第一讲乘法巧算
- 格式:doc
- 大小:41.00 KB
- 文档页数:1
第一章速算与巧算知识要点在速算与巧算中,主要是运算定律、性质和一些技巧方法的运用。
1.加法巧算。
(1)加法交换律:两个数相加,交换加数的位置,它们的和不变。
字母表示:a+b=b+a(2)加法结合律;三个数相加,先把前两个数相加,再加上第三个数,或者先把后两个数相加,再同第一个数相加,它们的和不变。
字母表示:a+b+c=(a+b)+c=a+(b+c)交换律和结合律通常是在一起使用。
如果多个数相加,任意交换加数的位置,它们的和不变,或者先把其中的几个数结合成一组相加,再把所得的和同其他剩下的数相加,它们的和仍然不变。
字母表示:a+b+c+d+e=d+(b+d+e)+c2.减法巧算。
(1)减法的运算性质(有时可以将减法的运算性质理解成填括号或去括号的性质):一个数减去几个数的和,等于从这个数里依次减去和中的每一个加数。
字母表示:a-(b+c+d)=a-b-c-d(2)一个数连续减去几个数,等于从这个数中减去这几个数的和。
字母表示:a-b-c-d=a-(b+c+d)3.乘法巧算。
(1)乘法交换律:两个数相乘,交换因数的位置,积不变。
字母表示:a×b=b×a(2)乘法结合律:三个数相乘,可以先把前两个数结合起来相乘,再和第三个数相乘;也可以先把后两个数结合起来先乘,再和第一个数相乘,它们的积不变。
字母表示:a×b×c=(a×b)×c=a×(b×c)交换律和结合律通常是在一起使用。
如果多个数相乘,任意交换因数的位置,它们的积不变;可以选择两个因数相乘,得出便于运算的整十、整百、整千……的积,再将这个积与其他的因数相乘;有时可以把一个因数用几个因数相乘的形式表示,使其中一个因数与算式中其他的某个因数的积成为便于运算的数,然后再与其他的因数相乘,使计算快捷准确。
(3)积不变的规律:如果一个因数扩大若干倍,另一个因数缩小同样的倍数,那么它们的积不变。
第01讲乘法分配律之速算巧算(上)教学目标:1、引导学员能运用乘法分配律进行一些简便运算,掌握能用乘法分配律进行简便计算的式题的特点;2、运用乘法分配律的速算和巧算进行相关应用题题型的解决;3、使学员感受数学与现实生活的联系,能用所学知识解决简单的实际问题。
教学重点:使学员掌握乘法分配律并用于简便计算。
教学难点:使学员理解并掌握乘法分配律的转化及应用。
教学过程:【环节一:预习讨论,案例分析】【知识回顾——温故知新】(参考时间-2分钟)涉及时间方面的统筹安排,如何考虑?①要做哪些事情;②每件事情需要多少时间;③弄清所做事情的程序,即先做什么,后做什么,哪些工作可以同时做,从而根据题意找出最佳方案。
涉及最优方案选择方面的统筹安排,如何考虑?可以将所有的方案一一枚举,再根据问题的要求去分析每个方案,从而选择出满足条件的方案或者几个方案的组合;如果可供选择的方案过多,我们可以调整法进行解答,即先对条件进行假设,再由此进行分析并调整,这样可帮助我们快速将问题解决。
【知识回顾——上期巩固】(参考时间-3分钟)某工地A有20辆卡车,要把60车渣土从A运到B,把40车砖从C运到D(工地道路图如下所示)。
问如何调运最省汽油(最后卡车还要回到A处)?解析部分:把渣土从A运到B或把砖从C运到D,都无法节省汽油,只有设法减少跑空车的距离,才能省汽油。
给予新学员的建议:对于图形尽可能画的更为精确,并强调基础计算能力。
哈佛案例教学法:引导学员多多进行纸上的动手操作演练,鼓励积极的课堂发言。
参考答案:如果各派10辆车分别运渣土和砖,那么每运一车渣土要空车跑回300米,每运一车砖则要空车跑回360米,这样到完成任务总共空车跑了:300×60+360×40=32400(米)。
如果一辆从从A→B→C→D→A跑一圈,那么每运一车渣土,运一车砖要空车跑:240+90=330(米)。
因此,先派20辆车都从A开始运渣土到B,再空车开往C运砖到D后空车返回A,这样每辆车跑两圈就完成了运砖任务。
第一讲 巧算巧算:包括乘法,除法的分配律,结合律,交换律。
加法交换,结合等。
这需要在某个算式中找出。
找到了可以应用的定律,及每个数的分解数,就可以巧妙地算出答案了。
例1 计算:9+99+999+9999+99999分析:在涉及所有数字都是9的计算中,常使用凑整法.例如将999化成1000—1去计算.这是小学数学中常用的一种技巧.解: 9+99+999+9999+99999=(10-1)+(100-1)+(1000-1)+(10000-1) +(100000-1) =10+100+1000+10000+100000-5=111110-5=111105.练习:计算899998+89998+8998+898+88解:利用凑整法解.899998+89998+8998+898+88=(899998+2)+(89998+2)+(8998+2)+(898+2)(88+2)-10 =900000+90000+9000+900+90-10=999980.例2 计算(1+3+5+...+1989)-(2+4+6+ (1988)解:(1+3+5+...+1989)-(2+4+6+ (1988)=1+3+5+…+1989-2-4-6-…-1988=1+(3-2)+(5-4)+…+(1989-1988)=1+199421988111个共有=÷⋅⋅⋅++=995练习:计算(1988+1986+1984+…+6+4+2)-(1+3+5+…+1983+1985+1987)解:(1988+1986+1984+…+6+4+2)-(1+3+5+…+1983+1985+1987)=1988+1986+1984+…+6+4+2-1-3-5…-1983-1985-1987=(1988-1987)+(1986-1985)+…+(6-5)+(4-3)+(2-1)=994.例3 计算(4942+4943+4938+4939+4941+4943)÷6分析:认真观察可知此题关键是求括号中6个相接近的数之和,故可选4940为基准数.解:(4942+4943+4938+4939+4941+4943)÷6=(4940×6+2+3—2—1+1+3)÷6=(4940×6+6)÷6(这里没有把4940×6先算出来,而是运=4940×6÷6+6÷6运用了除法中的巧算方法)=4940+1=4941.练习:计算92+94+89+93+95+88+94+96+87解: 92+94+89+93+95+88+94+96+87=90×9+2+4-1+3+5-2+4+6-3=810+18=828例4 计算54+99×99+45分析:此题表面上看没有巧妙的算法,但如果把45和54先结合可得99,就可以运用乘法分配律进行简算了.解: 54+99×99+45=(54+45)+99×99=99+99×99=99×(1+99)=99×100=9900.练习:67×12+67×35+67×52+67解:67×12+67×35+67×52+6=67×(12+35+52+1)= 67×100=6700例5 计算 9999×2222+3333×3334分析:此题如果直接乘,数字较大,容易出错.如果将9999变为3333×3,规律就出现了.解: 9999×2222+3333×3334=3333×3×2222+3333×3334=3333×6666+3333×3334=3333×(6666+3334)=3333×10000=33330000.练习:6666×2222+4444×6667解:6666×2222+4444×6667=6666×2222+2222×2×6667=2222×(6666+2×6667)=2222×20000=44440000例6 1999+999×999解法1:1999+999×999=1000+999+999×999=1000+999×(1+999)=1000+999×1000=1000×(999+1)=1000×1000=1000000.解法2:1999+999×999=1999+999×(1000-1)=1999+999000-999=(1999-999)+999000=1000+999000=1000000.练习:计算999999×78053解:999999×78053=(1000000—1)×78053=78053000000—78053=78052921947.例7求9198891988919889919999999999个个个⋅⋅⋅+⋅⋅⋅⨯⋅⋅⋅所得结果有多少个零。
小学三年级奥数精品讲义目录第一讲加减法的巧算(一)第二讲加减法的巧算(二)第三讲乘法的巧算第四讲配对求和第五讲找简单的数列规律第六讲图形的排列规律第七讲数图形第八讲分类枚举第九讲填符号组算式第十讲填数游戏第十一讲算式谜(一)第十二讲算式谜(二)第十三讲火柴棒游戏(一)第十四讲火柴棒游戏(二)第十五讲从数量的变化中找规律第十六讲数阵中的规律第十七讲时间与日期第十八讲推理第十九讲循环第二十讲最大和最小第二十一讲最短路线第二十二讲图形的分与合第二十三讲格点与面积第二十四讲一笔画第二十五讲移多补少与求平均数第二十六讲上楼梯与植树第二十七讲简单的倍数问题第二十八讲年龄问题第二十九讲鸡兔同笼问题第三十讲盈亏问题第三十一讲还原问题第三十二讲周长的计算第三十三讲等量代换第三十四讲一题多解第三十五讲总复习第一讲加减法的巧算森林王国的歌舞比赛进行得既紧张又激烈。
选手们为争夺冠军,都在舞台上发挥着自己的最好水平。
台下的工作人员小熊和小白兔正在统计着最后的得分。
由于他们对每个选手分数的及时通报,台下的观众频频为选手取得的好成绩而热烈鼓掌,同时,观众也带着更浓厚的兴趣边看边猜测谁能拿到冠军。
观众的情绪也影响着两位分数统计者。
只见分数一到小白兔手中,就像变魔术般地得出了答案。
等小熊满头大汗地算出来时,小白兔已欣赏了一阵比赛,结果每次小熊算得结果和小白兔是一样的。
小熊不禁问:“白兔弟弟,你这么快就算出了答案,有什么决窍吗?”小白兔说:“比如2号选手是93、95、98、96、88、89、87、91、93、91,去掉最高分98,去掉最低分87,剩下的都接近90为基准数,超过90的表示成90+‘零头数’,不足90的表示成90-‘零头数’。
于是(93+95+96+88+89+91+93+91)÷8=90+(3+5+6―2―1+1+3+1)÷8=90+2=92。
你可以试一试。
”小熊照着小白兔说的去做,果然既快又对。
沪教版四年级奥数第一讲:巧算1 •五个基本运算定律(1)加法交换律b —b^r(2)加法结合律+ +c = a + 3 十c).(3)乘法交换律:aXb^bXa.(4)乘法结合律:(a X 6) X c = aX (bX c)t(5)乘法分配律:(<2 ±W Xc = aXc±6Xc,2 •五个运算性质(D除法分配性质:(a i 6) H- c = a c ± b -T- c・(2)商不变性质:[a b = (a X c) -r (6 X c) = (a -r c) -r (6 -r c) t 7^ 0)*(3)加减法的运算性质:a b —c = a—c +a —6 —c = a ——c ——b —a — (^ +c )・⑷乘除法的运算性质:aXb-i- c = a 4^ c X ^»(c 0)»a -rb -rc = a -7- c -T'b = a -r (b X c) f(b f c护O)t(5)去插号:a-I- (b —c)= ◎ + b 一门a — (b — c) = a — b +a X Cb + c) — aXb-\-aXcia X (b c) = a X 6 4- (c 7^ 0) ja 十(b X c) = a~r 6 -r cta -r (& 4- c) = a -rb X C r(b tc 0).例 1 8X74-8X7 = ________ ・笫8屈(2010年)四年级笫1试分析•解在乘除混合运算中,如果算式中没有括号,计算时可以根据运算定律和性质调换因数或除数的位址.原式=848X7X7=1X7X7=49.例 2 123 + 456 + 789 + 987 + 654 + 321 = ______ •…「第9届(2011年)四年级培训题分析・解显然可以用加法结合律來计算,体现了凑整思想・原式=(123 + 987) + (456 + 654) + (789 + 321)= 1110 + 1110 + 1110=3330.■例 3 12 X 45 + 15 X 28 + 30 X 26 + 60 X 11 = ________ ・第7届(2009年)四年级培训题分析・解45,30,60分别是15的3倍、2倍、4倍,所以可逆用乘法分配律.原式=12X5X9 + 15X4X7 + 30X2X13 + 60X11 、= 60 X 9 + 60 X 7 + 60 X13 + 60X11 ••=60 X (9 + 7 + 13 +11) •、. •• '■ ■=2400. •、例 4 44 X 555 + 55 X 666 = __" • •第8届(2010年)四年级培训題分析•解44和55含有相同的因数11,555和666含有相同的因数1H ,由此可用乘法结合律及分配律. ■•• ••原式=4X11X5X111 + 5X11X6X111=11 X 111 X (20 + 30)-=1221 X 50 = 61050,:例 5 (70 一4 + 90 4-4) 一4 = .・•••第9届(2011年)四年级笫2试分析•解括号内的两个除法算式中的除数都是4,所以实质上是除法分配性质的逆运用.•….原式=[(70+ 90)-4]+ 4 -=160 + 4 + 4=40 -r 4 =10, ■ •例6用简便方法计算:-(1) 864 X 27 一54;(2) 25 X 720 + (18 — 4).第6活(2008年)四年级培训题分析•解算式(1)中的54是27的2倍,所以可用商不变的性质将除数和被除数同除以27•算式(2)很容易出错,要注意a+(6 — c) =G +6X C,这里,去括号是关键.♦•(1)(2) 原式=864 X (27 4-27) 4-2 = 864 4-2 = 432.原式= 2.5 X 720 + 18X4=(25 X 4) X (720 + 18) -:=10Q X 40=4000. 1・例7 1 + 11 + 21 + …+ 1991 十2001 -I- 2011 =分析•解笫9用(2011年)四年级的1试观察发现1,11,21,-/1991,2001,2011^202个数从第2个数删,加个数与它前而一个数的差都是10.若一列数皿2皿3,…山”,…,从第2个数遛徘一个数与它的而一•个数的遊都筲于厶则称这列数为綽星数列•前n个数的和珈由如下1因为S n = a\十心 + 心 + s =并(ai+a尺)十2 =nai -|- ?i(n — 1) • d 十 2.a2— a\ — d>«3 — ^2 = dy © —血=cl 9•••S — %2 = d >a n— a M-i = a»W±iTu(«一1)个武子左右网边分別柏加,鮒(a2 +^3 4*°4 -卜•••— («i ・卜^2 + ••• ■卜a财・2 =(并—l)d9即于是从而a n— a x = (n — l)d, a n = ai + (n —Del.如=如a2 =如a3 =如+ 2d,a4 = a\ + 3d 9■■■a^\ — a{■卜(n — 2)〃, = Qi + S—】)〃•所以S n = a\ + a2 + a3-卜a4■卜••• T- a—十a K=Qi + (ai + /) + (ai + 2d) + (ai + 3H) + …+[a】+ (九一2)刃 + [_a\ + (n — l)d]=Mi +[H + 2〃 + 3〃+ …+ (n — 2) J + (n — 1)刃,即Si,=血1 + [1 + 2 + 3 + ••• + (介一2) + (死一1)]Z这样,问题便转化为求1 + 2 + 3 +・・・+ a — 2)十G — 1)的和.联想到高斯求和所用的倒序相加的方法,这里同样适用•・1:+2t+ (w-l)H- (n-2);+3 :+ ••••i:+(w-3) :+ …+ (滋一2)+ 2:+(n-l)::4- i in\+ n1;+ n :+ •••+ n:+ 死: =n(n— 1)1 I即 1 + 2 + 3 + …+(7i — 2〉+ (n — 1) = yn(n — 1).所以S” = ns +(九一1)么解法1 原式=1 X 202 + (10 + 20 + 30 + ・・・ + 2D10)=202 + (10 + 2010) X 201 一2 = 202 + 203010=203212・解法2 原式=(1 + 2011) X 202 2 = 203212・例8 100 — 98+ 96 — 94+ 92 -90+ ・;・+4 — 2 =• ________ ・第8届(2010年)四年级培训题分析・解算式中有加号也有减号,且相邻两数的差均是2,不妨考虑将这些数重新组合一下,或将加法运算与减法运算分开,同样可解决问题.解法1 原式=(100 — 98) + (96 — 94) + ・・・ + (4—2)=2 + 2 + ・・・ + 2 = 2 X 25 = 50・J _ 一一丿Y25个2解法2 原式=(100 + 96 + 92 + ・・・+4) - (98 + 94 + 90 + …+ 2)=25 X (100 + 4) + 2 — 25 X (98 + 2) ♦ 2= 25 X(104- 100)-7-2.- ..=25 X 4 十2 = 50.例9 (569 4- 672 X 428) 4- (429 X 672 一103) = _______ .算6届(2008年)四年级培训题分析•解初看此题,无捷径可走•若按部就班运算,则运算量很大,但若注意到428 = 429 — 1,且672 — 103 = 569,于是简捷的解题方法便出现了:• 原式=(569 + 672 X 428) + [(428 + 1) X 672 一103]=(569 + 672 X 428) 4- (428 X 672 + 672 - 103)=(569 + 672 X 428) 4- (428 X 672 + 569)= (569 + 672 X 428)*(569 + 672 X 428) ;=1. . • 例10 100减25,加22,又减25,又加22……这样算下去,宜到结果为0,这时,共减了__________ 个25,加了______ 个22,第6届(2008年)四年级培训趣分析•解本題婴求在珈解题恋的斟III上列小算式.100 一25 -I- 22 - 25 -|- 22一…=« 0.100是他数,25是奇数,22足俶数,嬰•便故后纟时果为0,须便减広的25的个数为仙数,且比加22的个数多1.而每次减25 Will 22后的结果减少3.于她上式变为: 100 一25 + (22 一25) + (22一25) + …+ (22 — 25) =0,HII100 — 25 = 3 X 25.于足共减了 26个25,加了25个22.例11 数20092009 X 2008 与数20082008 X 2009 相證________ •第6届(2008年)四年饭笫2试分析・解八位数乘以皿位数,其纳采很大,不宜去锁算,可以拆分成;容易比较的数.20092009与20082008相淤10001,且都是形如丽丽间的数丽abcdabcd =abed X 10001,所以2009200? X 2008 一20082008 X 2009 .=2009 X 10001 X 2008 一2008 X 10001 X 2009=2008 X 2009 X 10001 一2008 X 2009 X 10001 =0.注ab X 101 = a5a6 >abc X 1001 = abcaUc >abed X 10001 = abedabed例12 7 十97 + 997 + 9997 + 99997 = ________ .第9届(2011年)四年级培训題分析•解观察发现式中每个加数的末位数字都是7,非末位数字都是9,考煤枢等变形,可化繁为易.7 + 97 + 997 + 9997 + 99997=(10 一3) + (100 一3) + (1000 一3) + (10000 一3) + (100000 一3)=(10 + 100 + 1000 + 10000 + 100000)-3 X5=111110-15=111000+(110- 15)=111095・例13 如果A = 3X3X3X-X3X3,^1"1• v ,30个3B = 5 X 5 X 5 X — X 5 X 5,I ——20个57 20个5那么A _______ B t (填怜W.或“. 第3届(2005年)四年级培训題分析-解比较A,E的大小并不一定要知道A用的具体数值,可将它们分别分解,将问题转化为比较乘数的大小…A = 3X3X3X (X3X3)' : Y 5 !" 30 牛3=(3 X 3 X 3) X (3 X 3 X 3) X …X (3 X 3 X 3)、_____ _ ___ ______ _ J. 104-<3X3X3);■= 27 X 27 X切X …X 27, '、\ _____ 一_ ________ /5Y1。
第一讲小数乘法的速算与巧算【知识概述】小数的简便计算出了可以灵活运用整数四则运算中我们已经学过的许多速算与巧算的方法外,还可以运用小数本身的特点,如小数的意义、小数的数位顺序、小数的性质、小数点位置移动引起小数大小的变化等。
很多计算题,如果我们根据运算法则按部就班地计算,将会觉得很繁,也很耗费时间,有的甚至算不出结果,如果我们能够发现其中数据的特点、正确运用数的组成、运算规律,把复杂的计算转化为简便的计算将会节约很多时间。
学会巧算的一些基本方法,将有助于我们提高计算能力、发展思维能力、增强注意力与记忆力。
1、凑整法简算:例1 计算:1.25×88方法一:原式=1.25×8×11方法二:原式=1.25×(80+8)【试题精选】(1)0.8×2.5×1.25× 4(红花岗第五届五年级组初赛题)(2)0.125×0.25×0.5×64(红花岗第六届五年级组初赛题、汇川区第四届)(3)1.25×0.32×0.25(红花岗区第七届五年级组初赛题、汇川区第五届,红花岗区第八届五年级组初赛题、汇川区第六届)(4)9.6×0.125(红花岗区第十届五年级组初赛题、汇川区第八届)(5)1.25×2.5×3200(红花岗区第四届五年级组决赛)(6)6.25×1.25×6.4(红花岗区第九届五年级组决赛题、汇川第七届)(7)8.88×1.25(汇川第五届初赛)2、拆拼法简算:例2 计算:(1) 18 ×222.2-666.6 (红花岗区第二届五年级组决赛)(2)7.5×9.9【试题精选】(1)24×333.3-999.9(红花岗第十届五年级组决赛题、汇川第八届)(2)7.5×21+37×2.5(红花岗第九届五年级组决赛题、汇川第七届)(3)0.7777×0.7+0.1111×5.1(红花岗区第五届五年级组决赛)(4)3.8×0.99(5)2.5×10.4(6)1.25×1.08(7)199.9×12.5×120(红花岗区第十届五年级组决赛)(8)0.25×1.25×19.2(汇川第五届三年级组初赛题)3、提取公因数法(利用乘法分配律)简算:不用计算,根据已知条件直接写出下面题的结果。
巧算乘法内容:1、乘法的交换律,结合律,分配率。
2、提取公因数。
1、乘法三律知识剖析:乘法表示的是几个相同加数的简便运算。
乘法有三大运算律。
(1)乘法交换律:两个数相乘,交换这两个因数的位置,乘积不变,即a×b=b×a.(2)乘法结合律:三个数相乘,可以先算前两个数的乘积再与第三个数相乘,也可以先算后两个数的乘积,在与第一个数相乘,即a×b×c=a×(b×c)=(a×c) ×b。
(3)乘法分配率:括号里的数与括号外的数分别相乘,再相加减,即(a+b)×c=a×c+b×c,(a-b) ×c=a×c-b×c.例1 计算(1)64×4×25 (2)125×121×8=64×(4×25)=125×8×212=64×100 =1000×121=6400 =121000(3)125×56 (4)25×125×32=125×8×7 =25×125×(8×4)=1000×7 =(25×4)×(125×8)=7000 =100000分析:由于25×4=100,125×8=1000,运用乘法交换律和结合律,在计算中尽量先把25与4、125与8相乘后,再与其他数相乘,方便简化计算。
有些题目中没有直接出现的可以先拆出来,例如,56=8×7,则125×56=125×8×7=1000×7=7000。
例2 计算(1)25×(40+4)(2)(100-8)×125=25×40+25×4 =100×125-125×8=1000+100 =12500-1000=1100 =11500(3)23×11 (4)56×99=23×(10+1) = 56×(100-1)=23×10+23×1 =56×100-56×1=230+23 =5600-56=253 =5544分析:当出现括号里为几个数相加、减的乘法运算时,可考虑用乘法分配率简化计算,即a×(b+c)=a×b+a×c。
第一讲速算与巧算〖内容概述〗计算是数学学习的根本,任何问题到最终都要归结为数的计算,从而得到最终结果。
而计算的方法的好坏直接决定我们的解题速度。
一个好的计算方法,往往使得原本计算量很大计算简化,从而节省我们的时间。
在本讲里我们主要向大家介绍一些常规的计算技巧,其中包括凑整构造法,拆分法构造法,分组构造法,推理计算及等差数列法等。
〖经典例题〗例1.计算768674232++=。
解析:本题数字比较大,如果我们按顺序计算的话,会发现非常的麻烦,但可以发现768和232的个位数字的和为10,我们考虑先将这两个数进行运算。
768674232(768232)6741674++=++=。
例2.计算39655+=。
解析:和上个例题不一样的是,本题就有两个数相加,而且这两个数的个位数字和并不是10,这时我们要发展进攻方略,将396拆成400-4,从而得到我们想要的东西。
39655400554451+=+-=.例3.计算9999+999+99+9= 。
解析:如果直接计算难度会较大,所以我们要寻找一种简单的解题方法来解决此题。
不难发现每个数如果加上1后就会凑成整十、整百、整千,因此我们用凑正法计算。
9999+999+99+9=10000-1+1000-1+100-1+10-1=11110-4=11106。
〖方法总结〗上面各题我们用到的是凑整法。
在这里要引入“补数”的概念:互为补数的两个数个位数之和是10,其他对应位上的数字之和是9。
这样,我们在计算加法时,尾数互补先相加,如例1;当没有尾数互补的数时,我们也可以拆将接近整十、整百的凑成整十、整百相加后再减去补数。
,如例2和例3。
〖巩固练习〗第 1 页共 11 页1.计算858683767882+++++2.计算188+8733.计算9898+2034.计算100000-85426〖经典例题〗例4.计算6324555--= 。
解析:观察本题,算式的两个减数的个位数字的和为10,因此我们想让这两个数先运算。
4升5奥数资料暑期(总29页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除第一讲:巧算之一—多位数乘法的珠心算【例题讲解】例1: 76×74 31×39例2:78×38 43×63例3:702×708 1708×1792【课堂练习】1. 68×622. 93×973. 27×874. 79×395. 42×626. 603×6077. 292×298 8. 705×7952第二讲:巧算之二—等差数列【例题讲解】例1: 1+2+3+4+……+49+50例2:有一个等差数列:2、5、8、11……101,这个等差数列共有多少项?例3:一等差数列,首项=3,公差=2,项数=10,它的末项是多少?例4:1+3+5+7+9+…+99【课堂练习】1. 6+7+8+9+……+752. 100+99+98+……+61+603. 已知等差数列11、16、21、26……1001,问这个数列共有多少项?34. 求等差数列1、4、7、10…这个等差数列的第30项。
5. 有一等差数列:3、7、11、15……这个等差数列的第100项是多少?6. 17+19+21+…+397. 5+8+11+14+…+508. 3+10+17+24+…+1019. 2+6+10+14+18+224【课后思考】(2+4+6+......+100)—(1+3+5+ (99)第三讲:平均数问题【例题讲解】例1: 贝贝前两次测验的数学平均成绩是6分,第三次测验后,三次的平均成绩是70分。
第三次得了多少分?例2: 五个数的平均数是139,把这些数排成一排,左边三个数的平均数是127,右边三个数的平均数是148,那么,排在中间的这个数是多少?例3:甲乙丙三个数,甲数和乙数的平均数是93,甲数和丙数的平均数是87,乙数和丙数的平均数是80。