新人教版数学八年级上期中测试题1
- 格式:doc
- 大小:509.50 KB
- 文档页数:13
人教版八年级上册数学期中考试试题一、选择题。
(每小题只有一个正确答案)1.下列平面图形中,不是轴对称图形的是()A .B .C .D .2.下列图形具有稳定性的是()A .六边形B .五边形C .平行四边形D .等腰三角形3.下列图形中,对称轴最多的是()A .等边三角形B .矩形C .正方形D .圆4.点M(3,-2)关于x 轴对称的对称点的坐标是()A .(-3,2)B .(3,2)C .(-3,-2)D .(2,3)5.能把一个三角形分成两个面积相等的三角形是三角形的()A .中线B .高线C .角平分线D .以上都不对6.如果三角形的两边长分别为3和5,则第三边L 的取值范围是()A .2<L<15B .L<8C .2<L<8D .10<L<167.已知:△ABC ≌△DEF ,AB=DE,∠A=70°,∠E=30°,则∠F 的度数为()A .80°B .70°C .30°D .100°8.点P 在∠AOB 的平分线上,点P 到OA 边的距离等于5,点Q 是OB 边上的任意一点,则下列选项正确的是()A .PQ≤5B .PQ<5C .PQ≥5D .PQ>59.如图,△ABC 中,AB=AC ,∠A=36°,AB 的垂直平分线DE 交AC 于D ,交AB 于E ,则∠BDC 的度数为()A .72°B .36°C .60°D .82°10.在ABC ∆中,已知::1:2:3A B C ∠∠∠=,则三角形的形状是()A .钝角三角形B .直角三角形C .锐角三角形D .无法确定11.一个正多边形的每个外角都等于60°,那么它是()A .正十二边形B .正十边形C .正八边形D .正六边形12.如图,已知AB⊥BC,BC⊥CD,AB=DC,可以判定△ABC≌△DCB,判定的根据是()A.HL B.ASA C.SAS D.AAS二、填空题13.等边三角形的每个内角都是____°.14.已知点P(2,3),点A与点P关于y轴对称,则点A的坐标是______.15.已知一个三角形的三边长a、b、c,满足(a-b)2+|b-c|=0,则这个三角形是____三角形. 16.若n边形的内角和是它的外角和的2倍,则n=_______.17.如图,已知正方形ABCD的边长为4cm,则图中阴影部分的面积为__________2cm.18.如图是一个经过改造的台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔.如果一个球按图中所示的方向被击出(球可以经过多次反射),那么该球最后将落入的球袋是____________.三、解答题19.求出图形中x的值.20.在△ABC中,已知∠A=30°,∠B=2∠C,求∠B和∠C的度数.21.尺规作图:如图,在直线MN 上求作一点P ,使点P 到∠AOB 两边的距离相等(不要求写出作法,但要保留作图痕迹,写出结论)22.已知:如图,A 、C 、F 、D 在同一直线上,AF =DC ,AB =DE ,BC =EF ,求证:△ABC ≌△DEF .23.已知,,a b c 为ABC ∆的三边长,且222222222a b c ab ac bc ++=++,试判断ABC ∆的形状,并说明理由.24.如图,在△ABC 中,AD 为∠BAC 的平分线,DE ⊥AB 于E ,DF ⊥AC 于F ,△ABC 的面积是28cm 2,AB=20cm ,AC=8cm ,求DE 的长.25.数学中的对称美、统一美、和谐美随处可见,在数的运算中就有一些有趣的对称形式.(1)我们发现:12=1,112=121,1112=12321,11112=1234321,…请你根据发现的规律,接下去再写两个等式;(2)对称的等式:12×231=132×21.仿照这一形式,完成下面的等式,并进行验算:12×462=_______,18×891=_______.26.如图,在△ABC 中,90ACB ∠=︒,AC BC =,直线MN 经过点C ,且AD MN ⊥于D ,BE MN ⊥于E .(1)当直线MN 绕点C 旋转到图1的位置时,①求证:△ADC ≌△CEB .②求证:DE=AD+BE.(2)当直线MN 绕点C 旋转到图2的位置时,判断ADC ∆和CEB ∆的关系,并说明理由.参考答案1.A 【详解】试题分析:根据轴对称图形的定义作答.如果把一个图形沿着一条直线翻折过来,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.解:根据轴对称图形的概念,可知只有A 沿任意一条直线折叠直线两旁的部分都不能重合.故选A .考点:轴对称图形.2.D 【分析】根据三角形的稳定性判断即可.【详解】六边形、五边形、平行四边形都不具有稳定性;等腰三角形是三角形的一种,所以它具有稳定性.【点睛】本题考查了三角形的稳定性.在所有的图形里,只有三角形具有稳定性,也是三角形的特性,应牢牢掌握.3.D【解析】试题分析:因为等边三角形有三条对称轴;矩形有两条对称轴;正方形有四条对称轴;圆有无数条对称轴.一般地,正多边形的对称轴的条数等于边数.故选D.考点:轴对称图形的对称轴.4.B【分析】根据平面直角坐标系内关于x轴对称:纵坐标互为相反数,横坐标不变可以直接写出答案.【详解】点M(3,-2)关于x轴对称的对称点的坐标是(3,2).故答案为:B.【点睛】本题主要考查了关于x轴对称点的坐标特点,关键是掌握点的变化规律.5.A【分析】根据等底等高的两个三角形的面积相等解答.【详解】解:三角形的中线把三角形分成两个等底等高的三角形,面积相等.故选A.【点睛】本题考查了三角形的面积,熟知等底等高的两个三角形的面积相等是解答此题的关键. 6.C【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,即可求得第三边的取值范围.由三角形三边关系定理及其推论得:5-3<L<5+3,即2<L<8.故答案为:C.【点睛】此题考查了三角形的三边关系,能正确运用三角形的三边关系是解此题的关键.7.A【分析】根据全等三角形对应角相等求出∠D=∠A,再利用三角形的内角和等于180°列式进行计算即可得解.【详解】∵△ABC≌△DEF,AB=DE,∠A=70°,∴∠D=∠A=70°,在△DEF中,∠F=180°-∠D-∠E=180°-70°-30°=80°,故选A.【点睛】本题考查了全等三角形对应角相等的性质,三角形的内角和定理,根据全等三角形对应顶点的字母写在对应位置上准确找出对应角是解题的关键.8.C【解析】【分析】根据角平分线上的点到角的两边距离相等可得点P到OB的距离为5,再根据垂线段最短解答.【详解】解:∵点P在∠AOB的平分线上,点P到OA边的距离等于5,∴点P到OB边的距离为5,∵点Q是OB边上的任意一点,∴PQ≥5.故选C.【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,垂线段最短的性质,熟记性质是解9.A【解析】试题分析:∵AB=AC,∠A=36°,∴∠ABC=∠C=1801803622A︒-∠︒-︒==72°,∵DE垂直平分AB,∴∠A=∠ABD=36°,∴∠BDC=∠A+∠ABD=36°+36°=72°.故选A.考点:1.线段垂直平分线的性质;2.等腰三角形的性质.10.B【分析】设∠A=x,∠B=2x,∠C=3x,根据三角形的内角和等于180°列方程求三个内角的度数,从而确定三角形的形状.【详解】解:∵::1:2:3A B C∠∠∠=设∠A=x,∠B=2x,∠C=3x.则x+2x+3x=180°,解得x=30°,∴∠A=30°,∠B=60°,∠C=90°,所以这个三角形是直角三角形.故选:B.【点睛】本题主要考查了内角和定理.解答此类题利用三角形内角和定理列方程求解可简化计算.11.D【分析】根据任何多边形的外角和都是360°,利用360除以外角的度数就可以求出多边形的边数.【详解】该正多边形的边数为360°÷60°=6.【点睛】本题考查了多边形外角,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.12.C 【分析】根据垂直定义推出90ABC DCB ∠=∠=°,AB=DC ,CB BC =,根据SAS 推出ABC DCB ≌.【详解】∵AB ⊥BC ,BC ⊥CD ∴∠ABC=∠DCB=90°又∵AB=DC ,BC=CB ∴△ABC ≌△DCB (SAS )故答案为:C.【点睛】本题考查了对全等三角形的性质和判定的应用,注意:全等三角形的对应边相等,对应角相等,全等三角形的判定定理有SAS ASA AAS SSS ,,,.13.60°.【解析】试题分析:等边三角形三个角相等,而三角形内角和为180°,可得结果.试题解析:∵等边三角形三个角相等,又三角形内角和为180°,设等边三角形的每个内角的大小均是x ,则3x=180°,解得:x=60°.考点:1.三角形内角和定理;2.三角形.14.(-2,3)【解析】点P(2,3),点A 与点P 关于y 轴对称,则点A 的坐标是(−2,3),故答案为(−2,3).15.等边【分析】根据任意一个数的绝对值都是非负数和偶次方具有非负性可得:00a b b c -=-=,,再根据三角形的判断方法即可知道该三角形的形状.【详解】∵(a-b)2+|b-c|=0∴(a-b)2=0,|b-c|=0∴a=b ,b=c ∴a=b=c∴这个三角形是等边三角形.【点睛】本题考查了任意一个数的绝对值都是非负数,当几个数或式的绝对值相加和为0时,则其中的每一项都必须等于0、偶次方的非负性以及等边三角形的判定.16.6【详解】此题涉及多边形内角和和外角和定理多边形内角和=180(n-2),外角和=360º所以,由题意可得180(n-2)=2×360º解得:n=617.8【分析】正方形为轴对称图形,一条对称轴为其对角线所在的直线;由图形条件可以看出阴影部分的面积为正方形面积的一半.【详解】解:依题意有S 阴影=12×4×4=8cm 2.故答案为:8.【点睛】本题考查轴对称的性质以及正方形的性质,运用割补法是解题的关键.18.2【分析】根据题意,画出图形,由轴对称的性质即可解答.【详解】根据轴对称的性质可知,台球走过的路径为:∴该球最后将落入的球袋是2号袋.故答案为2.【点睛】本题主要考查了轴对称的性质.轴对称的性质:(1)对应点所连的线段被对称轴垂直平分;(2)对应线段相等,对应角相等.注意结合图形解题的思想;严格按轴对称画图是正确解答本题的关键.19.x=60.【解析】试题分析:根据三角形的外角和定理列出等式,即可求得x 的值.试题解析:解:x+70=x+10+x ,∴x=60.考点:三角形的外角和定理.20.∠B=100°,∠C=50°.【分析】根据三角形的内角和等于180°列式求出∠C ,再求解即可得到∠B .【详解】∵2B C ∠=∠,180A B C ∠+∠+∠=°,∴2180A C C ∠+∠+∠=°,即303180C ︒+∠=°,解得:50C ∠=°,∴2250100B C ∠=∠=⨯︒=°.答:∠B 等于100°,∠C 等于50°【点睛】本题考查了三角形的内角和定理,是基础题,熟记定理列出并整理成关于∠C的方程是解题的关键.21.答案见解析.【分析】作的平分线交直线MN于P点.【详解】解:根据题意,如图,作∠AOB的平分线,∠AOB的平分线与直线MN交于一点,则点P 即为所求.22.证明见解析【详解】试题分析:首先根据AF=DC,可推得AF﹣CF=DC﹣CF,即AC=DF;再根据已知AB=DE,BC=EF,根据全等三角形全等的判定定理SSS即可证明△ABC≌△DEF.试题解析:∵AF=DC,∴AF﹣CF=DC﹣CF,即AC=DF;在△ABC和△DEF中∴△ABC≌△DEF(SSS)23.△ABC是等边三角形,理由见解析【分析】先根据完全平方公式进行变形,求出a=b=c,即可得出答案.【详解】解:△ABC是等边三角形.证明如下:∵2a2+2b2+2c2=2ab+2ac+2bc,∴2a2+2b2+2c2-2ab-2ac-2bc=0,∴a2-2ab+b2+a2-2ac+c2+b2-2bc+c2=0,∴(a-b)2+(a-c)2+(b-c)2=0,∴(a-b)2=0,(a-c)2=0,(b-c)2=0,∴a=b且a=c且b=c,即a=b=c,∴△ABC是等边三角形.【点睛】本题考查了等边三角形的判定和完全平方公式、因式分解,能根据完全平方公式得出(a-b)2+(a-c)2+(b-c)2=0是解此题的关键.24.DE=2cm【分析】利用角平分线的性质,得出DE=DF,再利用△ABC面积是28cm2可求DE.【详解】解:∵在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,∴DE=DF,∵△ABC面积是28cm2,AB=20cm,AC=8cm,∴S△ABC =12AB•DE+12AC•DF=28,即12×20×DE+12×8×DF=28,解得DE=2cm.【点睛】全等三角形的判定与性质;三角形的面积;角平分线的性质.25.(1)111112=1234543211111112=12345654321;(2)264×21;198×81.【分析】(1)分别观察112,1112,11112,…,得出结果的一般规律,再根据一般规律求值.(2)根据给出的题例,即把每一个因数各个数位上的数字反过来写,乘积仍相等.【详解】(1)由12=1,112=121,1112=12321,11112=1234321,可知,这类数平方的结果为“回文数”,即从1开始按连续整数依次增大到最大,再逐渐减小到1,其中,最大的数字为等式左边1的个数,所以接下来的等式是:111112=123454321,1111112=12345654321.(2)124625544264215544⨯=⨯=, ,1246226421∴⨯=⨯1889116038⨯=,1988116038⨯=1889119881∴⨯=⨯【点睛】本题考查了有理数的概念与运算.关键是由易到难,由特殊到一般,找出这类数的平方的规律.26.(1)①见解析;②见解析;(2)△ADC ≌△CEB ;理由见解析【分析】(1)①要证△ADC ≌△CEB ,已知一直角∠ADC=∠CEB=90°和一边AC=CB 对应相等,由题意根据同角的余角相等,可得另一内角∠ECB=∠DAC ,再由AAS 即可判定;②由①得出AD=CE ,BE=CD ,而DE=CD+CE ,故DE=AD+BE ;(2)同理,根据上一小题的解题思路,易得△ADC ≌△CEB.【详解】(1)①∵∠ACB=90°∴∠DCA+∠ECB=90°又∵AD ⊥MN∴∠DCA+∠DAC=90°∴∠ECB=∠DAC又∵AD ⊥MN ,BE ⊥MN∴∠ADC=∠CEB=90°在△ADC 和△CEB 中ECB DAC ADC CEB AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADC ≌△CEB (AAS )②∵△ADC ≌△CEB∴AD=CE ,BE=CD又∵DE=CD+CE∴DE=AD+BE(2)△ADC ≌△CEB ;∵∠ACB=90°∴∠DCA+∠ECB=90°又∵AD ⊥MN∴∠DCA+∠DAC=90°∴∠ECB=∠DAC又∵AD ⊥MN ,BE ⊥MN∴∠ADC=∠CEB=90°在△ADC 和△CEB 中ECB DACADC CEB AC CB∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADC ≌△CEB (AAS )【点睛】此题主要考查三角形全等的判定,熟练掌握,即可解题.。
人教版八年级上册数学期中试卷(完整) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.3-的倒数是( )A .3B .13C .13-D .3-2.下列各数中,313.14159 8 0.131131113 25 7π-⋅⋅⋅--,,,,,,无理数的个数有( )A .1个B .2个C .3个D .4个3.已知:20n 是整数,则满足条件的最小正整数n ( )A .2B .3C .4D .54.已知a b 3132==,,则a b 3+的值为( ) A .1 B .2 C .3 D .275.已知a 与b 互为相反数且都不为零,n 为正整数,则下列两数互为相反数的是( )A .a 2n -1与-b 2n -1B .a 2n -1与b 2n -1C .a 2n 与b 2nD .a n 与b n6.如图,直线y=ax+b 过点A (0,2)和点B (﹣3,0),则方程ax+b=0的解是( )A .x=2B .x=0C .x=﹣1D .x=﹣37.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是( )A.y=2n+1 B.y=2n+n C.y=2n+1+n D.y=2n+n+1 8.如图所示,点A、B分别是∠NOP、∠MOP平分线上的点,AB⊥OP于点E,BC⊥MN于点C,AD⊥MN于点D,下列结论错误的是()A.AD+BC=AB B.与∠CBO互余的角有两个C.∠AOB=90°D.点O是CD的中点9.如图,两个较大正方形的面积分别为225、289,且中间夹的三角形是直角三角形,则字母A所代表的正方形的面积为()A.4 B.8 C.16 D.6410.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于()A.150°B.180°C.210°D.225°二、填空题(本大题共6小题,每小题3分,共18分)1.已知a、b满足(a﹣1)22b+,则a+b=________.2.将命题“同角的余角相等”,改写成“如果…,那么…”的形式_____.3.若关于x的分式方程2222x mmx x+=--有增根,则m的值为_______.4.如图,已知∠XOY=60°,点A在边OX上,OA=2.过点A作AC⊥OY于点C,以AC为一边在∠XOY内作等边三角形ABC,点P是△ABC围成的区域(包括各边)内的一点,过点P作PD∥OY交OX于点D,作PE∥OX交OY于点E.设OD=a ,OE=b ,则a+2b 的取值范围是________.5.如图,将△AOB 绕点O 按逆时针方向旋转45°后得到△COD ,若∠AOB=15°,则∠AOD=________度.6.如图,在平面直角坐标系中,矩形ABCO 的边CO 、OA 分别在x 轴、y 轴上,点E 在边BC 上,将该矩形沿AE 折叠,点B 恰好落在边OC 上的F 处.若OA =8,CF =4,则点E 的坐标是________.三、解答题(本大题共6小题,共72分)1.解分式方程:241244x x x x -=--+.2.化简求值:[4(xy-1)2-(xy+2)(2-xy)]÷14xy,其中x=-2, y=15.3.已知关于x 的一元二次方程2(4)240x m x m -+++=.(1)求证:该一元二次方程总有两个实数根;(2)若12,x x 为方程的两个根,且22124n x x =+-,判断动点(,)P m n 所形成的数图象是否经过点(5,9)A -,并说明理由.4.如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE,CF相交于点D,(1)求证:BE=CF ;(2)当四边形ACDE为菱形时,求BD的长.5.如图,将两个全等的直角三角形△ABD、△ACE拼在一起(图1).△ABD不动,(1)若将△ACE绕点A逆时针旋转,连接DE,M是DE的中点,连接MB、MC (图2),证明:MB=MC.(2)若将图1中的CE向上平移,∠CAE不变,连接DE,M是DE的中点,连接MB、MC(图3),判断并直接写出MB、MC的数量关系.(3)在(2)中,若∠CAE的大小改变(图4),其他条件不变,则(2)中的MB、MC的数量关系还成立吗?说明理由.6.某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.(1)求甲、乙两种树苗每棵的价格各是多少元?(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、B3、D4、B5、B6、D7、B8、B9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、﹣12、如果两个角是同一个角的余角,那么这两个角相等3、14、2≤a+2b≤5.5、30°6、(-10,3)三、解答题(本大题共6小题,共72分)x1、42、20xy-32,-40.3、(1)见解析;(2)经过,理由见解析4、(1)略(2-15、(1)略;(2)MB=MC.理由略;(3)MB=MC还成立,略.6、(1)甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元;(2)他们最多可购买11棵乙种树苗.。
人教版八年级第一学期期中数学试卷一、选择题(共10小题,每小题3分,共30分.)1.下列图形中,不是轴对称图形的是()A.B.C.D.2.设三角形三边之长分别为6,a,2,则a的值可能为()A.6B.4C.8D.33.若点A(x,5)与点B(2,y)关于y轴对称,则x+y的值是()A.﹣7B.﹣3C.3D.74.下列计算正确的是()A.a4×a7=a28B.(a3)3=a9C.(a3b2)3=a6b5D.b2+b2=b45.如图,AB∥CD,∠ABE=60°,∠D=50°,则∠DEF的度数为()A.110°B.30°C.20°D.10°6.如图,AD是△ABC的中线,CE是△ACD的中线,若△ABC的面积为12cm2,则△CDE的面积为()A.8cm2B.6cm2C.4cm2D.3cm27.如图,在△ABC中,BC=10,AB的垂直平分线交BC于D,AC的垂直平分线交BC于E,则△ADE的周长等于()A.8B.10C.12D.148.如图,把三角形ABC沿着DE折叠后,点A落在四边形BCED的内部A′,若∠A=45°,则∠1+∠2等于()A.60°B.90°C.120°D.135°9.如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是()A.6个B.7个C.8个D.9个10.如图AB=4cm,∠A=∠B=60°,AC=BD=3cm.点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上以xcm/s的速度由点B向点D运动,它们运动的时间为t(s).当x为()值时,△ACP与△BPQ全等.A.1B.2C.1或2D.1或1.5二、填空题(本大题共6小题,每小题3分,共18分)11.已知a m=2,a n=3,则a m+n的值为.12.已知等腰三角形ABC的两边长a、b满足(a﹣3)2+|b﹣4|=0,则等腰三角形ABC的周长为.13.将一副三角尺按如图所示的方式叠放,则∠1的度数为.14.如图,∠AOB=30°,OP平分∠AOB,PC∥OB,PD⊥OB,如果PC=6,那么PD等于.15.若等腰三角形一腰上的高与另一腰的夹角为40°,则这个等腰三角形的底角度数是.16.已知:如图,△ABC中,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足.下列结论:①△ABD≌△EBC;②BE平分∠FEC;③AE=AD=EC;④S四边形ABCE=BF×EF.其中正确的是.(只填序号)三、解答题(本大题共9小题,共72分)17.如图,B是线段AC的中点,AD∥BE,BD∥CE,求证:BD=CE.18.一个多边形的内角和是它的外角和的3倍,求这个多边形的边数.19.如图,在平面直角坐标系中,△ABC的三个顶点分别是A(2,4),B(1,1),C(3,2)(1)画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标:A1(,).(2)△ABC的面积为.(3)在y轴上有一点P,使得PA+PB的值最小,请直接写出点P的坐标:P(,).20.(1)如图,已知△ABC,P为边AB上一点,请用尺规作图的方法在AC边上求作一点E,使点E到P、C两点的距离相等.(保留作图痕迹,不写作法)(2)在图中,如果AC=5cm,AP=3cm,则△APE的周长是cm.21.如图,在△ABC中,∠BAC=100°,点D,E分别在边BC,AC上,且AB=AD=DE=EC.求∠C、∠ADE 的度数.22.如图,在△ABC中,AC=BC,△BDC和△ACE分别为等边三角形,AE和BD相交于点F,连接CF并延长,交AB于点G.(1)求证:∠FAB=∠FBA;(2)求证:G为AB的中点.23.如图,已知△ABC和△CDE均是等边三角形,点B、C、E在同一条直线上,AE与BD交于点O,AE与CD 交于点G,AC与BD交于点F,连接OC、FG.(1)求证:△BCD≌△ACE;(2)直接写出∠DOE=°;(3)判断△CFG的形状并说明理由.24.(1)如图1,在四边形ABCD中,对角线BD平分ABC,∠A+∠C=180°.请按要求画出图形:延长BA到点N,使得BN=BC,连接DN.求证:DA=DC;(2)如图2,在(1)的条件下,连接AC,当∠DAC=60°时,探究线段AB,BC,BD之间的数量关系,并说明理由;(3)如图3,在四边形ABCD中,∠A+∠C=180°,DA=DC,过点D作DE⊥BC,垂足为点E,请直接写出线段AB、CE、BC之间的数量关系.25.等腰Rt△ACB,∠ACB=90°,AC=BC,点A、C分别在x轴、y轴的正半轴上.(1)如图1,求证:∠BCO=∠CAO(2)如图2,若OA=5,OC=2,求B点的坐标(3)如图3,点C(0,3),Q、A两点均在x轴上,且S△CQA=18.分别以AC、CQ为腰在第一、第二象限作等腰Rt△CAN、等腰Rt△QCM,连接MN交y轴于P点,OP的长度是否发生改变?若不变,求出OP的值;若变化,求OP的取值范围.参考答案一、选择题(本大题共10小题,每小题3分,共30分.在每题只有一项是符合题目要求的)1.下列图形中,不是轴对称图形的是()A.B.C.D.【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.解:选项A、C、D均能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形,选项B不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,故选:B.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.设三角形三边之长分别为6,a,2,则a的值可能为()A.6B.4C.8D.3【分析】已知三角形的三边长,根据三角形的三边关系“第三边大于两边之差,而小于两边之和”列出关于a 的不等式,然后解不等式即可.解:根据题意,得6﹣2<a<6+2,即4<a<8;所以a的取值范围是4<a<8.观察选项,只有选项A符合题意.故选:A.【点评】本题主要考查了三角形的三边关系.要注意构成三角形的条件:任意两边之和大于第三边,任意两边之差小于第三边.3.若点A(x,5)与点B(2,y)关于y轴对称,则x+y的值是()A.﹣7B.﹣3C.3D.7【分析】直接利用关于y轴对称点的性质得出x,y的值进而得出答案.解:∵点A(x,5)与点B(2,y)关于x轴对称,∴x=﹣2,y=5,则x+y=﹣2+5=3.故选:C.【点评】此题主要考查了关于y轴对称点的性质,正确记忆横纵坐标的符号是解题关键.4.下列计算正确的是()A.a4×a7=a28B.(a3)3=a9C.(a3b2)3=a6b5D.b2+b2=b4【分析】利用幂的乘方与积的乘方的法则,同底数幂的乘法法则,合并同类项法则对每个选项进行分析,即可得出答案.解:∵a4×a7=a11≠a28,∴选项A不符合题意;∵(a3)3=a9,∴选项B符合题意;∵(a3b2)3=a9b6≠a6b5,∴选项C不符合题意;∵b2+b2=2b2≠b4,∴选项D不符合题意;故选:B.【点评】本题考查了幂的乘方与积的乘方,同底数幂的乘法,合并同类项,掌握幂的乘方与积的乘方的法则,同底数幂的乘法法则,合并同类项法则是解决问题的关键.5.如图,AB∥CD,∠ABE=60°,∠D=50°,则∠DEF的度数为()A.110°B.30°C.20°D.10°【分析】根据平行线的性质求出∠CFE,根据三角形的外角性质得出∠DEF=∠CFE﹣∠D,代入求出即可.解:∵AB∥CD,∠ABE=60°,∴∠CFE=∠ABE=60°,∵∠D=50°,∴∠DEF=∠CFE﹣∠D=10°,故选:D.【点评】本题考查了平行线的性质和三角形的外角性质的应用,解此题的关键是求出∠CFE的度数,注意:两直线平行,同位角相等.6.如图,AD是△ABC的中线,CE是△ACD的中线,若△ABC的面积为12cm2,则△CDE的面积为()A.8cm2B.6cm2C.4cm2D.3cm2【分析】根据三角形的中线把三角形分成面积相等的两部分,进而解答即可.解:∵AD是△ABC的边BC上的中线,△ABD的面积为12cm2,∴△ADC的面积为:×12=6(cm2),∵CE是△ADC的边AD上的中线,∴△CDE的面积为:×6=3(cm2),故选:D.【点评】本题主要考查了三角形面积的求法和三角形的中线,掌握三角形的中线将三角形分成面积相等的两部分,是解答本题的关键.7.如图,在△ABC中,BC=10,AB的垂直平分线交BC于D,AC的垂直平分线交BC于E,则△ADE的周长等于()A.8B.10C.12D.14【分析】利用线段垂直平分线的性质可得DA=DB,EA=EC,然后利用等量代换可得△ADE的周长=BC的长,即可解答.解:∵AB的垂直平分线交BC于D,AC的垂直平分线交BC于E,∴DA=DB,EA=EC,∵BC=10,∴△ADE的周长=AD+DE+AE=BD+DE+EC=BC=10,故选:B.【点评】本题考查了线段垂直平分线的性质,熟练掌握线段垂直平分线的性质是解题的关键.8.如图,把三角形ABC沿着DE折叠后,点A落在四边形BCED的内部A′,若∠A=45°,则∠1+∠2等于()A.60°B.90°C.120°D.135°【分析】根据平角定义和折叠的性质,得∠1+∠2=360°﹣2(∠ADE+∠AED),再利用三角形的内角和定理进行转换,得∠1+∠2=360°﹣2(180°﹣∠A)=2∠A.解:根据平角的定义和折叠的性质得,∠1+∠2=360°﹣2(∠ADE+∠AED),又∵∠ADE+∠AED=180°﹣∠A,∴∠1+∠2=360°﹣2(180°﹣∠A)=2∠A=90°.故选:B.【点评】本题主要考查了三角形的内角和定理,平角的定义、折叠的性质,综合运用各定理是解答此题的关键.9.如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是()A.6个B.7个C.8个D.9个【分析】当AB是腰长时,根据网格结构,找出一个小正方形与A、B顶点相对的顶点,连接即可得到等腰三角形;当AB是底边时,根据线段垂直平分线上的点到线段两端点的距离相等,AB垂直平分线上的格点都可以作为点C,然后相加即可得解.解:如图,分情况讨论:①AB为等腰△ABC的底边时,符合条件的C点有4个;②AB为等腰△ABC其中的一条腰时,符合条件的C点有4个.故选:C.【点评】本题考查了等腰三角形的判定;解答本题关键是根据题意,画出符合实际条件的图形.分类讨论思想是数学解题中很重要的解题思想.10.如图AB=4cm,∠A=∠B=60°,AC=BD=3cm.点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上以xcm/s的速度由点B向点D运动,它们运动的时间为t(s).当x为()值时,△ACP与△BPQ全等.A.1B.2C.1或2D.1或1.5【分析】根据题意可得:AP=tcm,BQ=xtcm,从而可得BP=(4﹣t)cm,再根据已知∠A=∠B=60°,然后分两种情况:当AC=BP,AP=BQ时,△ACP≌△BPQ;当AC=BQ,AP=BP时,△ACP≌△BQP,分别进行计算即可解答.解:由题意得:AP=tcm,BQ=xtcm,∵AB=4cm,∴BP=AB﹣AP=(4﹣t)cm,∵∠A=∠B=60°,∴分两种情况:当AC=BP,AP=BQ时,△ACP≌△BPQ,∴4﹣t=3,t=xt,∴t=1,x=1;当AC=BQ,AP=BP时,△ACP≌△BQP,∴3=xt,t=4﹣t,∴t=2,x=;综上所述:x为1或时,△ACP与△BPQ全等,故选:D.【点评】本题考查了全等三角形的判定,分两种情况讨论是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分)11.已知a m=2,a n=3,则a m+n的值为6.【分析】根据同底数幂的乘法法则计算即可求解.解:∵a m=2,a n=3,∴a m+n=a m•a n=2×3=6.故答案为:6.【点评】本题考查了同底数幂的乘法,同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.12.已知等腰三角形ABC的两边长a、b满足(a﹣3)2+|b﹣4|=0,则等腰三角形ABC的周长为10或11.【分析】先利用绝对值和偶次方的非负性可得a﹣3=0,b﹣4=0,从而可得a=3,b=4,分两种情况:当等腰三角形的腰长为3,底边长为4时,当等腰三角形的腰长为4,底边长为3时,然后分别进行计算即可解答.解:∵(a﹣3)2+|b﹣4|=0,∴a﹣3=0,b﹣4=0,∴a=3,b=4,分两种情况:当等腰三角形的腰长为3,底边长为4时,∴等腰三角形ABC的周长=3+3+4=10;当等腰三角形的腰长为4,底边长为3时,∴等腰三角形ABC的周长=4+4+3=11;综上所述:等腰三角形ABC的周长为10或11,故答案为:10或11.【点评】本题考查了等腰三角形的性质,三角形的三边关系,绝对值和偶次方的非负性,分两种情况进行计算是解题的关键.13.将一副三角尺按如图所示的方式叠放,则∠1的度数为75°.【分析】根据三角形外角性质求解即可.解:如图,∵∠1=∠A+∠3,∴∠1=75°,故答案为:75°.【点评】此题考查了三角形外角性质,熟记三角形外角性质是解题的关键.14.如图,∠AOB=30°,OP平分∠AOB,PC∥OB,PD⊥OB,如果PC=6,那么PD等于3.【分析】根据角平分线的性质,角平分线上的点到两角的距离相等,因而过P作PE⊥OA于点E,则PD=PE,因为PC∥OB,得角相等,而OP平分∠AOB,得∴∠ECP=∠COP+∠OPC=30°根据三角形的外角的性质得到答案.解:过P作PE⊥OA于点E,则PD=PE,∵PC∥OB,∠AOB=30°,∴∠ECP=∠AOB=30°在Rt△ECP中,PE=PC=3∴PD=PE=3.【点评】本题主要考查了角平分线的性质,角平分线上的点到角的两边距离相等.15.若等腰三角形一腰上的高与另一腰的夹角为40°,则这个等腰三角形的底角度数是65°或25°.【分析】在等腰△ABC中,AB=AC,BD为腰AC上的高,∠ABD=40°,讨论:当BD在△ABC内部时,如图1,先计算出∠BAD=50°,再根据等腰三角形的性质和三角形内角和可计算出∠ACB;当BD在△ABC外部时,如图2,先计算出∠BAD=50°,再根据等腰三角形的性质和三角形外角性质可计算出∠ACB.解:在等腰△ABC中,AB=AC,BD为腰AC上的高,∠ABD=40°,当BD在△ABC内部时,如图1,∵BD为高,∴∠ADB=90°,∴∠ABC=∠ACB=(180°﹣50°)=65°;当BD在△ABC外部时,如图2,∵BD为高,∴∠ADB=90°,∴∠BAD=90°﹣40°=50°,∵AB=AC,∴∠ABC=∠ACB,而∠BAD=∠ABC+∠ACB,∴∠ACB=∠BAD=25°,综上所述,这个等腰三角形底角的度数为65°或25°.故答案为:65°或25°.【点评】本题考查了等腰三角形的性质:等腰三角形的两腰相等;等腰三角形的两个底角相等;等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.16.已知:如图,△ABC中,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足.下列结论:①△ABD≌△EBC;②BE平分∠FEC;③AE=AD=EC;④S四边形ABCE=BF×EF.其中正确的是①③④.(只填序号)【分析】由“SAS”可证△ABD≌△EBC,故①正确;由三角形的内角和定理可求∠BEC≠∠BEF,故②错误;由外角的性质可证∠DCE=∠DAE,可得AE=EC=AD,故③正确;证Rt△BEG≌Rt△BEF(HL),Rt△CEG ≌Rt△AEF(HL),得S△BEF=S△BEG,S△AEF=S△CEG,判断④正确,即可求解.解:①∵BD为△ABC的角平分线,∴∠ABD=∠EBC,在△ABD和△EBC中,,∴△ABD≌△EBC(SAS),故①正确;②∵EF⊥AB,∴∠ABE+∠BEF=90°,∵∠CBE+∠BEC>0,∠ABE=∠CBE,∴∠BEC≠∠BEF,∴BE不平分∠FEC,故②错误;③∵∠ABD=∠CBD,BD=BC,BE=BA,∴∠BCD=∠BDC=∠BAE=∠BEA,∵∠BCE=∠BDA,∠BCE=∠BCD+∠DCE,∠BDA=∠DAE+∠BEA,∴∠DCE=∠DAE,∴△ACE为等腰三角形,∴AE=EC,∵△ABD≌△EBC,∴AD=EC,∴AD=AE=EC.故③正确;④如图,过E作EG⊥BC于点G,∵E是∠ABC的角平分线BD上的点,EF⊥AB,EG⊥BC,∴EF=EG,在Rt△BEG和Rt△BEF中,,∴Rt△BEG≌Rt△BEF(HL),∴BG=BF,S△BEF=S△BEG,在Rt△CEG和Rt△AEF中,,∴Rt△CEG≌Rt△AEF(HL),∴S△AEF=S△CEG,∴S四边形ABCE=2S△BEF=2×BF×EF=BF×EF,故④正确;故答案为:①③④.【点评】本题考查了全等三角形的判定与性质,等腰三角形的性质等知识,证明三角形全等是解题的关键.三、解答题(本大题共9小题,共72分)17.如图,B是线段AC的中点,AD∥BE,BD∥CE,求证:BD=CE.【分析】证△ABD≌△BCE(ASA),即可得出结论.【解答】证明:∵点B为线段AC的中点,∴AB=BC,∵AD∥BE,BD∥CE,∴∠A=∠EBC,∠ABD=∠C,在△ABD与△BCE中,,∴△ABD≌△BCE(ASA),∴BD=CE.【点评】本题考查了全等三角形的判定与性质、平行线的性质等知识,熟练掌握全等三角形的判定与性质是解题的关键.18.一个多边形的内角和是它的外角和的3倍,求这个多边形的边数.【分析】根据多边形的外角和为360°,内角和公式为:(n﹣2)•180°,由题意可得到方程(n﹣2)×180°=360°×3,解方程即可得解.解:设这个多边形是n边形,由题意得:(n﹣2)×180°=360°×3,解得:n=8.答:这个多边形的边数是8.【点评】此题主要考查了多边形的外角和与内角和公式,做题的关键是正确把握内角和公式为:(n﹣2)•180°,外角和为360°.19.如图,在平面直角坐标系中,△ABC的三个顶点分别是A(2,4),B(1,1),C(3,2)(1)画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标:A1(2,﹣4).(2)△ABC的面积为.(3)在y轴上有一点P,使得PA+PB的值最小,请直接写出点P的坐标:P(0,2).【分析】(1)根据轴对称的性质,即可画出△A1B1C1;(2)利用△ABC所在的矩形面积减去周围三个三角形面积即可;(3)作点A关于y轴的对称点A',连接A'B交y轴于P,从而解决问题.解:(1)如图所示,△A1B1C1即为所求,A1(2,﹣4),故答案为:2,﹣4;(2)△ABC的面积=2×3﹣=,故答案为:;(3)如图所示,点P即为所求,P(0,2).【点评】本题主要考查了作图﹣轴对称变换,轴对称﹣最短路线问题,三角形的面积等知识,熟练掌握轴对称的性质是解题的关键.20.(1)如图,已知△ABC,P为边AB上一点,请用尺规作图的方法在AC边上求作一点E,使点E到P、C两点的距离相等.(保留作图痕迹,不写作法)(2)在图中,如果AC=5cm,AP=3cm,则△APE的周长是8cm.【分析】(1)连接PC作线段PC的垂直平分线交AC于点E,连接PE,点E即为所求;(2)证明△APE的周长=AP+AC,可得结论.解:(1)如图,点E即为所求;∵EP=EC,∴△APE的周长=AP+PE+AE=AP+CE+AE=AP+AC=3+5=8(cm),故答案为:8.【点评】本题考查作图﹣复杂作图,线段的垂直平分线的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.21.如图,在△ABC中,∠BAC=100°,点D,E分别在边BC,AC上,且AB=AD=DE=EC.求∠C、∠ADE 的度数.【分析】设∠C=x,利用等腰三角形的性质可得∠EDC=∠C=x,从而利用三角形的外角性质可得∠DEA=2x,再利用等腰三角形的性质可得∠DAE=∠DEA=2x,从而利用三角形的外角性质可得∠ADB=3x,再利用等腰三角形的性质可得∠B=∠ADB=3x,然后利用三角形内角和定理可得∠B+∠C=80°,从而可得3x+x=80°,进而求出x=20°,最后可得∠C=∠EDC=20°,∠DAC=40°,∠ADB=60°,从而利用平角定义进行计算即可解答.解:设∠C=x,∵ED=EC,∴∠EDC=∠C=x,∴∠DEA=∠C+∠EDC=2x,∵DA=DE,∴∠DAE=∠DEA=2x,∴∠ADB=∠C+∠DAE=3x,∵AB=AD,∴∠B=∠ADB=3x,∵∠BAC=100°,∴∠B+∠C=180°﹣∠BAC=80°,∴3x+x=80°,∴x=20°,∴∠C=∠EDC=20°,∠DAC=2x=40°,∠ADB=3x=60°,∴∠ADE=180°﹣∠EDC﹣∠ADB=100°,∴∠C的度数为20°,∠ADE的度数为100°.【点评】本题考查了等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键.22.如图,在△ABC中,AC=BC,△BDC和△ACE分别为等边三角形,AE和BD相交于点F,连接CF并延长,交AB于点G.(1)求证:∠FAB=∠FBA;(2)求证:G为AB的中点.【分析】(1)根据等边三角形的性质和等腰三角形的性质得出∠FAB=∠FBA;(2)判断出△AFC≌△BFC,根据全等三角形的性质得出∠ACF=∠BCF,根据等腰三角形底边三线合一即可解题.【解答】证明:(1)∵CA=CB∴∠CAB=∠CBA∵△AEC和△BCD为等边三角形∴∠CAE=∠CBD,∠FAG=∠FBG∴AF=BF.∴∠FAB=∠FBA,(2))∵CA=CB∴∠CAB=∠CBA∵△AEC和△BCD为等边三角形∴∠CAE=∠CBD,∠FAG=∠FBG∴AF=BF.在△ACF和△BCF中,,∴△AFC≌△BFC(SSS),∴∠ACF=∠BCF∴AG=BG(三线合一)∴G为AB的中点【点评】本题考查了全等三角形的判定,考查了全等三角形对应角相等的性质,考查了等腰三角形底边三线合一的性质.23.如图,已知△ABC和△CDE均是等边三角形,点B、C、E在同一条直线上,AE与BD交于点O,AE与CD 交于点G,AC与BD交于点F,连接OC、FG.(1)求证:△BCD≌△ACE;(2)直接写出∠DOE=60°;(3)判断△CFG的形状并说明理由.【分析】(1)由SAS证明△BCD≌△ACE即可;(2)由全等三角形的性质得∠BDC=∠AEC,即可解决问题;(2)证明△BCF≌△ACG(ASA),得CG=CF,即可得出结论,【解答】(1)证明:∵△ABC和△DCE均是等边三角形,∴BC=AC,CD=CE,∠ACB=60°,∠DCE=60°,∴∠BCD=180°﹣60°=∠ACE,在△BCD和△ACE中,,∴△BCD≌△ACE(SAS);(2)解:由(1)可知,△BCD≌△ACE,∴∠BDC=∠AEC,∵∠DGO=∠CGE,∴∠DOE=∠DCE=60°,故答案为:60;(3)解:△CFG是等边三角形,理由如下:∵△ACB和△DCE是等边三角形,∴AC=BC,∠ACB=∠DCE=60°,∴∠ACD=180°﹣60°﹣60°=60°,∴∠BCA=∠ACG=60°,由(1)可知,△BCD≌△ACE,∴∠CBD=∠CAE,在△BCF与△ACG中,,∴△BCF≌△ACG(ASA),∴CG=CF,∵∠FCG=60°,∴△CFG是等边三角形.【点评】本题考查了等边三角形的性质与判定,全等三角形的判定与性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型,24.(1)如图1,在四边形ABCD中,对角线BD平分ABC,∠A+∠C=180°.请按要求画出图形:延长BA到点N,使得BN=BC,连接DN.求证:DA=DC;(2)如图2,在(1)的条件下,连接AC,当∠DAC=60°时,探究线段AB,BC,BD之间的数量关系,并说明理由;(3)如图3,在四边形ABCD中,∠A+∠C=180°,DA=DC,过点D作DE⊥BC,垂足为点E,请直接写出线段AB、CE、BC之间的数量关系.【分析】(1)延长AB到N,使BN=BC,连接DN,证明△NBD≌△CBD(SAS),由全等三角形的性质得出∠BND=∠C,ND=CD,证出DN=DA,则可得出结论;(2)延长CB到P,使BP=BA,连接AP,证明△PAC≌△BAD(SAS),由全等三角形的性质得出PC=BD,则可得出结论;(3)连接BD,过点D作DF⊥AB于点F,证明△DFA≌△DEC(AAS),由全等三角形的性质得出DF=DE,AF=CE,证明Rt△BDF≌和Rt△BDE(HL),由全等三角形的性质得出BF=BE,则可得出结论.解:(1)延长AB到N,使BN=BC,连接DN,∵BD平分∠ABC,∴∠NBD=∠CBD,在△NBD和△CBD中,,∴△NBD≌△CBD(SAS),∴∠BND=∠C,ND=CD,∵∠NAD+∠BAD=180°,∠C+∠BAD=180°,∴∠BND=∠NAD,∴DN=DA,∴DA=DC;(2)AB,BC,BD之间的数量关系为AB+BC=BD.理由:延长CB到P,使BP=BA,连接AP,由(1)知AD=CD,∵∠DAC=60°,∴△ADC是等边三角形,∴AC=AD,∠ADC=60°,∵∠BCD+∠BAD=180°,∴∠ABC=360°﹣180°﹣60°=120°,∴∠PBA=180°﹣∠ABC=60°,∵BP=BA,∴△ABP为等边三角形,∴∠PAB=60°,AB=AP,∵∠DAC=60°,∴∠PAB+∠BAC=∠DAC+∠BAC,即∠PAC=∠BAD,在△PAC和△BAD中,,∴△PAC≌△BAD(SAS),∴PC=BD,∵PC=BP+BC=AB+BC,∴AB+BC=BD;(3)线段AB、CE、BC之间的数量关系为BC﹣AB=2CE.连接BD,过点D作DF⊥AB于点F,∵∠BAD+∠C=180°,∠BAD+∠FAD=180°,∴∠FAD=∠C,在△DFA和△DEC中,,∴△DFA≌△DEC(AAS),∴DF=DE,AF=CE,在Rt△BDF和Rt△BDE中,,∴Rt△BDF≌和Rt△BDE(HL),∴BF=BE,∴BC=BE+CE=BA+AF+CE=BA+2CE,∴BC﹣BA=2CE.【点评】本题属于四边形综合题,考查了等边三角形的性质,角平分线的性质,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.25.等腰Rt△ACB,∠ACB=90°,AC=BC,点A、C分别在x轴、y轴的正半轴上.(1)如图1,求证:∠BCO=∠CAO(2)如图2,若OA=5,OC=2,求B点的坐标(3)如图3,点C(0,3),Q、A两点均在x轴上,且S△CQA=18.分别以AC、CQ为腰在第一、第二象限作等腰Rt△CAN、等腰Rt△QCM,连接MN交y轴于P点,OP的长度是否发生改变?若不变,求出OP的值;若变化,求OP的取值范围.【分析】(1)根据同角的余角相等得出结论即可;(2)先过点B作BD⊥y轴于D,再判定△CDB≌△AOC(AAS),求得BD=CO=2,CD=AO=5,进而得出OD=5﹣2=3,即可得到B点的坐标;(3)先过N作NH∥CM,交y轴于H,再△HCN≌△QAC(ASA),得出CH=AQ,HN=QC,然后根据点C (0,3),S△CQA=18,求得AQ=12,最后判定△PNH≌△PMC(AAS),得出CP=PH=CH=6,即可求得OP=3+6=9(定值).解:(1)如图1,∵∠ACB=90°,∠AOC=90°,∴∠BCO+∠ACO=90°=∠CAO+∠ACO,∴∠BCO=∠CAO;(2)如图2,过点B作BD⊥y轴于D,则∠CDB=∠AOC=90°,在△CDB和△AOC中,,∴△CDB≌△AOC(AAS),∴BD=CO=2,CD=AO=5,∴OD=5﹣2=3,又∵点B在第三象限,∴B(﹣2,﹣3);(3)OP的长度不会发生改变.理由:如图3,过N作NH∥CM,交y轴于H,则∠CNH+∠MCN=180°,∵等腰Rt△CAN、等腰Rt△QCM,∴∠MCQ+∠ACN=180°,∴∠ACQ+∠MCN=360°﹣180°=180°,∴∠CNH=∠ACQ,又∵∠HCN+∠ACO=90°=∠QAC+∠ACO,∴∠HCN=∠QAC,在△HCN和△QAC中,,∴△HCN≌△QAC(ASA),∴CH=AQ,HN=QC,∵QC=MC,∴HN=CM,∵点C(0,3),S△CQA=18,∴×AQ×CO=18,即×AQ×3=18,∴AQ=12,∴CH=12,∵NH∥CM,∴∠PNH=∠PMC,∴在△PNH和△PMC中,,∴△PNH≌△PMC(AAS),∴CP=PH=CH=6,又∵CO=3,∴OP=3+6=9(定值),即OP的长度始终是9.【点评】本题主要考查了全等三角形的判定与性质,三角形的面积计算以及等腰直角三角形的性质的综合应用,解决问题的关键是作辅助线构造全等三角形,根据全等三角形的对应边相等进行推导计算.解题时注意:等腰直角三角形是一种特殊的三角形,具有所有三角形的性质,还具备等腰三角形和直角三角形的所有性质.。
八年级上学期期中复习数学试卷(一)一.选择题(本大题10小题,每小题3分,共30分) 1.下列“表情图”中,属于轴对称图形的是( )A B C D 2.下列长度的各组线段中,能组成三角形的是( )A. 5,9,3B. 3,11,8C. 6.3,6.3,4.4D. 15,8,6 3.点M (3,-4)关于y 轴的对称点的坐标是( )A.(3,4)B.(-3,-4)C.(-3,4)D.(-4,3) 4.下列图形中具有稳定性的是( )A.六边形B.五边形C.平行四边形D.三角形5.如图,下面是利用尺规作∠AOB 的角平分线OC 的作法,在用尺规作角平分线时,用到的三角形全等的判定方法是( )作法:①以O 为圆心,适当长为半径画弧,分别交OA ,OB 于点D ,E ; ③画射线OC ,射线OC 就是∠AOB 的角平分线.A.SSSB.SASC.ASA 6.已知图中的两个三角形全等,则∠1等于( )A.70°B.68°C.58°D.52°7.已知点A (-2,1),点B (3,2),在x 轴上求一点P ,使AP+BP 下列作法正确的是( ) A.点P 与O (0.0)重合B 连接AB 交y 轴于P ,点P 即为所求.C.过点A 作x 轴的垂线,垂足为P ,点P 即为所求D.作点B 关于x 轴的对称点C ,连接AC ,交x 轴于P ,点P 即为所求8.如图,已知AD 是△ABC 的BC 边上的高,补充下列一个条件不能使△ABD ≌△ACD 的条件是( ) A. ∠B=45° B.BD=CD C.AD 平分∠BAC D.AB=AC9.如图,在长方形网格中,每个小长方形的长为2,宽为1,A 、B 两点在网格格点上,若点C 也在网格格点上,以A 、B 、C 为顶点的三角形面积为2,则满足条件的点C 个数是( ) A.7 B.6 C.5 D.4BCB BCFBBB10.如图,在△ABC中,AC=BC,BD平分∠ABC,CD平分∠ACB,AE=CE,则∠D和∠AEC的关系为()A. ∠D=∠AECB. ∠D≠∠AECC. 2∠AEC-∠D=180°D. 2∠D-2AEC=180°第8题图第9题图第10题图第11题图二.填空题(本大题共有6小题,每小题3分,共18分)11.如图,在△ABC中,∠A=70°,点D是BC延长线上一点,∠ACD=120°,则∠B= .12.如图,AB交CD于点O,△AOC≌△DOB,若OA=6,OC=3.4,AC=5.6,则AB= .13.已知等腰三角形的一边长为4,另一边长为8,则它的周长是.14.把边长相等的正五边形ABGHI和正六边形ABCDEF的AB边重合,按照如图的方式叠合在一起,连接EB,交HI于点J,则∠BJI的大小为.15.如图,△ABC的外角∠ACD的平分线CE与内角∠ABC平分线BE交于点E,若∠CAE=52°,则∠BEC= .16.如图,在△ABC中,AB=AC,D、E是△ABC内两点,AD平分∠BAC,∠EBC=∠E=60°,若BE=4cm,DE=3cm,则BC= cm.第12题图第14题图第15 题图第16题图三.解答题(本题共9题,共72分)17.(本小题满分6分)如图,∠1=∠2,∠3=∠4,∠A=80°,求∠BOC的度数AB 18.(本小题满分6分)如图,△ABC ≌△DEC ,点E 在AB 上,∠DCA=40°,请写出AB 的对应边并求∠BCE 的度数.19.(本小题满分6分)如图,AC=BD ,BC=AD ,求证:△EAB 是等腰三角形20.(本小题满分7分)如图,在平面直角坐标系中,△ABC 的三个顶点的坐标分别为A (2,1),B (-1,3),C (-3,2)(1)作出△ABC 关于x 轴对称的△111A B C ; (2)点1A 的坐标 ,点1B 的坐标 ;(3)点P (a ,a-2)与点Q 关于x 轴对称,若PQ=8,则点P 的坐标 21.(本小题满分7分)如图,在等边△ABC 的三边上,分别取点D 、E 、F ,使AD=BE=CF ,求证:△DEF 是等边三角形.EEA 备用图图122.(本小题满分8分)如图,在等边△ABC 中,点D 为AC 上一点,CD=CE ,∠ACE=60° (1)求证:△BCD ≌△ACE ;(2)延长BD 交AE 于F ,连接CF ,若AF=CF ,猜想线段BF 、AF 的数量关系,并证明你的猜想.23.(本小题满分10分)如图,AD 是△ABC 的角平分线,点F 、E 分别在边AC ,AB 上,且BD=FD. (1)求证:∠B+∠ADF=180°; (2)如果∠B+2∠DEA=180°,试探究线段AE ,AF ,FD 之间有何数量关系,并证明你的结论.24.(本小题满分10分)如图,等腰Rt △ACB 中,∠ACB=90°,AC=BC ,E 点为射线CB 上一动点,连接AE ,作AF ⊥AE 且AF=AE.(1)如图1,过F 点作FG ⊥AC 交AC 于G 点,求证:△AGF ≌△ECA ;图2图3A图1图2图3(2)如图2,连接BF 交AC 于D 点,若ADCD=3,求证:E 点为BC 中点; (3)如图3,当E 点在CB 的延长线上时,连接BF 与AC 的延长线交于D 点,若43BC BE =,则AD CD =25.(本小题满分12分)已知点A 与点C 为x 轴上关于y 轴对称的两点,点B 为y 轴负半轴上一点。
人教版数学八年级上册期中测试题(一)一、选择题(在各小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡上指定的位置填涂符合要求的选项前面的字母代号.本大题共15小题,每题3分,计45分)1.(3分)若正比例函数的图象经过点(﹣1,2),则这个图象必经过点()A.(1,2) B.(﹣1,﹣2)C.(2,﹣1)D.(1,﹣2)2.(3分)直线y=3x+6与两坐标轴围成的三角形的面积为()A.6 B.12 C.3 D.243.(3分)直角三角形两锐角的平分线相交得到的钝角为()A.150o B.135o C.120o D.120o或135o4.(3分)已知正方形ABCD中,A(﹣3,1),B(1,1),C(1,﹣3),则D点的坐标是()A.(﹣3,﹣3)B.(﹣1,1)C.(﹣3,3)D.(1,3)5.(3分)某公司准备与汽车租凭公司签订租车合同,以每月用车路程x km计算,甲汽车租凭公司每月收取的租赁费为y1元,乙汽车租凭公司每月收取的租赁费为y2元,若y1、y2与x之间的函数关系如图所示(其中x=0对应的函数值为月固定租赁费),则下列判断错误的是()A.当月用车路程为2000km时,两家汽车租赁公司租赁费用相同B.当月用车路程为2300km时,租赁乙汽车租赁公司车比较合算C.除去月固定租赁费,甲租赁公司每公里收取的费用比乙公司多D.甲租赁公司每月的固定租赁费高于乙租赁公司6.(3分)若一个三角形的两边长分别为3和7,则第三边长可能是()A.2 B.3 C.5 D.117.(3分)甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是()A.B.C.D.8.(3分)如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.9.(3分)如图,在△ABC中,∠A=50°,∠C=70°,则外角∠ABD的度数是()A.110°B.120°C.130° D.140°10.(3分)如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个 B.2个 C.3个 D.4个11.(3分)如图,在△ABC中,∠ABC=50°,∠ACB=60°,点E在BC的延长线上,∠ABC的平分线BD与∠ACE的平分线CD相交于点D,连接AD,下列结论中不正确的是()A.∠BAC=70°B.∠DOC=90°C.∠BDC=35°D.∠DAC=55°12.(3分)如图,在△ABC中,AC的垂直平分线分别交AC、BC于E,D两点,EC=4,△ABC的周长为23,则△ABD的周长为()A.13 B.15 C.17 D.1913.(3分)如图,直线MN是四边形AMBN的对称轴,点P是直线MN上的点,下列判断错误的是()A.AM=BM B.AP=BN C.∠MAP=∠MBP D.∠ANM=∠BNM14.(3分)如图,AD是△ABC的角平分线,则AB:AC等于()A.BD:CD B.AD:CD C.BC:AD D.BC:AC15.(3分)如图,△ABC是等边三角形,AQ=PQ,PR⊥AB于点R,PS⊥AC于点S,PR=PS,则下列结论:①点P在∠A的角平分线上;②AS=AR;③QP∥AR;④△BRP≌△QSP.正确的有()A.1个 B.2个 C.3个 D.4个二.解答题(共9小题)16.(6分)如图,在△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠BAC=80°,∠ABC=70°.求∠BAD,∠AOF.17.(6分)如图,AB=AD,CB=CD,求证:AC平分∠BAD.18.(7分)如图,已知AC=AE,∠BAD=∠CAE,∠B=∠ADE,求证:BC=DE.19.(7分)如图,在△ABC中,AB=AC,点D是BC边上的中点,DE、DF分别垂直AB、AC于点E和F.求证:DE=DF.20.(8分)如图,一艘轮船以18海里/时的速度由西向东航行,在A处测得小岛C在北偏东75°方向上,两小时后,轮船在B处测得小岛C在北偏东60°方向上,在小岛周围15海里处有暗礁,若轮船仍然按18海里/时的速度向东航行,请问是否有触礁危险?并说明理由.21.(8分)如图,在等腰三角形ABC中,AC=BC,分别以BC和AC为直角边向上作等腰直角三角形△BCD和△ACE,AE与BD相交于点F,连接CF并延长交AB 于点G.求证:CG垂直平分AB.22.(10分)如图,在等边△ABC中,点F是AC边上一点,延长BC到点D,使BF=DF,若CD=CF,求证:(1)点F为AC的中点;(2)过点F作FE⊥BD,垂足为点E,请画出图形并证明BD=6CE.23.(11分)如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A 向C运动(与A、C不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.(1)当∠BQD=30°时,求AP的长;(2)当运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.24.(12分)如图,在等腰Rt△ABC中,∠ACB=90°,AC=CB,F是AB边上的中点,点D、E分别在AC、BC边上运动,且始终保持AD=CE.连接DE、DF、EF.(1)求证:△ADF≌△CEF;(2)试证明△DFE是等腰直角三角形.参考答案与试题解析一、选择题(在各小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡上指定的位置填涂符合要求的选项前面的字母代号.本大题共15小题,每题3分,计45分)1.(3分)若正比例函数的图象经过点(﹣1,2),则这个图象必经过点()A.(1,2) B.(﹣1,﹣2)C.(2,﹣1)D.(1,﹣2)【考点】待定系数法求正比例函数解析式.【专题】待定系数法.【分析】求出函数解析式,然后根据正比例函数的定义用代入法计算.【解答】解:设正比例函数的解析式为y=kx(k≠0),因为正比例函数y=kx的图象经过点(﹣1,2),所以2=﹣k,解得:k=﹣2,所以y=﹣2x,把这四个选项中的点的坐标分别代入y=﹣2x中,等号成立的点就在正比例函数y=﹣2x的图象上,所以这个图象必经过点(1,﹣2).故选D.2.(3分)直线y=3x+6与两坐标轴围成的三角形的面积为()A.6 B.12 C.3 D.24【考点】一次函数图象上点的坐标特征.【专题】数形结合.【分析】求出直线y=3x+6与两坐标轴的交点坐标,画出函数图象,再根据三角形的面积公式求出三角形的面积.【解答】解:设直线与x轴交点坐标为A(x,0),与y轴交点为B(0,y).将A、B两点分别代入解析式得,x=﹣2,y=6.故A、B两点坐标为A(﹣2,0)、B(0,6).于是S=×2×6=6.△ABC如图:3.(3分)直角三角形两锐角的平分线相交得到的钝角为()A.150o B.135o C.120o D.120o或135o【考点】直角三角形的性质.【专题】计算题.【分析】本题可根据直角三角形内角的性质和三角形内角和为180°进行求解.【解答】解:直角三角形中,两锐角三角形度数和为90°,则两锐角的各一半度数和为45°,根据三角形内角和为180°,可得钝角度数为135°,故选B.4.(3分)已知正方形ABCD中,A(﹣3,1),B(1,1),C(1,﹣3),则D点的坐标是()A.(﹣3,﹣3)B.(﹣1,1)C.(﹣3,3)D.(1,3)【考点】坐标与图形性质.【专题】计算题.【分析】因为四边形为正方形,四条边相等,根据正方形的性质与边长为:|AB|=4,从而可计算出D的坐标.【解答】解:设D点的坐标为(x,y),已知四边形为正方形,四条边相等,且易知|AB|=4,AB∥CD,∴C,D两点的从坐标相等,∴y=﹣3,又∵AD∥BC,∴A,D两点的横坐标相等,∴x=﹣3,∴D的坐标为(﹣3,﹣3),故选A.5.(3分)某公司准备与汽车租凭公司签订租车合同,以每月用车路程x km计算,甲汽车租凭公司每月收取的租赁费为y1元,乙汽车租凭公司每月收取的租赁费为y2元,若y1、y2与x之间的函数关系如图所示(其中x=0对应的函数值为月固定租赁费),则下列判断错误的是()A.当月用车路程为2000km时,两家汽车租赁公司租赁费用相同B.当月用车路程为2300km时,租赁乙汽车租赁公司车比较合算C.除去月固定租赁费,甲租赁公司每公里收取的费用比乙公司多D.甲租赁公司每月的固定租赁费高于乙租赁公司【考点】函数的图象.【专题】计算题;应用题;函数及其图像.【分析】观察函数图象可知,函数的横坐标表示路程,纵坐标表示收费,根据图象上特殊点的意义即可求出答案.【解答】解:A、交点为(2000,2000),那么当月用车路程为2000km,两家汽车租赁公司租赁费用相同,说法正确,不符合题意;B、由图象可得超过2000km时,相同路程,乙公司收费便宜,∴租赁乙汽车租赁公司车比较合算,说法正确,不符合题意;C、由图象易得乙的租赁费较高,当行驶2000千米时,总收费相同,那么可得甲租赁公司每公里收取的费用比乙租赁公司多,说法正确,不符合题意;D、∵由图象易得乙的租赁费较高,说法错误,符合题意,故选:D.6.(3分)若一个三角形的两边长分别为3和7,则第三边长可能是()A.2 B.3 C.5 D.11【考点】三角形三边关系.【分析】根据三角形三边关系,两边之和第三边,两边之差小于第三边即可判断.【解答】解:设第三边长为x,由题意得:7﹣3<x<7+3,则4<x<10,故选:C.7.(3分)甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、是轴对称图形,故本选项错误;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项正确.故选D.8.(3分)如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.【考点】三角形的角平分线、中线和高.【分析】根据三角形高线的定义:过三角形的顶点向对边引垂线,顶点和垂足之间的线段叫做三角形的高线解答.【解答】解:为△ABC中BC边上的高的是A选项.故选A.9.(3分)如图,在△ABC中,∠A=50°,∠C=70°,则外角∠ABD的度数是()A.110°B.120°C.130° D.140°【考点】三角形的外角性质.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:由三角形的外角性质的,∠ABD=∠A+∠C=50°+70°=120°.故选B.10.(3分)如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个 B.2个 C.3个 D.4个【考点】全等三角形的判定.【分析】根据全等三角形的判定得出点P的位置即可.【解答】解:要使△ABP与△ABC全等,点P到AB的距离应该等于点C到AB 的距离,即3个单位长度,故点P的位置可以是P1,P3,P4三个,故选C11.(3分)如图,在△ABC中,∠ABC=50°,∠ACB=60°,点E在BC的延长线上,∠ABC的平分线BD与∠ACE的平分线CD相交于点D,连接AD,下列结论中不正确的是()A.∠BAC=70°B.∠DOC=90°C.∠BDC=35°D.∠DAC=55°【考点】角平分线的性质;三角形内角和定理.【专题】计算题.【分析】根据三角形的内角和定理列式计算即可求出∠BAC=70°,再根据角平分线的定义求出∠ABO,然后利用三角形的内角和定理求出∠AOB再根据对顶角相等可得∠DOC=∠AOB,根据邻补角的定义和角平分线的定义求出∠DCO,再利用三角形的内角和定理列式计算即可∠BDC,判断出AD为三角形的外角平分线,然后列式计算即可求出∠DAC.【解答】解:∵∠ABC=50°,∠ACB=60°,∴∠BAC=180°﹣∠ABC﹣∠ACB=180°﹣50°﹣60°=70°,故A选项正确,∵BD平分∠ABC,∴∠ABO=∠ABC=×50°=25°,在△ABO中,∠AOB=180°﹣∠BAC﹣∠ABO=180°﹣70°﹣25°=85°,∴∠DOC=∠AOB=85°,故B选项错误;∵CD平分∠ACE,∴∠ACD=(180°﹣60°)=60°,∴∠BDC=180°﹣85°﹣60°=35°,故C选项正确;∵BD、CD分别是∠ABC和∠ACE的平分线,∴AD是△ABC的外角平分线,∴∠DAC=(180°﹣70°)=55°,故D选项正确.故选:B.12.(3分)如图,在△ABC中,AC的垂直平分线分别交AC、BC于E,D两点,EC=4,△ABC的周长为23,则△ABD的周长为()A.13 B.15 C.17 D.19【考点】线段垂直平分线的性质.【分析】根据线段垂直平分线性质得出AD=DC,AE=CE=4,求出AC=8,AB+BC=15,求出△ABD的周长为AB+BC,代入求出即可.【解答】解:∵AC的垂直平分线分别交AC、BC于E,D两点,∴AD=DC,AE=CE=4,即AC=8,∵△ABC的周长为23,∴AB+BC+AC=23,∴AB+BC=23﹣8=15,∴△ABD的周长为AB+BD+AD=AB+BD+CD=AB+BC=15,故选B.13.(3分)如图,直线MN是四边形AMBN的对称轴,点P是直线MN上的点,下列判断错误的是()A.AM=BM B.AP=BN C.∠MAP=∠MBP D.∠ANM=∠BNM【考点】轴对称的性质.【分析】根据直线MN是四边形AMBN的对称轴,得到点A与点B对应,根据轴对称的性质即可得到结论.【解答】解:∵直线MN是四边形AMBN的对称轴,∴点A与点B对应,∴AM=BM,AN=BN,∠ANM=∠BNM,∵点P时直线MN上的点,∴∠MAP=∠MBP,∴A,C,D正确,B错误,故选B.14.(3分)如图,AD是△ABC的角平分线,则AB:AC等于()A.BD:CD B.AD:CD C.BC:AD D.BC:AC【考点】角平分线的性质.【专题】压轴题.【分析】先过点B作BE∥AC交AD延长线于点E,由于BE∥AC,利用平行线分线段成比例定理的推论、平行线的性质,可得∴△BDE∽△CDA,∠E=∠DAC,再利用相似三角形的性质可有=,而利用AD时角平分线又知∠E=∠DAC=∠BAD,于是BE=AB,等量代换即可证.【解答】解:如图过点B作BE∥AC交AD延长线于点E,∵BE∥AC,∴∠DBE=∠C,∠E=∠CAD,∴△BDE∽△CDA,∴=,又∵AD是角平分线,∴∠E=∠DAC=∠BAD,∴BE=AB,∴=,∴AB:AC=BD:CD.故选:A.15.(3分)如图,△ABC是等边三角形,AQ=PQ,PR⊥AB于点R,PS⊥AC于点S,PR=PS,则下列结论:①点P在∠A的角平分线上;②AS=AR;③QP∥AR;④△BRP≌△QSP.正确的有()A.1个 B.2个 C.3个 D.4个【考点】等边三角形的性质;全等三角形的判定;角平分线的性质.【分析】根据到角的两边的距离相等的点在角的平分线上可得AP平分∠BAC,从而判断出①正确,然后根据等边对等角的性质可得∠APQ=∠PAQ,然后得到∠APQ=∠PAR,然后根据内错角相等两直线平行可得QP∥AB,从而判断出②正确,然后证明出△APR与△APS全等,根据全等三角形对应边相等即可得到③正确,④由△BPR≌△CPS,△BRP≌△QSP,即可得到④正确.【解答】解:∵△ABC是等边三角形,PR⊥AB,PS⊥AC,且PR=PS,∴P在∠A的平分线上,故①正确;由①可知,PB=PC,∠B=∠C,PS=PR,∴△BPR≌△CPS,∴AS=AR,故②正确;∵AQ=PQ,∴∠PQC=2∠PAC=60°=∠BAC,∴PQ∥AR,故③正确;由③得,△PQC是等边三角形,∴△PQS≌△PCS,又由②可知,④△BRP≌△QSP,故④也正确,∵①②③④都正确,故选D.二.解答题(共9小题)16.(6分)如图,在△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠BAC=80°,∠ABC=70°.求∠BAD,∠AOF.【考点】三角形内角和定理;三角形的角平分线、中线和高.【分析】在直角三角形中,根据两锐角互余即可得到∠BAD=20°,根据角平分线的性质可求出∠BAO和∠ABO,最后由三角形外角的性质求得∠AOF=75°.【解答】解:∵AD是高,∠ABC=70°,∴∠BAD=90°﹣70°=20°,∵AE、BF是角平分线,∠BAC=80°,∠ABC=70°,∴∠ABO=35°,∠BAO=40°,∴∠AOF=∠ABO+∠BAO=75°.17.(6分)如图,AB=AD,CB=CD,求证:AC平分∠BAD.【考点】全等三角形的判定与性质.【分析】根据全等三角形的判定定理SSS推出△BAC≌△DAC,根据全等三角形的性质可得∠BAC=∠DAC即可.【解答】解:在△BAC和△DAC中,,∴△BAC≌△DAC(SAS),∴∠BAC=∠DAC,∴AC平分∠BAD.18.(7分)如图,已知AC=AE,∠BAD=∠CAE,∠B=∠ADE,求证:BC=DE.【考点】全等三角形的判定与性质.【分析】先通过∠BAD=∠CAE得出∠BAC=∠DAE,从而证明△ABC≌△ADE,得到BC=DE.【解答】证明:∵∠BAD=∠CAE,∴∠BAD+∠DAC=∠CAE+∠DAC.即∠BAC=∠DAE,在△ABC和△ADE中,∴△ABC≌△ADE(AAS).∴BC=DE.19.(7分)如图,在△ABC中,AB=AC,点D是BC边上的中点,DE、DF分别垂直AB、AC于点E和F.求证:DE=DF.【考点】等腰三角形的性质;全等三角形的判定与性质.【专题】证明题.【分析】D是BC的中点,那么AD就是等腰三角形ABC底边上的中线,根据等腰三角形三线合一的特性,可知道AD也是∠BAC的角平分线,根据角平分线的点到角两边的距离相等,那么DE=DF.【解答】证明:证法一:连接AD.∵AB=AC,点D是BC边上的中点∴AD平分∠BAC(三线合一性质),∵DE、DF分别垂直AB、AC于点E和F.∴DE=DF(角平分线上的点到角两边的距离相等).证法二:在△ABC中,∵AB=AC∴∠B=∠C(等边对等角)…(1分)∵点D是BC边上的中点∴BD=DC …(2分)∵DE、DF分别垂直AB、AC于点E和F∴∠BED=∠CFD=90°…(3分)在△BED和△CFD中∵,∴△BED≌△CFD(AAS),∴DE=DF(全等三角形的对应边相等).20.(8分)如图,一艘轮船以18海里/时的速度由西向东航行,在A处测得小岛C在北偏东75°方向上,两小时后,轮船在B处测得小岛C在北偏东60°方向上,在小岛周围15海里处有暗礁,若轮船仍然按18海里/时的速度向东航行,请问是否有触礁危险?并说明理由.【考点】解直角三角形的应用-方向角问题.【分析】作CE⊥AB,利用直角三角形性质求出CE长,和15海里比较即可看出船不改变航向是否会触礁.【解答】解:作CE⊥AB于E,∵A处测得小岛P在北偏东75°方向,∴∠CAB=15°,∵在B处测得小岛P在北偏东60°方向,∴∠ACB=15°,∴AB=PB=2×18=36(海里),∵∠CBD=30°,∴CE=BC=18>15,∴船不改变航向,不会触礁.21.(8分)如图,在等腰三角形ABC中,AC=BC,分别以BC和AC为直角边向上作等腰直角三角形△BCD和△ACE,AE与BD相交于点F,连接CF并延长交AB于点G.求证:CG垂直平分AB.【考点】全等三角形的判定与性质;线段垂直平分线的性质;等腰直角三角形.【分析】求证△AFC≌△CEB可得∠ACF=∠BCF,根据等腰三角形底边三线合一即可解题.【解答】证明:∵CA=CB∴∠CAB=∠CBA∵△AEC和△BCD为等腰直角三角形,∴∠CAE=∠CBD=45°,∠FAG=∠FBG,∴∠FAB=∠FBA,∴AF=BF,在三角形ACF和△CBF中,,∴△AFC≌△BCF(SSS),∴∠ACF=∠BCF∴AG=BG,CG⊥AB(三线合一),即CG垂直平分AB.22.(10分)如图,在等边△ABC中,点F是AC边上一点,延长BC到点D,使BF=DF,若CD=CF,求证:(1)点F为AC的中点;(2)过点F作FE⊥BD,垂足为点E,请画出图形并证明BD=6CE.【考点】作图—基本作图;等边三角形的性质.【专题】作图题.【分析】(1)根据等边三角形的性质得∠ABC=∠ACB=60°,利用∠CFD=∠D,则根据三角形外角性质得到∠ACB=2∠D,即∠D=∠ACB=30°,然后利用FB=FD得到∠FBD=∠D=30°,则BF平分∠ABC,于是根据等边三角形的性质可得到点F为AC的中点;(2)如图,过点F作FE⊥BD于E,利用含30度的直角三角形三边的关系得到CF=2CE,而CD=CF,则CF=2CE,再利用BC=2CF,所以BD=6CE.【解答】解:(1)∵△ABC为等边三角形,∴∠ABC=∠ACB=60°,∵CF=CD,∴∠CFD=∠D,∴∠ACB=2∠D,即∠D=∠ACB=30°,∵FB=FD,∴∠FBD=∠D=30°,∴BF平分∠ABC,∴AF=CF,即点F为AC的中点;(2)如图,在Rt△EFC中,CF=2CE,而CD=CF,∴CF=2CE,在Rt△BCF中,BC=2CF,∴BC=4CE,∴BD=6CE.23.(11分)如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A 向C运动(与A、C不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.(1)当∠BQD=30°时,求AP的长;(2)当运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.【考点】等边三角形的性质;全等三角形的判定与性质;含30度角的直角三角形.【专题】压轴题;动点型.【分析】(1)由△ABC是边长为6的等边三角形,可知∠ACB=60°,再由∠BQD=30°可知∠QPC=90°,设AP=x,则PC=6﹣x,QB=x,在Rt△QCP中,∠BQD=30°,PC= QC,即6﹣x=(6+x),求出x的值即可;(2)作QF⊥AB,交直线AB于点F,连接QE,PF,由点P、Q做匀速运动且速度相同,可知AP=BQ,再根据全等三角形的判定定理得出△APE≌△BQF,再由AE=BF,PE=QF且PE∥QF,可知四边形PEQF是平行四边形,进而可得出EB+AE=BE+BF=AB,DE=AB,由等边△ABC的边长为6可得出DE=3,故当点P、Q运动时,线段DE的长度不会改变.【解答】解:(1)∵△ABC是边长为6的等边三角形,∴∠ACB=60°,∵∠BQD=30°,∴∠QPC=90°,设AP=x,则PC=6﹣x,QB=x,∴QC=QB+BC=6+x,∵在Rt△QCP中,∠BQD=30°,∴PC=QC,即6﹣x=(6+x),解得x=2,∴AP=2;(2)当点P、Q同时运动且速度相同时,线段DE的长度不会改变.理由如下:作QF⊥AB,交直线AB于点F,连接QE,PF,又∵PE⊥AB于E,∴∠DFQ=∠AEP=90°,∵点P、Q速度相同,∴AP=BQ,∵△ABC是等边三角形,∴∠A=∠ABC=∠FBQ=60°,在△APE和△BQF中,∵∠AEP=∠BFQ=90°,∴∠APE=∠BQF,,∴△APE≌△BQF(AAS),∴AE=BF,PE=QF且PE∥QF,∴四边形PEQF是平行四边形,∴DE=EF,∵EB+AE=BE+BF=AB,∴DE=AB,又∵等边△ABC的边长为6,∴DE=3,∴点P、Q同时运动且速度相同时,线段DE的长度不会改变.24.(12分)如图,在等腰Rt△ABC中,∠ACB=90°,AC=CB,F是AB边上的中点,点D、E分别在AC、BC边上运动,且始终保持AD=CE.连接DE、DF、EF.(1)求证:△ADF≌△CEF;(2)试证明△DFE是等腰直角三角形.【考点】全等三角形的判定与性质;等腰直角三角形.【专题】证明题.【分析】(1)根据在等腰直角△ABC中,∠ACB=90°,AC=BC,利用F是AB中点,∠A=∠FCE=∠ACF=45°,即可证明:△ADF≌△CEF.(2)利用△ADF≌△CEF,∠AFD+∠DFC=∠CFE+∠DFC,和∠AFC=90°即可证明△DFE是等腰直角三角形.【解答】证明:(1)在等腰直角△ABC中,∠ACB=90°,AC=BC,∴∠A=∠B=45°,又∵F是AB中点,∴∠ACF=∠FCB=45°,即,∠A=∠FCE=∠ACF=45°,且AF=CF,在△ADF与△CEF中,,∴△ADF≌△CEF(SAS);(2)由(1)可知△ADF≌△CEF,∴DF=FE,∴△DFE是等腰三角形,又∵∠AFD=∠CFE,∴∠AFD+∠DFC=∠CFE+∠DFC,∴∠AFC=∠DFE,∵∠AFC=90°,∴∠DFE=90°,∴△DFE是等腰直角三角形.。
人教版八年级(上)期中数学试卷(1)一.选择题(本题共16分,每小题2分)1.下列各组图形中,属于全等图形的是()A.B.C.D.2.画△ABC中AB边上的高,下列画法中正确的是()A.B.C.D.3.我校初二年级计划11月3日下午前往圆明园,开展以“圆明园的毁灭:铭记责任,思国家复兴”为主题的社会综合实践活动.出发前计划每班准备一个三角形的队旗,你认为下列三边长规格可以实现三角形队旗制作的是()A.3dm,3dm,6dm B.3dm,3dm,8dmC.3.5dm,3.5dm,3.5dm D.9dm,3dm,3.5dm4.下列式子从左到右的变形是因式分解的是()A.(a﹣3)(a+2)=a2﹣a﹣6B.x2﹣1+y2=(x+1)(x﹣1)+y2C.2x2y=2x•xy D.a2+2a=a(a+2)5.下列计算正确的是()A.a3•a2=a6B.a6÷a3=a3C.(m3)3=m6D.(﹣3b3)2=6b66.如图,用直尺和圆规作一个角等于已知角,能得出∠A′O′B′=∠AOB的依据是()A.SAS B.SSS C.AAS D.ASA7.为进一步美化校园,我校计划在校园绿化区增设3条绿化带,如图所示,绿化带MN∥PQ,绿化带AB交绿化带MN于A,交绿化带PQ于B.若要建一喷灌处到三条绿化带的距离相等,则可供选择的喷灌处修建点有()A.4处B.3处C.2处D.1处8.如图所示,在△ABC中,∠ABC=66°,BD平分∠ABC,P为线段BD上一动点,Q为边AB上一动点,当AP+PQ的值最小时,∠APB的度数是()A.114°B.123°C.147°D.124°二.填空题(本题共16分,每小题2分)9.若(x﹣1)0=1,则x满足条件.10.已知一个多边形有12条边,则这个多边形的内角和为°,外角和为°.11.2023年10月1日,杭州亚运会射击项目进入最后一个比赛日,中国射击队最终以16枚金牌的成绩结束本届亚运会,以较大优势占据射击项目金牌榜头名.射击队员在瞄准目标时,手、肘、肩构成托枪三角形,这种方法应用的几何原理是.12.分解因式:ab3﹣ab=.13.如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC于点D,CD=5,AB=6,则△ABD的面积是.14.若x﹣y=3,xy=5,则x2+y2=.15.在△ABC中,∠B=30°,AD是BC边上的高,若∠CAD=∠B,则∠BAC=.16.如图,已知四边形ABCD中,AB=12cm,BC=10cm,CD=14cm,∠B=∠C,点E为AB的中点.如果点P在线段BC上以2cm/s的速度沿B﹣C运动,同时,点Q在线段CD 上由C点向D点运动.当点Q的运动速度为cm/s时,能够使△BPE与△CQP 全等.三.计算题(本题共20分,第17题共11分,18题共9分)17.计算:(1)ab2•(﹣2a2b)3;(2)(2x+1)(x+y)﹣3y(x+1);(3)(4x3y﹣6x2y2+12xy3)÷2xy.18.分解因式:(1)a3﹣6a2+9a;(2)x2(x﹣3)+4(3﹣x).四.解答题(本题共48分,第19、20题7分,21、22题每题8分,23、24题每题9分)19.如图,在△ABC中,∠BAC=70°,∠ACB=60°,∠ACB的平分线交AB于点D,∠ABC的平分线BO交CD于点O.(1)补全图形(尺规作图,保留作图痕迹,不写作法);(2)求∠BOD的度数.20.先化简,再求值:已知x2+x﹣20=0,求代数式(2x+3)(2x﹣3)﹣x(5x+4)﹣(x﹣1)2的值.21.如图,在△ABC中,∠ACB=90°,点E在AC上,点E、D、F在一条直线上,且AD =BD,ED=FD.求证:FB⊥CB.22.已知一个三角形的两条边长分别是1cm和2cm,一个内角为40°.(1)请你借助如图画出一个满足题设条件的三角形;(2)你是否还能画出既满足题设条件,又与(1)中所画的三角形不全等的三角形?若能,请你在如图的右边用“尺规作图”作出所有这样的三角形;若不能,请说明理由.友情提醒:请在你画的图中标出已知角的度数和已知边的长度,“尺规作图”不要求写作法,但要保留作图痕迹.(3)如果将题设条件改为“三角形的两条边长分别是3cm和4cm,一个内角为40°”,那么满足这一条件,且彼此不全等的三角形共有个.23.【阅读材料】“数形结合”是一种非常重要的数学思想方法.比如:在学习“整式的乘法”时,我们通过构造几何图形,用“等积法”直观地推导出了完全平方和公式:(a+b)2=a2+2ab+b2(如图1).利用“数形结合”的思想方法,可以从代数角度解决图形问题,也可以用图形关系解决代数问题.【方法应用】根据以上材料提供的方法,完成下列问题:(1)由图2可得等式:;由图3可得等式:;(2)利用图3得到的结论,解决问题:若a+b+c=15,ab+ac+bc=35,则a2+b2+c2=;(3)如图4,若用其中x张边长为a的正方形,y张边长为b的正方形,z张边长分别为a、b的长方形纸片拼出一个面积为(2a+b)(a+2b)长方形(无空隙、无重叠地拼接),则x+y+z=;(4)如图4,若有4张边长为a的正方形纸片,4张边长分别为ab的长方形纸片,5张边长为b的正方形纸片.从中取出若干张纸片,每种纸片至少取一张.把取出的这些纸片拼成一个正方形(无空隙、无重叠地拼接),则拼成的正方形的边长最长可以为.24.如图1,在△ABC中,∠B=90°,分别作其内角∠ACB与外角∠DAC的平分线,且两条角平分线所在的直线交于点E.(1)∠E=°;(2)如图2,若∠EAB与∠ECB的角交于点F,求∠AFC的度数;(3)在(2)的条件下,射线FM在∠AFC的内部且,设EC与AB的交点为H,射线HN在∠AHC的内部且,射线HN与FM交于点P,若∠F AH,∠FPH和∠FCH满足的数量关系为∠FCH=m∠F AH+n∠FPH,求出m,n的值.附加题(本题共10分,第1题4分,第2题6分)25.探究与发现:小戴同学通过计算下列两位数的乘积,发现结果存在一定的规律,请你补充小戴同学的探究过程:53×57=3021,38×32=1216,84×86=7224,71×79=5609.…;①观察相乘的两位数,若设一个两位数的十位上的数字为m,个位上的数字为n,则另一个两位数的十位上的数字为,个位上的数字为(其中m,n为小于10的正整数).②则以上两位数相乘的规律是(用含m、n的等式表示);③请用所学知识证明②中的规律.26.在平面直角坐标系xOy中,对于给定的两点P,Q,若存在点M,使得△MPQ的面积等于1,即S△MPQ=1,则称点M为线段PQ的“单位面积点”.解答下列问题:如图,在平面直角坐标系xOy中,点P的坐标为(1,0).(1)在点A(1,2),B(﹣1,1),C(﹣1,﹣2),D(2,﹣4)中,线段OP的“单位面积点”是.(2)已知点E(0,3),F(0,4),将线段OP沿y轴向上平移t(t>0)个单位长度,使得线段EF上存在线段OP的“单位面积点”,直接写出t的取值范围.(3)已知点Q(1,﹣2),H(0,﹣1),点M,N是线段PQ的两个“单位面积点”,点M在HQ的延长线上,若S△HMN≥2S△PQN,直接写出点N纵坐标的取值范围.。
人教版八年级第一学期期中数学试卷及答案一、选择题(本大题满分36分,每小题3分)在下列各题的四个备选答案中,只有一个是正确的,请在答题卡上把你认为正确的答案的字母代号按要求用2B铅笔涂黑.1.实数4的平方根是()A.B.±4C.4D.±22.下列实数中,无理数是()A.B.0C.D.3.143.估计﹣1的值在()A.1到2之间B.2到3之间C.3到4之间D.4到5之间4.下列说法错误的是()A.3的平方根是B.﹣1的立方根是﹣1C.0.1是0.01的一个平方根D.算术平方根是本身的数只有0和15.下列计算正确的是()A.x2⋅x3=x6B.x6÷x3=x3C.x3+x3=2x6D.(﹣2x)3=6x36.若等式2a2•a+□=3a3成立,则□填写单项式可以是()A.a B.a2C.a3D.a47.计算27m6÷(﹣3m2)3的结果是()A.1B.﹣1C.3D.﹣38.在下列各多项式中,不能用平方差公式因式分解的是()A.﹣m2﹣1B.﹣1+4m2C.﹣36x2+y2D.a2﹣16b29.如图,正方形卡片A类,B类和长方形卡片C类若干张,若要用A、B、C三类卡片拼一个长为(a+3b),宽为(a+b)的长方形,则需要C类卡片()A.2张B.3张C.4张D.5张10.计算:0.252020×42021=()A.0.25B.4C.1D.202011.如图,△AOC≌△BOD,点A与点B是对应点,那么下列结论中错误的是()A.AB=CD B.AC=BD C.AO=BO D.∠A=∠B12.如图,AC=AD,∠CAD=∠BAE,再添加一个条件仍不能判定△ABC≌△AED的是()A.AB=AE B.∠C=∠D C.DE=CB D.∠E=∠B二、填空题(本大题满分12分,每小题3分)13.的算术平方根是;=.14.把命题“等角的余角相等”改写成:“如果,那么”.15.如图,在△ABC中,点D在AB边上,E是AC边的中点,CF∥AB,CF与DE的延长线交于点F,若AB=4,CF=3,则BD的长为.16.如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC的长是.三、解答题(本大题满分72分)17.(20分)计算:(1)﹣+;(2)2(x﹣1)2﹣x(2x+1);(3)(x+3)(x﹣3)﹣3(x2+x﹣3);(4)20222﹣4044×2023+20232(用简便方法).18.(15分)分解因式:(1)x3﹣2x2y+xy2;(2)(a﹣2)(a﹣4)+1;(3)4m2﹣16n2.19.(7分)先化简,再求值:(2x+1)(2x﹣1)﹣(2x﹣3)2,其中x=﹣1.20.(8分)把几个图形拼成一个新的图形,再通过图形面积的计算,常常可以得到一些有用的式子,或可以求出一些不规则图形的面积.如图,是将两个边长分别为a和b的正方形拼在一起,B,C,G三点在同一直线上,连接BD和BF,若两正方形的边长满足a+b=10,ab=20,你能求出阴影部分的面积吗?21.(10分)如图.点A、C、F、D在同一直线上,AF=DC,∠A=∠D,AB=DE.证明(1)△ABC≌△CAE;(2)BC∥EF.22.(12分)已知,在△ABC中,D,A,E三点都在同一直线上,∠BDA=∠AEC=∠BAC.(1)如图1,若AB=AC,∠BAC=90°.求证:①△ABD≌△CAE;②DE=CE+BD(2)如图2,∠BDA=∠AEC,BD=EF=7cm,DE=9cm,点A在线段DE上以2cm/s的速度由点D向点E运动,同时,点C在线段EF上以xcm/s的速度由点E向点F运动,它们的运动时间为t(s),是否存在x,使得△ABD与△CAE全等?若存在,求出相应的x,t的值;若不存在,请说明理由.参考答案与试题解析一、选择题(本大题满分36分,每小题3分)在下列各题的四个备选答案中,只有一个是正确的,请在答题卡上把你认为正确的答案的字母代号按要求用2B铅笔涂黑.1.实数4的平方根是()A.B.±4C.4D.±2【分析】根据平方根的定义可知4的平方根有两个,为±2.【解答】解:∵(±2)2=4,∴4的平方根为±2,故选:D.2.下列实数中,无理数是()A.B.0C.D.3.14【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.【解答】解:A.是分数,属于有理数,故本选项不合题意;B.0是整数,属于有理数,故本选项不合题意;C.是无理数,故本选项符合题意;D.3.14是有限小数,属于有理数,故本选项不合题意;故选:C.3.估计﹣1的值在()A.1到2之间B.2到3之间C.3到4之间D.4到5之间【分析】根据算术平方根的定义,估算无理数的大小,进而估算﹣1的大小即可.【解答】解:∵<<,即3<<4,∴3﹣1<﹣1<4﹣1,即2<﹣1<3,故选:B.4.下列说法错误的是()A.3的平方根是B.﹣1的立方根是﹣1C.0.1是0.01的一个平方根D.算术平方根是本身的数只有0和1【分析】根据立方根的定义和求法,平方根的定义和求法,以及算术平方根的定义和求法,逐项判定即可.【解答】解:A、3的平方根是±,原说法错误,故此选项符合题意;B、﹣1的立方根是﹣1,原说法正确,故此选项不符合题意;C、0.1是0.01的一个平方根,原说法正确,故此选项不符合题意;D、算术平方根是本身的数只有0和1,原说法正确,故此选项不符合题意.故选:A.5.下列计算正确的是()A.x2⋅x3=x6B.x6÷x3=x3C.x3+x3=2x6D.(﹣2x)3=6x3【分析】分别根据同底数幂乘除法法则、合并同类项法则、幂的乘方法则进行计算即可.【解答】解:A.x2⋅x3=x5,选项错误,不符合题意;B.x6÷x3=x3,选项正确,符合题意;C.x3+x3=2x3,选项错误,不符合题意;D.(﹣2x)3=﹣8x3,选项错误,不符合题意;故选:B.6.若等式2a2•a+□=3a3成立,则□填写单项式可以是()A.a B.a2C.a3D.a4【分析】直接利用单项式乘单项式以及合并同类项法则计算得出答案.【解答】解:∵等式2a2•a+□=3a3成立,∴2a3+□=3a3,∴□填写单项式可以是:3a3﹣2a3=a3.故选:C.7.计算27m6÷(﹣3m2)3的结果是()A.1B.﹣1C.3D.﹣3【分析】直接利用积的乘方运算法则化简,再利用整式的除法运算法则计算得出答案.【解答】解:27m6÷(﹣3m2)3=27m6÷(﹣27m6)=﹣1.故选:B.8.在下列各多项式中,不能用平方差公式因式分解的是()A.﹣m2﹣1B.﹣1+4m2C.﹣36x2+y2D.a2﹣16b2【分析】根据平方差公式法分解因式,即可求解.【解答】解:A、﹣m2﹣1不能用平方差公式分解,故A符合题意;B、﹣1+4m2=(2m+1)(2m﹣1),故B不符合题意;C、﹣36x2+y2=(y+6x)(y﹣6x),故C不符合题意;D、a2﹣16b2=(a+4b)(a﹣4b),故D不符合题意;故选:A.9.如图,正方形卡片A类,B类和长方形卡片C类若干张,若要用A、B、C三类卡片拼一个长为(a+3b),宽为(a+b)的长方形,则需要C类卡片()A.2张B.3张C.4张D.5张【分析】根据长方形的面积=长×宽,求出长为a+3b,宽为a+b的长方形的面积是多少,判断出需要C类卡片多少张即可.【解答】解:长为a+3b,宽为a+b的长方形的面积为:(a+3b)(a+b)=a2+4ab+3b2,∵A类卡片的面积为a2,B类卡片的面积为b2,C类卡片的面积为ab,∴需要A类卡片1张,B类卡片3张,C类卡片4张.故选:C.10.计算:0.252020×42021=()A.0.25B.4C.1D.2020【分析】根据幂的乘方与积的乘方法则进行计算即可.【解答】解:原式=0.252020×42020×4=(0.25×4)2020×4=1×4=4.故选:B.11.如图,△AOC≌△BOD,点A与点B是对应点,那么下列结论中错误的是()A.AB=CD B.AC=BD C.AO=BO D.∠A=∠B【分析】根据全等三角形的性质得出AC=BD,∠A=∠B,OA=OB,OC=OD,再逐个判断即可.【解答】解:∵△AOC≌△BOD,∴AC=BD,∠A=∠B,OA=OB,OC=OD,∵AB=OA+OB,CD=OC+OD,∴不能推出AC=BD,即只有选项A符合题意,选项B、选项C、选项D都不符合题意;故选:A.12.如图,AC=AD,∠CAD=∠BAE,再添加一个条件仍不能判定△ABC≌△AED的是()A.AB=AE B.∠C=∠D C.DE=CB D.∠E=∠B【分析】根据∠CAD=∠BAE求出∠BAC=∠DAE,再根据全等三角形的判定定理逐个判断即可.【解答】解:∵∠CAD=∠BAE,∴∠CAD+∠BAD=∠BAE+∠BAD,即∠BAC=∠DAE,A.AB=AE,AC=AD,∠BAC=∠DAE,符合全等三角形的判定定理SAS,能证明△ABC≌△AED,故本选项不符合题意;B.∠C=∠D,AC=AD,∠BAC=∠DAE,符合全等三角形的判定定理ASA,能证明△ABC≌△AED,故本选项不符合题意;C.DE=CB,AC=AD,∠BAC=∠DAE,不符合全等三角形的判定定理SAS,不能证明△ABC≌△AED,故本选项符合题意;D.∠B=∠E,∠BAC=∠DAE,AC=AD,符合全等三角形的判定定理AAS,能证明△ABC≌△AED,故本选项不符合题意;故选:C.二、填空题(本大题满分12分,每小题3分)13.的算术平方根是2;=3.【分析】根据算术平方根和立方根的定义解答即可.【解答】解:∵=4,且22=4,∴的算术平方根是2;∵33=27,∴=3.故答案为:2,3.14.把命题“等角的余角相等”改写成:“如果两个角是等角的余角,那么这两个角相等”.【分析】根据命题的定义,写成如果,那么的形式即可.【解答】解:命题:等角的余角相等,可以写作:如果两个角是等角的余角,那么这两个角相等.故答案为:两个角是等角的余角;这两个角相等.15.如图,在△ABC中,点D在AB边上,E是AC边的中点,CF∥AB,CF与DE的延长线交于点F,若AB=4,CF=3,则BD的长为1.【分析】根据AAS证明△ADE与△CFE全等,进而利用全等三角形的性质解答即可.【解答】解:∵CF∥AB,∴∠A=∠ACF,∠F=∠ADE,∵E是AC的中点,∴AE=CE,在△ADE与△CFE中,,∴△ADE≌△CFE(AAS),∴AD=CF=3,∴BD=AB﹣AD=4﹣3=1,故答案为:1.16.如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC的长是3.【分析】过点D作DF⊥AC于F,根据角平分线上的点到角的两边距离相等可得DE=DF,再根据S△ABC=S△ABD+S列出方程求解即可.△ACD【解答】解:如图,过点D作DF⊥AC于F,∵AD是△ABC中∠BAC的角平分线,DE⊥AB,∴DE=DF,由图可知,S△ABC=S△ABD+S△ACD,×4×2+×AC×2=7,解得AC=3.故答案为3.三、解答题(本大题满分72分)17.(20分)计算:(1)﹣+;(2)2(x﹣1)2﹣x(2x+1);(3)(x+3)(x﹣3)﹣3(x2+x﹣3);(4)20222﹣4044×2023+20232(用简便方法).【分析】(1)先化简,然后计算加减法即可;(2)根据完全平方公式和单项式乘多项式,将题目中的式子展开,然后合并同类项即可;(3)根据平方差公式和单项式乘多项式,将题目中的式子展开,然后合并同类项即可;(4)先变形,然后写出完全平方公式的形式,再计算即可.【解答】解:(1)﹣+=5﹣(﹣4)+2=5+4+2=11;(2)2(x﹣1)2﹣x(2x+1)=2(x2﹣2x+1)﹣(2x2+x)=2x2﹣4x+2﹣2x2﹣x=﹣5x+2;(3)(x+3)(x﹣3)﹣3(x2+x﹣3)=x2﹣9﹣3x2﹣3x+9=﹣2x2﹣3x;(4)20222﹣4044×2023+20232=20222﹣2×2022×2023+20232=(2022﹣2023)2=(﹣1)2=1.18.(15分)分解因式:(1)x3﹣2x2y+xy2;(2)(a﹣2)(a﹣4)+1;(3)4m2﹣16n2.【分析】(1)先提公因式,再利用公式进行因式分解;(2)先利用多项式乘多项式,合并同类项后再利用公式因式分解即可;(3)利用平方差公式因式分解即可.【解答】解:(1)x3﹣2x2y+xy2=x(x2﹣2xy+y2)=x(x﹣y)2;(2)(a﹣2)(a﹣4)+1=a2﹣4a﹣2a+8+1=a2﹣6a+9=(a﹣3)2;(3)4m2﹣16n2.=4(m2﹣4n2)=4(m﹣2n)(m+2n).19.(7分)先化简,再求值:(2x+1)(2x﹣1)﹣(2x﹣3)2,其中x=﹣1.【分析】由题意可知,在化简的过程中可以运用平方差公式(a+b)(a﹣b)=a2﹣b2和完全平方差公式(a﹣b)2=a2﹣2ab+b2快速计算,再把x=﹣1代入化简后得到的式子中求值.【解答】解:原式=4x2﹣1﹣(4x2﹣12x+9)=4x2﹣1﹣4x2+12x﹣9=12x﹣10.∵x=﹣1,∴12x﹣10=12×(﹣1)﹣10=﹣22.20.(8分)把几个图形拼成一个新的图形,再通过图形面积的计算,常常可以得到一些有用的式子,或可以求出一些不规则图形的面积.如图,是将两个边长分别为a和b的正方形拼在一起,B,C,G三点在同一直线上,连接BD和BF,若两正方形的边长满足a+b=10,ab=20,你能求出阴影部分的面积吗?【分析】由完全平方公式可求a2+b2=60的值,由面积的和差关系可求解.【解答】解:∵a+b=10,ab=20,∴(a+b)2=100,∴a2+b2+2ab=100,∴a2+b2=60,∴S阴影=S两正方形﹣S△ABD﹣S△BFG=a2+b2﹣a2﹣b(a+b)=(a2+b2﹣ab)=×(60﹣20)=20.21.(10分)如图.点A、C、F、D在同一直线上,AF=DC,∠A=∠D,AB=DE.证明(1)△ABC≌△CAE;(2)BC∥EF.【分析】(1)由AF=CD,可求得AC=DF,利用SAS可证明△ABC≌△DEF;(2)由全等三角形的性质可得∠ACB=∠DFE,再利用平行线的判定可证明BC=EF.【解答】证明:(1)∵AF=CD,∴AF﹣FC=CD﹣FC即AC=DF.在△ABC和△DEF中,∴△ABC≌△DEF(SAS);(2)∵△ABC≌△DEF(已证),∴∠ACB=∠DFE,∴∠BCF=∠EFC,∴BC∥EF.22.(12分)已知,在△ABC中,D,A,E三点都在同一直线上,∠BDA=∠AEC=∠BAC.(1)如图1,若AB=AC,∠BAC=90°.求证:①△ABD≌△CAE;②DE=CE+BD(2)如图2,∠BDA=∠AEC,BD=EF=7cm,DE=9cm,点A在线段DE上以2cm/s的速度由点D向点E运动,同时,点C在线段EF上以xcm/s的速度由点E向点F运动,它们的运动时间为t(s),是否存在x,使得△ABD与△CAE全等?若存在,求出相应的x,t的值;若不存在,请说明理由.【分析】(1)①由“AAS”可证△ABD≌△CAE;②由全等三角形的性质可得AD=CE,BD=AE,可得结论;(2)分△DAB≌△ECA或△DAB≌△EAC两种情形,分别根据全等三角形的性质可解决问题.【解答】(1)证明:①∵∠BAC=90°=∠BDA=∠AEC,∴∠BAD+∠CAE=90°=∠CAE+∠ACE,∴∠ACE=∠BAD,又∵AB=AC,∠ADB=∠AEC=90°,∴△ABD≌△CAE(AAS),②∵△ABD≌△CAE,∴AD=CE,BD=AE,∴DE=DA+AE=CE+BD;(2)解:存在,当△DAB≌△ECA时,∴AD=CE=2cm,BD=AE=7cm,∴t=1,此时x=2;当△DAB≌△EAC时,∴AD=AE=4.5cm,DB=EC=7cm,∴t==,x==,综上:t=1,x=2或t=,x=.。
70°52°1ba cba可编辑修改精选全文完整版八年级上学期期中复习数学试卷(一)一.选择题(本大题10小题,每小题3分,共30分) 1.下列“表情图”中,属于轴对称图形的是( )A B C D 2.下列长度的各组线段中,能组成三角形的是( )A. 5,9,3B. 3,11,8C. 6.3,6.3,4.4D. 15,8,6 3.点M (3,-4)关于y 轴的对称点的坐标是( )A.(3,4)B.(-3,-4)C.(-3,4)D.(-4,3) 4.下列图形中具有稳定性的是( )A.六边形B.五边形C.平行四边形D.三角形5.如图,下面是利用尺规作∠AOB 的角平分线OC 的作法,在用尺规作角平分线时,用到的三角形全等的判定方法是( )作法:①以O 为圆心,适当长为半径画弧,分别交OA ,OB 于点D ,E ; ②分别以D ,E 为圆心,大于12DE 的长为半径画弧,两弧在∠AOB 内交于一点C ; ③画射线OC ,射线OC 就是∠AOB 的角平分线.A.SSSB.SASC.ASAD.AAS 6.已知图中的两个三角形全等,则∠1等于( )A.70°B.68°C.58°D.52°7.已知点A (-2,1),点B (3,2),在x 轴上求一点P ,使AP+BP 最小, 下列作法正确的是( ) A.点P 与O (0.0)重合B 连接AB 交y 轴于P ,点P 即为所求.C.过点A 作x 轴的垂线,垂足为P ,点P 即为所求D.作点B 关于x 轴的对称点C ,连接AC ,交x 轴于P ,点P 即为所求8.如图,已知AD 是△ABC 的BC 边上的高,补充下列一个条件不能使△ABD ≌△ACD 的条件是( ) A. ∠B=45° B.BD=CD C.AD 平分∠BAC D.AB=AC9.如图,在长方形网格中,每个小长方形的长为2,宽为1,A 、B 两点在网格格点上,若点C 也在网BCB BCFBB格格点上,以A、B、C为顶点的三角形面积为2,则满足条件的点C个数是()A.7B.6C.5D.410.如图,在△ABC中,AC=BC,BD平分∠ABC,CD平分∠ACB,AE=CE,则∠D和∠AEC的关系为()A. ∠D=∠AECB. ∠D≠∠AECC. 2∠AEC-∠D=180°D. 2∠D-2AEC=180°第8题图第9题图第10题图第11题图二.填空题(本大题共有6小题,每小题3分,共18分)11.如图,在△ABC中,∠A=70°,点D是BC延长线上一点,∠ACD=120°,则∠B= .12.如图,AB交CD于点O,△AOC≌△DOB,若OA=6,OC=3.4,AC=5.6,则AB= .13.已知等腰三角形的一边长为4,另一边长为8,则它的周长是.14.把边长相等的正五边形ABGHI和正六边形ABCDEF的AB边重合,按照如图的方式叠合在一起,连接EB,交HI于点J,则∠BJI的大小为.15.如图,△ABC的外角∠ACD的平分线CE与内角∠ABC平分线BE交于点E,若∠CAE=52°,则∠BEC= .16.如图,在△ABC中,AB=AC,D、E是△ABC内两点,AD平分∠BAC,∠EBC=∠E=60°,若BE=4cm,DE=3cm,则BC= cm.第12题图第14题图第15 题图第16题图三.解答题(本题共9题,共72分)17.(本小题满分6分)如图,∠1=∠2,∠3=∠4,∠A=80°,求∠BOC的度数D E A B C EA BE C FAB D18.(本小题满分6分)如图,△ABC ≌△DEC ,点E 在AB 上,∠DCA=40°,请写出AB 的对应边并求∠BCE 的度数.19.(本小题满分6分)如图,AC=BD ,BC=AD ,求证:△EAB 是等腰三角形20.(本小题满分7分)如图,在平面直角坐标系中,△ABC 的三个顶点的坐标分别为A (2,1),B (-1,3),C (-3,2)(1)作出△ABC 关于x 轴对称的△111A B C ; (2)点1A 的坐标 ,点1B 的坐标 ;(3)点P (a ,a-2)与点Q 关于x 轴对称,若PQ=8,则点P 的坐标 21.(本小题满分7分)如图,在等边△ABC 的三边上,分别取点D 、E 、F ,使AD=BE=CF ,求证:△DEF 是等边三角形.EEA 备用图图122.(本小题满分8分)如图,在等边△ABC 中,点D 为AC 上一点,CD=CE ,∠ACE=60° (1)求证:△BCD ≌△ACE ;(2)延长BD 交AE 于F ,连接CF ,若AF=CF ,猜想线段BF 、AF 的数量关系,并证明你的猜想.23.(本小题满分10分)如图,AD 是△ABC 的角平分线,点F 、E 分别在边AC ,AB 上,且BD=FD. (1)求证:∠B+∠ADF=180°; (2)如果∠B+2∠DEA=180°,试探究线段AE ,AF ,FD 之间有何数量关系,并证明你的结论.24.(本小题满分10分)如图,等腰Rt △ACB 中,∠ACB=90°,AC=BC ,E 点为射线CB 上一动点,连接AE ,作AF ⊥AE 且AF=AE.(1)如图1,过F 点作FG ⊥AC 交AC 于G 点,求证:△AGF ≌△ECA ;图2图3A图1图2图3(2)如图2,连接BF 交AC 于D 点,若ADCD=3,求证:E 点为BC 中点; (3)如图3,当E 点在CB 的延长线上时,连接BF 与AC 的延长线交于D 点,若43BC BE =,则AD CD =25.(本小题满分12分)已知点A 与点C 为x 轴上关于y 轴对称的两点,点B 为y 轴负半轴上一点。
人教版八年级(上)数学期中试卷一、选择题(共10个小题,每小题3分,共30分)1.(3分)下面所给的图形中,不是轴对称图形的是()A.B.C.D.2.(3分)若一个正多边形的内角和小于外角和,则该正多边形的每个内角度数为()A.30°B.60°C.120°D.150°3.(3分)如图,在△ABC和△DEF中,已知AB=DF,BC=EF,根据(SAS)判定△ABC≌△DEF,还需的条件是()A.∠A=∠D B.∠B=∠EC.∠B=∠F D.以上三个均可以4.(3分)下列计算正确的是()A.(﹣a3)3=﹣a9B.(3x3)3=9x9C.2x3•5x3=10x3D.(2a7)÷(4a3)=2a45.(3分)如图,BC=BE,CD=ED,则△BCD≌△BED,其依据是()A.SAS B.AAS C.SSS D.ASA6.(3分)把分式中的x、y的值都扩大2倍,分式的值有什么变化()A.不变B.扩大2倍C.扩大4倍D.缩小一半7.(3分)下列关系式中,正确的是()A.(a﹣b)2=a2﹣b2B.(a+b)(a﹣b)=a2﹣b2C.(a+b)2=a2+b2D.(a+b)2=a2﹣2ab+b28.(3分)下列各式从左到右变形,属于因式分解的是()A.x(x+2)=x2+2x B.x2+3x+1=x(x+3)+1C.(x﹣2)(x+2)=x2﹣4D.4x2+2x=2x(2x+1)9.(3分)如图:△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,且AB =6cm,则△DEB的周长是()A.6cm B.4cm C.10cm D.以上都不对10.(3分)如图,在Rt△ABC中,∠C=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为()A.4B.5C.6D.7二、填空题(共8个小题,每题2分,共16分)11.(2分)计算:(﹣3xy2)3=.12.(2分)因式分解:x2﹣4=.13.(2分)当x时,分式的值为正数.14.(2分)如图在△ABC中,∠C=90°,AB的垂直平分线MN分别交AC,AB于点D,E.若∠CBD:∠DBA=2:1,则∠A为.15.(2分)如图:DC∥AB,要证△ABD≌△CDB,根据“SAS”可知,需要添加一个条件:.16.(2分)比较大小:2.(填“>”,“<”或“=”)17.(2分)如果等腰三角形的两边长分别是4、8,那么它的周长是.18.(2分)如图,AB=12m,CA⊥AB于A,DB⊥AB于B,且AC=4m,P点从B向A运动,每分钟走1m,Q点从B向D运动,每分钟走2m,P、Q两点同时出发,运动分钟后△CAP与△PQB全等.三、计算:(共5个小题,每题4分,共20分)19.(4分)(﹣1)2018+(﹣)2﹣(3.14﹣π)0.20.(4分)();21.(4分)(﹣4a3+12a3b﹣7a3b2)÷(﹣4a2).22.(4分)(x+2y)2﹣(x﹣2y)2.23.(4分)求x的值:27(8x﹣)3=216.四、解答题(24题5分,25题5分,26题7分,27题7分,28题10分,共34分)24.(5分)先化简,再求值:[(a﹣2b)2+(a﹣2b)(2b+a)﹣2a(2a﹣b)]÷2a.其中a=2,b=.25.(5分)如图:已知AD∥BC,AD⊥DF,BC⊥BE,DF=BE,求证:AE=FC.26.(7分)某部队将在指定山区进行军事演习,为了使道路便于部队重型车辆通过,部队工兵连接到抢修一段长3600米道路的任务,按原计划完成总任务的后,为了让道路尽快投入使用,工兵连将工作效率提高了50%,一共用了10小时完成任务.(1)按原计划完成总任务的时,已抢修道路米;(2)求原计划每小时抢修道路多少米?27.(7分)(1)设A=(x2+ax+5)(﹣2x)2﹣4x4,化简A;(2)若A﹣6x3的结果中不含有x3项,求4a2﹣4a+1的值.28.(10分)在Rt△ABC中,BC=AC,∠ACB=90°,点D为射线AB上一点,连接CD,过点C作线段CD的垂线l,在直线l上,分别在点C的两侧截取与线段CD相等的线段CE和CF,连接AE、BF.(1)当点D在线段AB上时(点D不与点A、B重合),如图1①请你将图形补充完整;②线段BF、AD所在直线的位置关系为,线段BF、AD的数量关系为;(2)当点D在线段AB的延长线上时,如图2①请你将图形补充完整;②在(1)中②问的结论是否仍然成立?如果成立请进行证明,如果不成立,请说明理由.人教版八年级(上)数学期中试卷参考答案与试题解析一、选择题1.【解答】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:B.2.【解答】解:设这个正多边形为n边形,根据题意,得:(n﹣2)×180°<360°,解得n<4.所以该正多边形为等边三角形,所以该正多边形的每个内角度数为60°.故选:B.3.【解答】解:∵AB=DF,BC=EF,∴添加条件∠B=∠F,则△ABC≌△DFE(SAS),故选:C.4.【解答】解:A、原式=﹣a9,符合题意;B、原式=27x9,不符合题意;C、原式=10x6,不符合题意;D、原式=a4,不符合题意.故选:A.5.【解答】解:在△BCD和△BED中,,∴△BCD≌△BED(SSS),故选:C.6.【解答】解:分别用2x和2y去代换原分式中的x和y,====×.故选:D.7.【解答】解:A、应为(a﹣b)2=a2﹣2ab+b2,本选项错误;B、(a+b)(a﹣b)=a2﹣b2,本选项正确;C、应为(a+b)2=a2+2ab+b2,本选项错误;D、应为(a+b)2=a2+2ab+b2,本选项错误.故选:B.8.【解答】解:A.从左边到右边的变形不属于因式分解,故本选项不符合题意;B.从左边到右边的变形不属于因式分解,故本选项不符合题意;C.从左边到右边的变形不属于因式分解,故本选项不符合题意;D.从左边到右边的变形属于因式分解,故本选项符合题意;故选:D.9.【解答】解:∵∠C=90°,∴DC⊥AC,又AD平分∠CAB交BC于D,DE⊥AB,∴CD=ED,在Rt△ACD和Rt△AED中,,∴Rt△ACD≌Rt△AED(HL),∴AC=AE,又AC=BC,∴AC=AE=BC,又AB=6cm,∴△DEB的周长=DB+BE+ED=DB+CD+BE=BC+BE=AE+EB=AB=6cm.故选:A.10.【解答】解:如图:故选:D.二、填空题11.【解答】解:(﹣3xy2)3=﹣27x3y6;故答案为:﹣27x3y6.12.【解答】解:x2﹣4=(x+2)(x﹣2).故答案为:(x+2)(x﹣2).13.【解答】解:分式的值为正数,则分子分母同号即同时为正或同时为负,∵x2>0,∴同时为负不可能,则同时为正即x﹣1>0,x2>0,x>1,故答案为:x>1.14.【解答】解:∵MN是AB的垂直平分线,∴AD=DB,∴∠A=∠DBA,∵∠CBD:∠DBA=2:1,∠C=90°,∴在△ABC中,∠A+∠ABC=∠A+∠A+2∠A=90°,解得∠A=22.5°.故答案为:22.5°.15.【解答】解:∵DC∥AB,∴∠ABD=∠CDB,又∵BD=DB,∴要证△ABD≌△CDB(SAS),需要添加一个条件AB=CD,故答案为:AB=CD.16.【解答】解:∵2≈2.33,≈2.45,∴2<;故答案为:<.17.【解答】解:∵等腰三角形有两边分别分别是4和8,∴此题有两种情况:①4为底边,那么8就是腰,则等腰三角形的周长为4+8+8=20,②8底边,那么4是腰,4+4=8,所以不能围成三角形应舍去.∴该等腰三角形的周长为20,故答案为:2018.【解答】解:∵CA⊥AB于A,DB⊥AB于B,∴∠A=∠B=90°,设运动x分钟后△CAP与△PQB全等;则BP=xm,BQ=2xm,则AP=(12﹣x)m,分两种情况:①若BP=AC,则x=4,AP=12﹣4=8,BQ=8,AP=BQ,∴△CAP≌△PBQ;②若BP=AP,则12﹣x=x,解得:x=6,BQ=12≠AC,此时△CAP与△PQB不全等;综上所述:运动4分钟后△CAP与△PQB全等;故答案为:4.三、计算:19.【解答】解:原式=1+﹣1=.20.【解答】解:(1)原式=•=•=•=;21.【解答】解:原式=﹣4a3÷(﹣4a2)+12a3b÷(﹣4a2)﹣7a3b2÷(﹣4a2)=a﹣3ab+ab2.22.【解答】解:原式=(x+2y+x﹣2y)(x+2y﹣x+2y)=2x•4y=8xy.23.【解答】方程整理得:(8x﹣)3=8,开立方得:8x﹣=2,解得:x=.四、解答题24.【解答】解:原式=(a2﹣4ab+4b2+a2﹣4b2﹣4a2+2ab)÷2a=(﹣2a2﹣2ab)÷2a=﹣a﹣b,当a=2,b=时,原式=﹣2﹣=.25.【解答】证明:∵AD∥BC,∴∠A=∠C,∵AD⊥DF,BC⊥BE,∴∠D=∠B=90°,在△ADF和△CBE中,,∴△ADF≌△CBE(AAS),∴AE=FC.26.【解答】解:(1)按原计划完成总任务的时,已抢修道路3600×=1200米,故答案为:1200米;(2)设原计划每小时抢修道路x米,根据题意得:,解得:x=280,经检验:x=280是原方程的解.答:原计划每小时抢修道路280米.27.【解答】解:(1)A=(x2+ax+5)×4x2﹣4x4=4x4+4ax3+20x2﹣4x4=4ax3+20x2;(2)A﹣6x3=4ax3+20x2﹣6x3=(4a﹣6)x3+20x2.∵A﹣6x3的结果中不含有x3项,∴4a﹣6=0.∴a=.当a=时,4a2﹣4a+1=4×﹣4×+1=4.28.【解答】解:(1)①见图1所示.②证明:∵CD⊥EF,∴∠DCF=90°,∵∠ACB=90°,∴∠ACB=∠DCF,∴∠ACD=∠BCF∵BC=AC,CD=CF,∴△ACD≌△BCF,∴AD=BF,∠BAC=∠FBC,∴∠ABF=∠ABC+∠FBC=∠ABC+∠BAC=90°,即BF⊥AD.故答案为:垂直、相等.(2)①见图2所示.②成立.理由如下:证明:∵CD⊥EF,∴∠DCF=90°,∵∠ACB=90°,∴∠DCF+∠BCD=∠ACB+∠BCD,即∠ACD=∠BCF,∵BC=AC,CD=CF,∴△ACD≌△BCF,∴AD=BF,∠BAC=∠FBC,∴∠ABF=∠ABC+∠FBC=∠ABC+∠BAC=90°,即BF⊥AD.。
B'CBAA'荔城区2018-2019学年八年级(上)期中数学试卷(满分:150分;考试时间:120分钟)注意:本试卷分为“试题”和“答题卡”两部分,答案写在答题卡上的相应位置. 一、精心选一选:(本大题共8小题,每小题4分,共32分.每小题给出的四个选项中有且只有一个选项是符合题目要求的.答对的得4分,答错、不答或答案超过一个的一律得O 分.)1.下列“QQ 表情”中属于轴对称图形的是( )A. B. C .D .2.9的平方根是 ( )A .3 B.±3 C. ±3 D. ± 813.如图,ACB A CB ''△≌△,BCB ∠'=30°,则A C A '∠的度数为( )A .20°B .30°C .35°D .40°4.一个正方形的面积为30,则它的边长应在( )A .3到4之间B .4到5之间C .5到6之间D .6到7之间5.在实数 3.141141114…π2-, 227中,无理数的个数是( )A. 2个B. 3个C. 4个D. 5个6.如图,把长方形ABCD 沿EF 对折后使两部分重合,若AEF ∠=110°, 则∠1=( )A.30°B.35°C.40°D.50°7.等腰三角形一腰上的高与另一腰的夹角为60,则顶角的度数为 ( )A.30° B.30°或150° C.60150或D.60或1208.如图,数轴上A ,B 两点表示的数分别为1和3,C ,B 两点关于点A 对称,则点C 表示的数是( )A. 2B. 2+3C. 3 -2 D. 1二、细心填一填:(本大题共8小题,每小题4分,共32分.) 9. 点A (2,-1)关于x 轴对称的点的坐标是 . 10.计算:2(= .11.如图,已知AD AB =,DAC BAE ∠=∠,要使ABC △≌ADE △,若以“SAS ”为依据,补充 的条件是 .12.等腰三角形的两边分别为1和2,则其周长为 . 13.一个汽车牌在水中的倒影为,则该车牌照号码____________.14.我们知道2的整数部分是1,将这个数减去其整数部分,差就是2小数部分即2的小数部分为12-小数部分为 . 15.用“*”表示一种新运算:对于任意实数b a 、,都有1a b *,例如:2813*=,那么2(1)*-= .16.如图,已知ABC △的周长是21,OB ,OC 分别平分∠ABC 和∠ACB ,4OD BC D OD ⊥于,且=,△ABC 的面积是_______.三、耐心做一做:(本大题共9小题,共86分.解答应写出必要的文字说明、证明过程或演算步骤.) 17.(81.18.(8分)求x 的值:23(1)48x -=.19.(8分)已知:如图, AB=AC ,AD=AE .求证:BD=CE .20.(8分)如图,在所给正方形网格图中完成下列各题:(用直尺画图,保留痕迹) (1) (4分) 画出格点△ABC (顶点均在格点上)关于直线DE 对称的△A 1B 1C 1 ; (2) (4分) 在DE 上画出点Q ,使△QAB 的周长最小.AC EB DADO CBE'D'A'CB 21.(8分)已知:2x y -+,求:x y -的值.22. (10分)在ABC △中,AB CB =,90ABC ∠=°,E 为CB 延长线上一点,点F在AB 上,且AE CF =.(1)(4分)求证:Rt Rt ABE CBF △≌△;(2)(6分)若60CAE ∠=°,求ACF ∠的度数.23. (10分)如图,已知△ABC 中∠A=60°,AB=2cm,AC=6cm, 点P 、Q 分别是边AB 、AC 上的动点,点P 从顶点A 沿AB 以1cm/s 的速度向点B 运动,同时点Q 从顶点C 沿CA 以3cm/s 的速度向点A 运动,当点P 到达点B 时点P 、Q 都停止运动.设运动的时间为t 秒.(1)(4分)当t 为何值时AP=AQ ; (2) (6分) 是否存在某一时刻使得△APQ 是直角三角形?若存在,求出t 的值;若不存在,请说明理由.24.(12分) 如图(1),Rt ABC △中,90ACB = ∠,CD AB ⊥,垂足为D ,AF 平分CAB ∠,交CD 于点E ,交CB 于点F . (1)(5分)求证:CE CF =;(2)(7分)将图(1)中的ADE △沿AB 向右平移到A D E '''△的位置,使点E '落在BC 边上,其它条件不变,如图(2)所示.试猜想:BE '与CF 有怎样的数量关系?请证明你的结论.图1 图2C MBCM DB C M D25.(14分)已知,M是等边△ABC边BC上的点 .(1)(3分)如图1,过点M作MN∥AC,且交AB于点N,求证:BM=BN;(2)(7分)如图2,联结AM,过点M作∠AMH=60°,MH与∠ACB的邻补角的平分线交与点H,过H作HD BC于点D.①求证:MA=MH;②猜想写出CB,CM,CD之间的数量关系式,并加于证明;(3)(4分)如图3,(2)中其它条件不变,若点M在BC延长线上时,(2)中两个结论还成立吗?若不成立请直接写出新的数量关系式(不必证明).图1 图2 图3荔城区2018-2019学年八年级(上)期中数学试卷答题卡(满分:150分;考试时间:120分钟)一、精心选一选:(本大题共8小题,每小题4分,共32分.)1. 2. 3. 4.5. 6. 7. 8.二、细心填一填:(本大题共8小题,每小题4分,共32分.)9. 10. 11. 12.13. 14. 15. 17.三、耐心做一做:(本大题共9小题,共86分.解答应写出必要的文字说明、证明过程或演算步骤.)17. 17.(8分)18.(8分)19.(8分)20.(8分)21.(8分)BC22. (10分)23. (10分)E'D'A'CMABC MDBC M DB2018-2019学年八年级(上)期中数学试卷参考答案一、1、A 2、B 3、B 4、C 5、B 6、C 7、B 8、A 二、9、(2,1) 10、5 11、AC=AE 12、5 13、M17936143 15、0 16、42三、17、10+解:原式………6分(每一个式子计算正确给两分)1=+ ………8分18、2(1)16x -=解: ………2分1414x x -=-=-或………6分35x x =-=或………8分19、 证明:作AF ⊥BC 于F ,………2分∵AB=AC ,∴BF=CF ,………4分又∵AD=AE ,∴DF=EF ,………6分 ∴BD=CE .………8分20、(1)从△ABC 各顶点向DE 引垂线并延长相同的长度,找到对应点,顺次连接即可得△A 1B 1C 1………4分(2)利用轴对称图形的性质可得点A 关于直线DE 的对称点A 1,连接A 1B ,交直线DE 于点Q ,点 Q 即为所求。
………8分 21.解:20x y -+≥20.....x y -+=①………2分 230........x y -+=②………4分解得:2x =,1y = ………7分21)1x y --=………8分 22. (1)证明:在Rt △ABE 和Rt △CBF 中∵AB=CB , ∠ABC=∠CBF=90°,AE=CF ∴Rt △ABE≌Rt △CBF………4分 (2)解:∵AB=AC,∠ABC=90° ∴∠BAC=∠BCA=45°………6分又∵∠CAE=60°∴∠EAB=15°………7分 由(1)知:∠FCB=∠EAB=15°………9分 ∴∠ACF=∠BCA -∠FCB =30°………10分23:解:(1)由已知得:AP=t,CQ=3t ………1分∴AQ=6-3t ………2分∴t=6-3t ,解得32t = ∴当32t = 时,AP=AQ. ………4分 (2)存在。
分两种情况。
①当∠APQ=90°时………5分∵∠A=60°∴∠AQP=30°∴AQ=2AP 即6-3t=2 t ,解得65t =………7分 ②当∠AQP=90°时,………8分此时∠APQ=30°∴AP=2AQ 即t=2(6-3t ),解得127t = 所以当65t =或127时△APQ 为直角三角形. ………10分 24.(1)证明:∵AF 平分CAB ∠,∴.CAF EAD ∠=∠………1分 ∵90ACB ∠=°,∴90.CAF CFA ∠+∠=°又∵CD AB ⊥于D ,∴90EAD AED ∠+∠=°. ∴.CFA AED ∠=∠………2分∵AED CEF ∠=∠,∴.CFA CEF ∠=∠………3分 ∴.CE CF =………5分(2)证明:如图,过点E 作EG AC ⊥于G .………6分 又∵AF 平分CAB ∠,.ED AB ⊥∴.ED EG =………7分由平移的性质可知:D E DE =′′,∴.D E GE =′′………8分 ∵90ACB ∠=°,∴90.ACD DCB ∠+∠=°∵CD AB ⊥于D ,∴90.B DCB ∠+∠=°∴.ACD B ∠=∠………9分在Rt CEG △与Rt BE D △′′中,GCE B CGE BD E GE D E ∠=∠⎧⎪∠=∠⎨⎪=⎩′′′′ ∴CEG BE D △≌△′′.………10分 ∴CE BE =′.………11分由(1)可知CE CF =,∴.BE CF =′………12分 25.(1)证明: ∵MN ∥AC∴∠BMN=∠C=60°,∠BNM=∠B=60°………1分 ∴∠BMN=∠BNM ………2分∴BM=BN ………3分N G(2)①证明:过M 点作MN ∥AC 交AB 于N ………4分 则BM=BN ,∠ANM=120°∵AB=AC ∴AN=MC又因为CH 是∠ACB 外角平分线,所以∠ACH=60° ∴∠MCH=∠ACB+∠ACH=120°又∵∠NMC=120°,∠AMH=60°∴∠HMC+∠AMN=60°又∵∠NAM+∠AMN=∠BNM=60°∴∠HMC=∠MAN∴△AMN ≌△MHC ………6分∴MA=MH ………7分②CB=CM+2CD ………8分证明:过M 点作MG ⊥AB 于G则△BMN 为等边三角形,BM=2BG在△BMG 和△CHD 中∵HC=MN=BM, ∠B=∠HCD, ∠MGB=∠HDC ∴△BMG ≌△CHD ………9分∴CD=BG ∴BM=2CD所以BC=MC+2CD ………10分(3) (2)中结论①成立, ②不成立, ………12分 CB=2CD- CM ………14分。