路实现了全加器的功能(2)741383线-8线译码器原理图仿真波形图仿真波形图分析;当且仅当Abc输入为000、010、100、111时,F=1,可知电路实现了函数。
实验二用VhDL设计与实现组合逻辑电路一、实验目的:(1)熟悉用VhDL语言设计时序逻辑电路的方法;(2)熟悉用QuartusII文本输入法进行电路设计;(3)熟悉不同的编码及其之间的转换。
二、实验所用器材:(1)计算机;(2)直流稳压电源;(3)数字系统与逻辑设计实验开发板。
三、实验任务要求(1)用VhDL语言设计实现一个共阴极7段数码管译码器;(2)用VhDL语言设计一个8421码转余三码的代码转换器;(3)用VhDL语言设计设计一个四位2进制奇校验器。
HUNAN UNIVERSITY 数字电路与逻辑设计实验报告学生姓名董雪婧学生学号************专业班级软件工程1503指导老师何海珍2016 年12 月27 日实验一:素数检测器的设计与仿真一、实验目的1.实验前,进行预习;2.利用课余时间,在规定的时间内完成实验。
3.实验报告内容有:素数检测器的逻辑图;用VHDL语言设计素数检测器,用尽量多的方法来描述;4.实验结束前,要将素数检测器的仿真波形文件拷贝,实验报告需要。
二、实验原理对于4位输入组合N=N3N2N1N0,当N=1、2、3、5、7、11、1 3时该函数输出为1,其他情况输出为0”逻辑图四位素数检测器的标准和设计四位素数检测器最小化后的设计VHDL程序数据流描述:波形图三、实验内容实验步骤(解题思路)根据题目,建立文档,新建Quartus文件;根据设计图连接电路;根据其编写VHDL程序;仿真,绘制波形图;1.根据设计图连接电路2.VHDL程序关键代码仿真结果四、结果分析虽然异或不是开关代数的基本运算之一,但是在实际运用中相当普遍地使用分立的异或门。
大多数开关技术不能直接实现异或功能,而是使用多个门设计实验二:加法器的设计与仿真一、实验目的1.实验前,进行预习;2.利用课余时间,在规定的时间内完成实验。
3.实验报告内容有:全加器的逻辑图;用VHDL语言设计全加器;4.实验结束前,要填将3种电路的仿真波形文件拷贝,实验报告需要。
二、实验原理1.全加器用途:实现一位全加操作逻辑图真值表X Y CIN S COUT0 0 0 0 00 0 1 1 00 1 0 1 00 1 1 0 11 0 0 1 01 0 1 0 11 1 0 0 11 1 1 1 1 VHDL程序数据流描述:波形图2.四位串行加法器逻辑图波形图3.74283:4位先行进位全加器(4-Bit Full Adder)逻辑框图逻辑功能表注:1、输入信号和输出信号采用两位对折列表,节省表格占用的空间,如:[A1/A3]对应的列取值相同,结果和值[Σ1/Σ3]对应的运算是Σ1=A1+B1和Σ3=A3+B3。