《大高考》高考数学文(全国通用)二轮复习专题训练:五年高考专题第节函数与方程含答案
- 格式:doc
- 大小:187.00 KB
- 文档页数:5
函数与方程专题一、高考大纲剖析:高考大纲数学学科的主体内容没有变化,与去年的考纲相比:在能力要求部分比去年增加了对“四能力、一创新”的界定,比如究竟什么是运算能力等,过去的大纲未做过详细表述.考纲指出“运算能力是思维能力和运算技能的结合,运算包括对数字的计算、估值和近似的计算,对式子的组合变形与分解变形,对几何图形各几何量的计算求解等等.运算能力包括分析运算条件、探究运算方向、选择运算公式、确定运算程序等一系列过程中的思维能力,也包括在实施运算过程中遇到障碍而调整运算的能力”. 中心思想是要求考生能够“在运算当中,寻找解题的方法”,加大了对学生运算能力考查的要求.在考试内容部分比去年删减了两处知识点:“能利用计算器解决解三角形的计算问题”,以及“了解多面体的欧拉公式”;在考试要求部分也有不少细微的变动,比如对“三垂线定理及其逆定理”的考查,由“了解”改成了“掌握”,增加了“理解直线的倾斜角的概念”等等.《函数》这一章调整了一个知识点,把“函数的奇偶性”从下一章《三角函数》调了过来;改动了一个知识点,把“函数的应用举例”改成了“函数的应用”;增加了“了解函数的奇偶性的概念,掌握判断一些简单函数的奇偶性的方法”的考试要求,对函数的意义、性质及综合应用的考查要求有了明显的提高.在试卷结构部分第一次取消了选择题、填空题、解答题三种题型分值比例的限制,删去了容易题、中等题和难题的比例和这三类难度题的界定.而去年明确给出了“选择题40%、填空题10%、解答题50%”、“难度在0.7以上的是容易题,难度在0.4~0.7的试题为中等题,难度在0.4以下的为难题.三种试题的难度的比为3:5:2” ,这一改变为命题者对试卷难度的控制提供了较大的空间.这里还需要留意的是,考纲指出“试卷由容易题、中等题和难题组成,总体难度适当,并以中等题为主”, 去掉了去年 “以容易题和中档题为主”这句话中“容易题”这3个字,试卷整体难度预计会有所提高.二、高考试题研究:纵观近几年的新课程高考卷以及、的江苏卷,函数的主干知识、知识的综合应用以及函数与方程思想等数学思想方法的考查,一直是高考的重点内容之一.在高考试卷上,与函数相关的试题所占比例始终在右,且试题中既有灵活多变的客观性试题,又有一定能力要求的主观性试题.(,江苏卷8)若函数)1,0)((log ≠>+=a a b x y a 的图象过两点(-1,0)和(0,1),则(A )a =2,b=2 (B )a = 2 ,b=2 (C )a =2,b=1 (D )a = 2 ,b= 2(,江苏卷6)函数),1(,11ln +∞∈-+=x x x y 的反函数为 (A )),0(,11+∞∈+-=x e e y x x (B )),0(,11+∞∈-+=x e e y x x(C ))0,(,11-∞∈+-=x e e y x x (D ))0,(,11-∞∈-+=x e e y x x (,江苏卷11)设k>1,f(x)=k(x-1)(x ∈R ) . 在平面直角坐标系xOy 中,函数y=f(x)的图象与x 轴交于A 点,它的反函数y=f -1(x)的图象与y 轴交于B 点,并且这两个函数的图象交于P 点. 已知四边形OAPB 的面积是3,则k 等于(A )3 (B )32 (C )43 (D )65(,江苏卷9)已知方程0)2)(2(22=+-+-n x x m x x 的四个根组成一个首项为41的等差数列,则 |m -n|= (A )1 (B )43 (C )21 (D )83 (,江苏卷13)二次函数y=ax 2+bx+c(x ∈R )的部分对应值如下表:则不等式ax 2+bx+c>0的解集是_______________________.(,江苏卷4)设函数,1)(.0,,0,12)(021>⎪⎩⎪⎨⎧>≤-=-x f x x x x f x 若则x 0的取值范围是 (A )(-1,1) (B )(-1,+∞)(C )(-∞,-2)∪(0,+∞) (D )(-∞,-1)∪(1,+∞)(,江苏卷12)设函数)(1)(R x xx x f ∈+-=,区间M=[a ,b](a<b),集合N={M x x f y y ∈=),(},则使M=N 成立的实数对(a ,b)有(A )0个 (B )1个 (C )2个 (D )无数多个(,江苏卷1)如果函数a bx ax y ++=2的图象与x 轴有两个交点,则点(a ,b )在a Ob 平面上的区域(不包含边界)为(,江苏卷22)已知函数))((R x x f ∈满足下列条件:对任意的实数x 1,x 2都有 )]()()[()(λ2121221x f x f x x x x --≤- 和2121)()(x x x f x f -≤-,其中λ是大于0的常数.设实数a 0,a ,b 满足 0)(0=a f 和)(λa f a b -=(Ⅰ)证明1λ≤,并且不存在00a b ≠,使得0)(0=b f ;(Ⅱ)证明20220))(λ1()(a a a b --≤-;(Ⅲ)证明222)]()[λ1()]([a f b f -≤.(,江苏卷22) 设,0>a 如图,已知直线ax y l =:及曲线C :2x y =,C 上的点Q 1的横坐标为1a (a a <<10).从C 上的点Q n (n ≥1)作直线平行于x 轴,交直线l 于点1+n P ,再从点1+n P 作直线平行于y 轴,交曲线C 于点Q n+1. Q n (n=1,2,3,…)的横坐标构成数列{}.n a(Ⅰ)试求n n a a 与1+的关系,并求{}n a 的通项公式;(Ⅱ)当21,11≤=a a 时,证明∑=++<-n k k k k a a a 121321)(; (Ⅲ)当a =1时,证明∑-++<-n k k k k a a a 121.31)( 三、高考命题展望:(A)由于函数在高中数学中具有举足轻重的地位,它仍将是高考的一个热点.对函数试题的设计依然会围绕几个基本初等函数和函数的性质、图像、应用考查函数知识;与方程、不等式、解几等内容相结合,考查函数知识的综合应用;在函数知识考查的同时,加强对函数方程、分类讨论、数形结合、等价转化等数学思想方法的考查.1. 函数的奇偶性. 因为函数的奇偶性蕴涵着对称、变换、化归等丰富的数学知识和方法,今年考纲中新增加了“掌握判断一些简单函数的奇偶性的方法”这一考试要求,故而与函数的奇偶性有关的函数性质综合题应予以足够的关注.例1.设))((R x x f ∈为奇函数,).2()()2(,21)1(f x f x f f +=+=则=)5(f 0)(A 1)(B 25)(C 5)(D 例2.已知定义域为),0()0,(+∞⋃-∞的函数)(x f 是偶函数,并且在)0,(-∞上是增函数,若0)3(=-f ,则0)(<x f x 的解集是 )3,0()0,3)((⋃-A )3,0()3,)((⋃--∞B),3()3,)((+∞⋃--∞C ),3()0,3)((+∞⋃-D例3.函数)(x f 的定义域为,R 且)1(+x f 为奇函数,当1<x 时,.12)(2+-=x x x f 则当1>x 时,)(x f 的单调减区间为),45)[(+∞A ]45,1)((B ),47)[(+∞C ]47,1)((D 例4. 已知函数)(x f 是奇函数,当0≥x 时,13)(-=x x f ,设)(x f 的反函数是)(x g y =,则=-)8(g例5.如果函数3)()(a x x f +=对任意实数t ,都有)1()1(t f t f --=+,则=-+)2()2(f f2.复合函数. 函数试题的设计始终围绕着几个基本初等函数,并通过这几个函数之间的串联、组合成为复合函数,达到对函数知识、方法和思想的深刻考查.因而对复合函数类问题,要掌握换元、分解、整体代入等方法,找到其母函数,从而化归为基本初等函数问题加以解决.例6.若1()3912x x f x +=+-,要使1()f a -有意义,实数a 的取值范围是()A 57[,)4-+∞ ()B 57[,12)4- ()C (6,)-+∞ ()D (12,)-+∞ 例7.若函数)(x f y =的图象可由函数)1lg(+=x y 的图象绕坐标原点O 逆时针旋转2π得到,则=)(x f ()A 110--x ()B 110-x ()C x --101 ()D x 101-例8.已知1()f x x +=,a 、b 为两个不相等的正实数,则下列不等式正确的是(A)2()()2a b ab f f f a b +>>+ (B)2()()2a b ab f f f a b+>>+(C)2())()ab f f f ab a b >>+2()2ab a b f a b +>+((()2a b f f f ab +>> (D)2()()2ab a b f f f a b +>>+ 例9.已知⎩⎨⎧≥<-=,0,1,0,1)(x x x f 则不等式)2()2(+⋅++x f x x ≤5的解集是 .例10.已知函数()f x x x bx c =++,有下列命题:①0,0b c =>时,()0f x =只有一个实数根②0c =时,()y f x =是奇函数③()y f x =的图象关于点(0,)c 对称④方程()0f x =至多有3个实数根,则正确的命题的序号为3.抽象函数.抽象函数问题是近几年高考中函数类问题的一个新的热点,由于具体函数与抽象函数之间是特殊化与一般化的关系,因而抽象函数问题的解决方法更加灵活多样,既可以采用特殊化方法,又可以回归函数的各种性质,有利于考查学生的抽象思维能力,故而应引起我们的高度重视.例11.已知)(,11)11(22x f x x x x f 则+-=+-的解析式可取为(A )21x x + (B )212x x +- (C )212x x + (D )21x x +-例12. 若)(x f 和g(x)都是定义在实数集R 上的函数,且方程0)]([=-x g f x 有实数解,则)]([x f g 不可能...是 (A )512-+x x (B )512++x x (C )512-x (D )512+x 例13.给出四个函数,分别满足:①)()()(y f x f y x f +=+ ②)()()(y g x g y x g ⋅=+③)()()(y x y x ϕϕϕ+=⋅ ④ )()()(y x y x ψψψ⋅=⋅又给出四个函数的图像,则正确的匹配方案是(A )①-a ②-b③-c ④-d(B )①-b ②-c ③-a ④-d (C )①-c ②-a ③-b ④-d (D )①-d ②-a ③-b ④-c例14.已知()f x 的定义域为R ,若1()y f x a -=+与()y f x a =+互为反函数且()f a a = (a 为非零常数),则(2)f a =例15. 函数()y f x =的定义域为R ,对于任意实数α、β,有:()()2()()22f f f f αβαβαβ+-+=且1(),()0322f f ππ== (1)求证:()()()f x f x f x π-==--(2)若02x π≤<,()0f x >,证明:()f x 在[]0,π递减4.数学思想.数学思想能从整体上深层次认识数学的实质,对数学知识、数学方法的运用起到导向作用.对数学思想的教学在新授课和第一轮复习中通常处在“隐含、渗透”阶段,在第二轮复习中就应提升到“介绍、运用”阶段,应更加明确,更加系统,这是一个从模糊到清晰的质的飞跃。
第06讲函数与方程(5类核心考点精讲精练)1. 5年真题考点分布2. 命题规律及备考策略【命题规律】本节内容是新高考卷的命题载体内容,通常会结合其他知识点考查,需要掌握函数零点的定义,难度不定,分值为5-6分【备考策略】1.结合学过的函数图象,了解函数的零点与方程解的关系,会判断函数零点所在区间及零点个数2.结合具体连续函数及其图象的特点,了解函数零点存在定理3.了解用二分法求方程的近似解,能借助计算工具用二分法求方程近似解【命题预测】本节内容通常以函数为载体,考查函数零点,是新高考复习的重要内容1、函数的零点一般的,对于函数()y f x =,我们把方程()0f x =的实数根0x 叫作函数()y f x =的零点。
2、零点存在性定理如果函数()y f x =在区间[],a b 上的图象是连续不断的一条曲线,并且有()()0f a f b ×<,那么函数()y f x =在区间(),a b 内必有零点,即()0,x a b $Î,使得()00f x =注:零点存在性定理使用的前提是()f x 在区间[],a b 连续,如果()f x 是分段的,那么零点不一定存在3、函数单调性对零点个数的影响如果一个连续函数是单调函数,那么它的零点至多有一个。
因此分析一个函数零点的个数前,可尝试判断函数是否单调4、几个“不一定”与“一定”(假设()f x 在区间(),a b 连续)(1)若()()0f a f b ×<,则()f x “一定”存在零点,但“不一定”只有一个零点。
要分析()f x 的性质与图象,如果()f x 单调,则“一定”只有一个零点(2)若()()0f a f b ×>,则()f x “不一定”存在零点,也“不一定”没有零点。
如果()f x 单调,那么“一定”没有零点(3)如果()f x 在区间(),a b 中存在零点,则()()f a f b ×的符号是“不确定”的,受函数性质与图象影响。
高三数学专题复习(函数与方程练习题)(附参考答案)一、选择题1、定义域为R 的函数y =f (x)的值域为[a ,b ],则函数y =f (x +a )的值域为( ) A 、[2a ,a +b ] B 、[a ,b ] C 、[0,b -a ] D 、[-a ,a +b ]2、若y =f (x)的定义域为D ,且为单调函数,[a ,b ]D ,(a -b )·f (a)·f (b)>0,则下列命题正确为( ) A 、若f (x)=0,则x ∈(a ,b ) B 、若f (x)>0,则x ∉ (a ,b) C 、若x ∈(a ,b ),则f (x)=0 D 、若f (x)<0,则x ∉ (a ,b )3、设点P 为曲线y =x 3-3 x +32上的任意一点,P 点处切线倾斜角为α,则α的取值范围为( ) A 、[32π,π] B 、(2π,π) C 、[0,2π]∪(65π,π)D 、[0,2π]∪[32π,π)4、设函数f (x)是定义R 上的奇函数,若f (x)的最小正周期为3,且f (1)>1,f (2)=132+-m m ,则m 的取值范围为( )A 、m <32B 、m <32且m ≠-1C 、-1<m <32D 、m >32或m <-15、定义在R 上的函数f (x)在(-∞,2)上是增函数,且f (x +2)的图象关于x =0对称,则( )A 、f (-1)<f (3)B 、f (0)>f (3)C 、f (-1)=f (3)D 、f (0)=f (3)6、已知对一切x ∈R ,都有f (x)=f (2-x )且方程f (x)=0有5个不同的根,则这5个不同根的和为( ) A 、10 B 、15 C 、5 D 、无法确定7、函数y =log21 (x2+kx +2)的值域为R ,则k 的范围为( )A 、[22 ,+∞]B 、(-∞,-22)∪[22,+∞]C 、(-22,22)D 、(-∞,-22]8、设α、β依次是方程log 2x +x -3=0及2x +x -3=0的根,则α+β=( ) A 、3 B 、6 C 、log 23 D 、229、已知函数y =f (2x +1)是定义在R 上的偶函数,则函数y =f (2x)的图象的对称轴为( ) A 、x =1 B 、x =21 C 、x =-21D 、x =-1 10、已知y =f (x )是定义在R 上的奇函数,若g (x)为偶函数,且g (x)=f (x -1)g (2)=2008,则 f (2007)值等于( )A 、-2007B 、2008C 、2007D 、-2008 11、(理)对于R 上可导的任意函数f (x),若满足(x -1)·f '(x)≥0,则必有( ) A 、f (0) +f (2)<2f (1) B 、f (0)+f (2)≤2 f(1) C 、f (0)+f (2)≥2f (1) D 、f (0)+f (2)>2 f (1) 12、函数f (x )=⎩⎨⎧=≠-)2(1)2(|2|lg x x x 若关于x 的方程[f (x)]2+b ·f (x)+C =0,恰有3个不同的实数解x 1、x 2、x 3,则f (x 1+x 2+x 3)等于( )A 、0B 、lg2C 、lg4D 、1 13、已知f (x)=2+log 3 x ,x ∈[1,9],则函数y =[f (x)]2+f (x 2 )的最大值为( ) A 、3 B 、6 C 、13 D 、2214、已知f (x)=lgx ,则函数g (x)=|f (1-x)|的图象大致是( )15、下列函数的图象中,经过平移或翻折后不能与函数y =log 2x 的图象重合的是( )A 、y =2xB 、y =log 21xC 、y =24xD 、y =log 2x1+116、已知x 、y ∈[-4π,4π],a ∈R ,且x 3+sinx -2a =0,4y 3+sinxcosy +a =0,则cos(x +2y )的值为中( ) A 、0 B 、2 C 、3 D 、1 二、填空题 17、已知函数f (x)=22x+lg (x +12+x ),且f (-1)≈1.62,则f (1)近似值为 。
沪教版(上海)高中数学度高三数学二轮复习函数方程专题之函数与不等式② 教学目标 理解并充分掌握基本的函数与不等式题型之间的转换问题,即函数题型用不等式来解,不等式题型用函数来做的思想.知识梳理函数与不等式(方程)是相互联系的,在一定条件下,他们可以相互转化,例如解方程()0f x =就是求函数的零点,解不等式()()f x g x >,就是当两个函数的函数值的大小关系确定后,求自变量的取值范围。
正确理解函数与不等式(方程)的这种对立统一关系,有利于提高综合运用知识分析问题和解决问题的能力.典例精讲例1.(★★★)已知函数()24f x mx =+,若在[2,1]-上存在唯一零点,则实数m 的取值范围是___________.解:由题意得:(2)(1)0f f -⋅≤,即(,2][1,)m ∈-∞-+∞例2.(★★★)函数3()log (3)1f x x =+-的图像恒过定点A ,若点A 在直线10mx ny ++=上,其中0mn >,则12m n+的最小值为___________. 解:由题意得点A 的坐标为(2,1)--,代入直线方程得:21m n +=.∴121244()(2)2244248n m n m m n m n m n m n m n +=++=+++=++≥+=,当且仅当4n m m n=.即1412m n ⎧=⎪⎪⎨⎪=⎪⎩时等号成立. 例3.(★★★)已知2()221f x x mx m =+++.(1)若函数有两个零点,且其中一个在区间(1,0)-,另一个在区间(1,2)内,求m 的取值范围(2)若函数的两个零点均在区间(0,1)内,求m 的取值范围.解:(1)(1)0122101(0)0210512(,)5(1)012210626(2)044210f m m m f m m f m m m f m m ->-++>⎧⎧⎧<-⎪⎪⎪<+<⎪⎪⎪⇒⇒⇒∈--⎨⎨⎨<+++<⎪⎪⎪>-⎪⎪⎪⎩>+++>⎩⎩. (2)221(22)1,2(1)x m x x m x --+=--=+.令1,(1,2)t x t =+∈. 所以221(1)11221212(2)()12222t t t m t t t t t t----+-=⋅=⋅=--+=-++. 所以212(1),222(1)3,122t m m m t +=--≤--<-<≤-. 课堂检测1.(★★)使2log ()1x x -<+成立的x 的取值范围是___________.解:结合函数图象可知:(1,0)x ∈-2.(★★★)设函数2()|45|f x x x =--,若在区间[1,5]-上,3y kx k =+的图像位于函数()f x 图像的上方,则实数k 的取值范围是___________.解:由题意得:2345kx k x x +>-++在区间[1,5]-上恒成立. 即:2453x x k x -++>+在区间[1,5]-上恒成立, 由2453x x x -+++在[1,5]-上的最大值为2,得出2k >. 3.(★★★)三位同学合作学习,对问题“已知不等式222xy ax y ≤+,对于[1,2],[2,3]x y ∈∈恒成立,求a 的取值范围”提出了各自的解题思路.甲说:“可视x 为变量,y 为常量来分析” .乙说:“寻找x 与y 的关系,再作分析”.丙说:“把字母a 单独放在一边,再作分析”.参考上述思路,或自己的其他解法,可求出实数a 的取值范围是___________.解:原式⇔ 22()y y a x x≥-在[1,2],[2,3]x y ∈∈上恒成立, 令[1,3]y t x=∈,则函数22t t -在[1,3]的最大值为1-,则1a ≥-. 4.(★★★★)已知二次函数2()f x ax bx c =++和一次函数()g x bx =-,其中,,a b c 满足a b c >>,0(,,)a b c a b c R ++=∈.(1)求证:两函数的图像交于不同的两点A 、B ;(2)求线段AB 在x 轴上的射影11A B 的长的取值范围.解:(1)222220444()y ax bx c ax bx c b ac b ac y bx⎧=++⇒++=⇒∆=-⇒∆=-⎨=-⎩. 因为a b c >>且0a b c ++=,所以0a >且0c <,20b ac ->,即0∆>.所以两函数图像有两个交点. (2)22221124()()13||221()2()24b ac a c ac c c c A B a a a a -+-===++=++ 因为0()()a b c b a c a a c c ++=⇒=-+⇒>-+>, 所以1(2,)2c a ∈--.故11||(3,23)A B ∈. 回顾总结1.在写不等式解集的时候一定要注意答案要写__________集合或区间形式.。
小题专练·作业(十五) 函数与方程、函数的实际应用1.已知函数f (x )=⎩⎪⎨⎪⎧2x-1,x ≤1,1+log 2x ,x >1,则函数f (x )的零点为( )A .12,0 B .-2,0 C .12D .0解析 当x ≤1时,由f (x )=2x-1=0,解得x =0;当x >1时,由f (x )=1+log 2x =0,解得x =12,因为x >1,所以此时方程无解。
综上函数f (x )的零点只有0。
故选D 。
答案 D2.函数f (x )=2x +ln 1x -1的零点所在的大致区间是( )A .(1,2)B .(2,3)C .(3,4)D .(1,2)与(2,3)解析 f (x )=2x +ln 1x -1=2x -ln(x -1),当1<x <2时,ln(x -1)<0,2x >0,所以f (x )>0,故函数f (x )在(1,2)上没有零点。
f (2)=1-ln1=1>0,f (3)=23-ln2=2-3ln23=2-ln83。
因为8=22≈2.828>e,所以8>e 2,即ln8>2,所以f (3)<0。
又f (4)=12-ln3<0,所以f (x )在(2,3)内存在一个零点。
故选B 。
答案 B3.若函数f (x )=m +log 2x (x ≥1)存在零点,则实数m 的取值范围是( ) A .(-∞,0] B .[0,+∞) C .(-∞,0)D .(0,+∞)解析 因为函数f (x )=m +log 2x (x ≥1)存在零点,所以m +log 2x =0在x ≥1时有解,所以m =-log 2x ≤-log 21=0。
故选A 。
答案 A4.函数f (x )=⎩⎪⎨⎪⎧3×2x-24,0≤x ≤10,-2x -5+126,10<x ≤20的零点不行能在的区间为( ) A .(1,4) B .(3,7) C .(8,13)D .(11,18)解析 当0≤x ≤10时,f (x )单调递增,又f (3)=0,所以当0≤x ≤10时,f (x )有唯一零点x =3。
2022高考数学二轮复习讲义专题一 第2讲 基本初等函数、函数与方程【要点提炼】考点一 基本初等函数的图象与性质1.指数函数y =a x(a>0,a ≠1)与对数函数y =log a x(a>0,a ≠1)互为反函数,其图象关于y =x 对称,它们的图象和性质分0<a<1,a>1两种情况,着重关注两函数图象的异同. 2.幂函数y =x α的图象和性质,主要掌握α=1,2,3,12,-1五种情况.【热点突破】【典例】1 (1)已知f(x)=2x-1,g(x)=1-x 2,规定:当|f(x)|≥g(x)时,h(x)=|f(x)|;当|f(x)|<g(x)时,h(x)=-g(x),则h(x)( ) A .有最小值-1,最大值1 B .有最大值1,无最小值 C .有最小值-1,无最大值 D .有最大值-1,无最小值(2)已知函数f(x)=e x+2(x<0)与g(x)=ln(x +a)+2的图象上存在关于y 轴对称的点,则a 的取值范围是( ) A.⎝⎛⎭⎪⎫-∞,1eB .(-∞,e)C.⎝ ⎛⎭⎪⎫-1e ,eD.⎝⎛⎭⎪⎫-e ,1e 【拓展训练】1 (1)函数f(x)=ln(x 2+2)-e x -1的大致图象可能是( )(2)已知函数f(x)是定义在R 上的奇函数,当x>0时,f(x)=1-2-x,则不等式f(x)<-12的解集是( ) A .(-∞,-1) B .(-∞,-1] C .(1,+∞)D .[1,+∞)【要点提炼】考点二 函数的零点 判断函数零点个数的方法: (1)利用零点存在性定理判断法. (2)代数法:求方程f(x)=0的实数根.(3)几何法:对于不易求根的方程,将它与函数y =f(x)的图象联系起来,利用函数的性质找出零点或利用两个函数图象的交点求解.在利用函数性质时,可用求导的方法判断函数的单调性.考向1 函数零点的判断【典例】2 (1)(2020·长沙调研)已知函数f(x)=⎩⎪⎨⎪⎧xe x,x ≤0,2-|x -1|,x>0,若函数g(x)=f(x)-m 有两个不同的零点x 1,x 2,则x 1+x 2等于( )A .2B .2或2+1eC .2或3D .2或3或2+1e(2)设函数f(x)是定义在R 上的偶函数,且对任意的x ∈R ,都有f(x +2)=f(2-x),当x ∈[-2,0]时,f(x)=⎝ ⎛⎭⎪⎫22x-1,则关于x 的方程f(x)-log 8(x +2)=0在区间(-2,6)上根的个数为( )A .1B .2C .3D .4【特点突破】考向2 求参数的值或取值范围 【典例】3 (1)已知关于x 的方程9-|x -2|-4·3-|x -2|-a =0有实数根,则实数a 的取值范围是________.(2)已知函数f(x)=⎩⎪⎨⎪⎧x +3,x>a ,x 2+6x +3,x ≤a ,若函数g(x)=f(x)-2x 恰有2个不同的零点,则实数a 的取值范围为____________________.【拓展训练】2 (1)已知偶函数y =f(x)(x ∈R )满足f(x)=x 2-3x(x ≥0),若函数g(x)=⎩⎪⎨⎪⎧log 2x ,x>0,-1x,x<0,则y =f(x)-g(x)的零点个数为( )A .1B .3C .2D .4(2)(多选)已知函数f(x)=⎩⎪⎨⎪⎧x +2a ,x<0,x 2-ax ,x ≥0,若关于x 的方程f(f(x))=0有8个不同的实根,则a 的值可能为( ) A .-6 B .8 C .9 D .12专题训练一、单项选择题1.(2020·全国Ⅰ)设alog 34=2,则4-a等于( )A.116B.19C.18D.162.函数f(x)=ln x +2x -6的零点一定位于区间( ) A .(1,2) B .(2,3) C .(3,4) D .(4,5)3.在同一直角坐标系中,函数f(x)=2-ax 和g(x)=log a (x +2)(a>0且a ≠1)的大致图象可能为( )4.(2020·广东省揭阳三中模拟)已知a ,b ,c 满足4a =6,b =12log 4,c 3=35,则( )A .a<b<cB .b<c<aC .c<a<bD .c<b<a5.(2020·全国Ⅲ)Logistic 模型是常用数学模型之一,可应用于流行病学领城.有学者根据公布数据建立了某地区新冠肺炎累计确诊病典例数I(t)(t 的单位:天)的Logistic 模型:I(t)=K1+e-0.23t -53,其中K 为最大确诊病典例数.当I(t *)=0.95K 时,标志着已初步遏制疫情,则t *约为(ln 19≈3)( ) A .60 B .63 C .66 D .696.(2020·泉州模拟)若函数y =log a (x 2-ax +1)有最小值,则a 的取值范围是( )A .1<a<2B .0<a<2,a ≠1C .0<a<1D .a ≥27.(2020·太原质检)已知函数f(x)=⎩⎪⎨⎪⎧e x,x>0,-2x 2+4x +1,x ≤0(e 为自然对数的底数),若函数g(x)=f(x)+kx 恰好有两个零点,则实数k 等于( ) A .-2e B .e C .-e D .2e 8.已知函数f(x)=⎩⎪⎨⎪⎧a ,x =0,⎝ ⎛⎭⎪⎫1e |x|+1,x ≠0,若关于x 的方程2f 2(x)-(2a +3)f(x)+3a =0有五个不同的解,则a 的取值范围是( )A .(1,2)B.⎣⎢⎡⎭⎪⎫32,2C.⎝ ⎛⎭⎪⎫1,32 D.⎝ ⎛⎭⎪⎫1,32∪⎝ ⎛⎭⎪⎫32,2 二、多项选择题9.(2020·临沂模拟)若10a =4,10b=25,则( ) A .a +b =2 B .b -a =1 C .ab>8lg 22D .b -a>lg 610.已知函数f(x)=log a (x +1),g(x)=log a (1-x),a>0,a ≠1,则( ) A .函数f(x)+g(x)的定义域为(-1,1) B .函数f(x)+g(x)的图象关于y 轴对称 C .函数f(x)+g(x)在定义域上有最小值0 D .函数f(x)-g(x)在区间(0,1)上是减函数11.(2020·淄博模拟)已知函数y =f(x)是R 上的奇函数,对于任意x ∈R ,都有f(x +4)=f(x)+f(2)成立.当x ∈[0,2)时,f(x)=2x-1.给出下列结论,其中正确的是( )A .f(2)=0B .点(4,0)是函数y =f(x)图象的一个对称中心C .函数y =f(x)在区间[-6,-2]上单调递增D .函数y =f(x)在区间[-6,6]上有3个零点 12.对于函数f(x)=⎩⎪⎨⎪⎧sin πx ,x ∈[0,2],12f x -2,x ∈2,+∞,则下列结论正确的是( )A .任取x 1,x 2∈[2,+∞),都有|f(x 1)-f(x 2)|≤1B .函数y =f(x)在[4,5]上单调递增C .函数y =f(x)-ln(x -1)有3个零点D .若关于x 的方程f(x)=m(m<0)恰有3个不同的实根x 1,x 2,x 3,则x 1+x 2+x 3=132三、填空题13.(2019·全国Ⅱ)已知f(x)是奇函数,且当x<0时,f(x)=-e ax.若f(ln 2)=8,则a =________.14.已知函数f(x)=|lg x|,若f(a)=f(b)(a ≠b),则函数g(x)=⎩⎪⎨⎪⎧x 2+22x +5,x ≤0,ax 2+2bx,x>0的最小值为________.15.定义在R 上的奇函数f(x),当x ≥0时,f(x)=⎩⎪⎨⎪⎧-2x x +1,x ∈[0,1,1-|x -3|,x ∈[1,+∞,则函数F(x)=f(x)-1π的所有零点之和为________.16.对于函数f(x)与g(x),若存在λ∈{x ∈R |f(x)=0},μ∈{x ∈R |g(x)=0},使得|λ-μ|≤1,则称函数f(x)与g(x)互为“零点密切函数”,现已知函数f(x)=ex -2+x -3与g(x)=x 2-ax -x +4互为“零点密切函数”,则实数a 的取值范围是________.。
高考数学必考点专项第6练函数与方程习题精选一、单选题1. 函数2()=2+log ||x f x x 的零点个数为( ) A. 0 B. 1 C. 2 D. 32. 已知函数若()g x 存在2个零点,则a的取值范围是( )A. [1,)-+∞B. [0,)+∞C. [1,0)-D. [1,)+∞3. 若过点(,)a b 可以作曲线x y e =的两条切线,则( ) A. b e a <B. a e b <C. 0b a e <<D. 0a b e <<4. 已知()f x 是定义在R 上的奇函数,且满足,当时,,则函数在区间上所有零点个数为( )A. 0B. 2C. 4D. 65. 已知函数2()()x f x e ax x R =-∈有三个不同的零点,则实数a 的取值范围是( )A.B.C.D.6. 设a ,b R ∈,函数若函数()y f x ax b =--恰有3个零点,则( )[6,6]-A. 1a <-,0b <B. 1a <-,0b >C. 1a >-,0b <D. 1a >-,0b > 7. 已知函数的零点为,函数()f x 的最小值为0y ,且则函数的零点个数是( )A. 3B. 4C. 3或4D. 2或38. 已知函数,若函数()()g x x f x a =⋅-的零点个数恰为2个,则( )A.2837a <<或1a =- B. 7382a <<C.7382a <<或1a =- D. 7382a <<或54a =-9. 已知函数2,0()ln ,0kx x f x x x +⎧=⎨->⎩,则下列关于[()]2y f f x =-的零点个数判别正确的是( )A. 当0k =时,有无数个零点B. 当0k <时,有3个零点C. 当0k >时,有3个零点D. 无论k 取何值,都有4个零点二、多选题10. 若关于x 的方程23--=02x x k 在(1,1)-上有实根,则( )A. k 的最大值为52B. k 的最小值为916-C. 95[-,)162k ∈D. 95(,]162k ∈-11. 已知函数,().g x kx =若方程()()f x g x =有实根,则实数k的取值可以是( )012[,),y x x ∈A.12B. 1-C. 1D. (2,+)∞上的任意一个数12. 已知定义域为R 的奇函数()f x ,当0x >时,21,01()1,121x x x f x x x ⎧-+<⎪=⎨>⎪-⎩,下列说法中正确的是( )A. 当121122x x -<<<时,恒有12()()f x f x >B. 若当(0,]x m ∈时,()f x 的最小值为34,则m 的取值范围为17[,]26C. 不存在实数k ,使函数()()F x f x kx =-有5个不相等的零点D. 若关于x 的方程3[()][()]04f x f x a --=所有实数根之和为0,则34a =-13. 已知函数,若方程()0f x a -=有两个不相等的实根,则实数a 的取值范围可以是( )A.B.C.D.14. 已知函数,则方程22()2()10f x f x a -+-=的根的个数可能为( )A. 2B. 6C. 5D. 4三、填空题15. 用二分法求函数()=34x f x x --的一个零点,其参考数据如下:(2,)+∞根据此数据,可得方程34=0x --的一个近似解(精确度0.01)为__________.16. 方程103x e x =-的解(,1),x k k k Z ∈+∈,则k =__________. 17. 已知()|lg |2f x x kx =--,给出下列四个结论:(1)若0k =,则()f x 有两个零点; (2)0k ∃<,使得()f x 有一个零点;(3)0k ∃<,使得()f x 有三个零点;(4)0k ∃>,使得()f x 有三个零点;以上正确结论的序号是__________. 四、解答题18. 已知二次函数2()2(,).f x x bx c b c R =++∈(1)若函数()y f x =的零点为1-和1,求实数b ,c 的值;(2)若()f x 满足(1)0f =,且关于x 的方程()0f x x b ++=的两个实数根分别在区间(3,2)--,(0,1)内,求实数b 的取值范围.19. 已知函数2()22(0)f x ax ax b a=-++>在区间[2,0]-上有最小值1,最大值9.(1)求a b+的值;(2)设()()f xg xx=,若不等式在区间[2,4]上恒成立,求实数k的取值范围;(3)设,若函数()F x有三个零点,求实数λ的取值范围.答案和解析1.【答案】C .【解答】解:函数2()2log ||xf x x =+的零点个数,即为函数2xy =-的图象和函数2log ||y x =的图象的交点个数,作出函数的图象如下:数形结合可得,函数2xy =-的图象和函数2log ||y x =的图象的交点个数为2. 故选.C2.【答案】A解:函数()()g x f x x a =++存在2个零点, 即关于x 的方程()f x x a =--有2个不同的实根, 即函数()f x 的图象与直线y x a =--有2个交点. 作出直线y x a =--与函数()f x 的图象,如图所示,由图可知,1a -,解得1a -, 故选.A3.【答案】D解:函数xy e =是增函数,0xy e '=>恒成立, 函数的图象如图,0y >,即取得坐标在x 轴上方,如果(,)a b 在x 轴下方,连线的斜率小于0,不成立.点(,)a b 在x 轴或下方时,只有一条切线. 如果(,)a b 在曲线上,只有一条切线;(,)a b 在曲线上侧,没有切线;由图象可知(,)a b 在图象的下方,并且在x 轴上方时,有两条切线,可知0.a b e <<故选:.D4.【答案】D解:由,得,故,故函数是周期为4的周期函数.又因为()f x 是定义在R 上的奇函数,所以,所以,故1x =是函数()f x 的对称轴.当时,,由此画出()f x 的大致图象如下图所示,令()()10g x xf x =-=,注意到(0)0g ≠,故上述方程可化为,画出1y x=的图象, 由图可知与1y x=图象都关于点(0,0)对称,它们两个函数图象的6个交点A 与F ,B 与E ,C 与D , 所以函数在区间[6,6]-上所有零点个数为6.故选.D5.【答案】C解:0x =时,(0)10f =≠,令2()0xf x e ax =-=,得2xe a x=,令2()x e g x x =,则问题转化为y a =与2()xe g x x=有三个交点,3(2)()xx e g x x -'=,令()0g x '=,解得2x =,()f x∴当0x <或2x >时,()0g x '>,()g x 在(,0)-∞,(2,)+∞单调递增,当02x <<时,()0g x '<,()g x 在(0,2)单调递减,()g x 在2x =处取极小值,2(2)4e g =,作出()g x 的图象如下:要使直线y a =与曲线2()x e g x x =有三个交点,则24e a >,故实数a 的取值范围是2e (,).4+∞故选.C6.【答案】C解:当0x <时,()(1)0y f x ax b x ax b a x b =--=--=--=,()y f x ax b =--最多一个零点;当0x 时,3211()(1)32y f x ax b x a x ax ax b =--=-++-- 3211(1)32x a x b =-+-, 2(1)y x a x '=-+,当10a +,即1a -时,0y ',()y f x ax b =--在[0,)+∞上递增,()y f x ax b=--最多一个零点,不合题意; 当10a +>,即1a >-时,令0y '>得[1,),x a ∈++∞函数递增,令0y '<得[0,1),x a ∈+函数递减,函数最多有2个零点; 根据题意函数()y f x ax b =--恰有3个零点,所以函数()y f x ax b =--在(,0)-∞上有一个零点,在[0,)+∞上有2个零点, 如右图:01ba∴<-且,解得0b <,10a ->,31(1)6b a >-+,31(1)06a b ∴-+<<,11a -<<,故选:.C7.【答案】D解:如图所示,函数2()(0)f x ax bx c a =++>的零点为1x ,212()x x x <,令2()0f x ax bx c =++=, 240.b ac ∴∆=->由2(())()()0f f x af x bf x c =++=,0∆>,1()f x x ∴=或2().f x x =函数()f x 的最小值为0y ,且012[,),y x x ∈画出直线2y x =,1.y x =则直线2.y x =与()y f x =必有两个交点,此时2().f x x =有2个实数根,即函数(())y f f x =有两个零点.直线1y x =与()y f x =可能有一个交点或无交点,此时1()f x x =有一个实数根2b x a=-或无实数根. 综上可知:函数(())y f f x =的零点有2个或3个.故选.D8.【答案】D解:如图,可得()f x 的图象.令()0g x =,当0x =时,不符合题意;当0x ≠时,令()0g x =,得()a f x x =, ()g x 零点个数为2个,则函数()f x 与a y x =有两个交点. 易知0a =不符合题意.若0a >,则满足,可得73;82a << 若0a <,因左支已交于一点,则右支必然只能交于一点,故,此时无解;或,解得54a =- 综上,a 的取值范围内为7382a <<或5.4a =- 故选.D9.【答案】A解:设()f x t =,对于A ,当0k =时,函数()f x 对应的图象如下图:当0t 时,由()2f t =得22=此时方程恒成立了,即[()]2y f f x =-有无数个零点,故A 正确,D 错误.对于B ,当0k <时,对应的图象如下图:当0t >时,由()2f t =,此时ln 2t -=,得2(0,1)t e -=∈,当0t 时,由()2f t =得0t =,由2()(0,1)t f x e -==∈,此时x 有一个解,由()0t f x ==,此时x 有一个解,综上[()]2y f f x =-的零点个数为2个,故B 错误, C .当0k >时,对应的图象如下图:当0t >时,由()2f t =,此时ln 2t -=,得2(0,1)t e -=∈,当0t 时,由()2f t =得0t =,由2()(0,1)t f x e -==∈,此时x 有2个解,由()0t f x ==,此时x 有2个解,综上[()]2y f f x =-的零点个数为4个,故C 错误,故选.A10.【答案】BC 解:22339()2416k x x x =-=--,(1,1)x ∈-, 函数239()416y x =--的图象开口向上,对称轴为34x =, 当34x =时,min 916y =-,当1x =-时,max 52y =, (1,1)x ∈-,95[,).162k ∴∈- 故选.BC11.【答案】ACD解:由题意,可得函数()f x 的图象和函数()g x 的图象有交点,如图所示:(2,1)A ,12OA k =, ∴函数()f x 的图象和函数()g x 的图象有交点,数形结合可得12k或1k <-, 故选.ACD12.【答案】BC解:根据定义域为R 的奇函数()f x ,当0x >时,21,01()1,121x x x f x x x ⎧-+<⎪=⎨>⎪-⎩, 如图所示:对于A :当121122x x -<<<时,根据函数的图象12()()f x f x >不一定成立,故A 错误; 对于B :当(0,]x m ∈时,要使()f x 的最小值为34,令13214x =-,解得76x =,故m 的取值范围为17[,]26,故B 正确;对于C :令()f x kx =,故21x x kx -+=,整理得2(1)10x k x -++=,由于2(1)40k =+->,解得1k >,或3(k <-舍)若0k <,则当(0,1]x ∈时,0()()0y kx f x F x =<<⇒>,故3k <-舍去.又当1k >时,设1x 是方程()0F x =的较大根11x =>= 故1k >也不合题意.考虑y kx =与21y x x =-+有一个交点与121y x =-也有一个交点的情况, 因为y kx =与21y x x =-+有一个交点,故22(1)4230k k k ∆=+-=+-=,解得1k =或3(k =-舍)又当(0,)x ∈+∞时,y x =与121y x =-只有一个交点(1,1),与y x =和21y x x =-+的交点重合综上所述不存在实数k ,使得()F x 有5个不相等的零点, C 正确;对于D :3()04f x -=,解得112x =,276x =,所以1253x x +=, 令53x =-,则553()()337f f -=-=- 由于当23133[1,0),()()4247x f x x ∈-=---<-<-故37a =-也满足题意,D 不正确。
第七节 函数与方程考点 函数的零点与方程的根1.(2015·山东,10)设函数f (x )=⎩⎪⎨⎪⎧3x -1,x <1,2x ,x ≥1,则满足f (f (a ))=2f (a )的a 取值范围是( )A.⎣⎢⎡⎦⎥⎤23,1B .[0,1] C.⎣⎢⎡⎭⎪⎫23,+∞D .[1, +∞)解析 当a =2时,f (a )=f (2)=22=4>1,f (f (a ))=2f (a ),∴a =2满足题意,排除A ,B选项;当a =23时,f (a )=f ⎝ ⎛⎭⎪⎫23=3×23-1=1,f (f (a ))=2f (a ),∴a =23满足题意,排除D选项,故答案为C. 答案 C2.(2015·天津,8)已知函数f (x )=⎩⎪⎨⎪⎧2-|x |,x ≤2,(x -2)2,x >2,函数g (x )=b -f (2-x ),其中b ∈R ,若函数y =f (x )-g (x )恰有4个零点,则b 的取值范围是( )A.⎝ ⎛⎭⎪⎫74,+∞B.⎝⎛⎭⎪⎫-∞,74C.⎝ ⎛⎭⎪⎫0,74D.⎝ ⎛⎭⎪⎫74,2解析 记h (x )=-f (2-x )在同一坐标系中作出f (x )与h (x )的图象如图,直线AB :y =x -4,当直线l ∥AB 且与f (x )的图象相切时,由⎩⎪⎨⎪⎧y =x +b ′,y =(x -2)2,解得b ′=-94,-94-(-4)=74,所以曲线h (x )向上平移74个单位后,所得图象与f (x )的图象有四个公共点,平移2个单位后,两图象有无数个公共点,因此,当74<b <2时,f (x )与g (x )的图象有四个不同的交点,即y =f (x )-g (x )恰有4个零点.选D. 答案 D3.(2014·湖南,10)已知函数f (x )=x 2+e x -12(x <0)与g (x )=x 2+ln(x +a )的图象上存在关于y 轴对称的点,则a 的取值范围是( ) A.⎝⎛⎭⎪⎫-∞,1e B.()-∞,eC.⎝ ⎛⎭⎪⎫-1e ,eD.⎝⎛⎭⎪⎫-e ,1e解析 由题意可得,当x >0时,y =f (-x )与y =g (x )的图象有交点,即g (x )=f (-x )有正解,即x 2+ln(x +a )=(-x )2+e -x -12有正解,即e -x -ln(x +a )-12=0有正解,令F (x )=e -x -ln(x +a )-12,则F ′(x )=-e -x-1x +a<0,故函数F (x )=e -x-ln(x +a )-12在(0,+∞)上是单调递减的,要使方程g (x )=f (-x )有正解,则存在正数x 使得F (x )≥0,即e -x-ln(x +a )-12≥0,所以a ≤e e -x -12-x ,又y =ee -x -12-x 在(0,+∞)上单调递减,所以a <e e -0-12-0=e 12,选B.答案 B4.(2013·重庆,6)若a <b <c ,则函数f (x )=(x -a )·(x -b )+(x -b )(x -c )+(x -c )(x -a )的两个零点分别位于区间( ) A .(a ,b )和(b ,c )内 B .(-∞,a )和(a ,b )内 C .(b ,c )和(c ,+∞)内D .(-∞,a )和(c ,+∞)内解析 由题意a <b <c ,可得f (a )=(a -b )(a -c )>0,f (b )=(b -c )(b -a )<0,f (c )=(c -a )(c -b )>0.显然f (a )·f (b )<0,f (b )·f (c )<0,所以该函数在(a ,b )和(b ,c )上均有零点,故选A. 答案 A5.(2012·天津,4)函数f (x )=2x+x 3-2在区间(0,1)内的零点个数是( ) A .0 B .1C .2D .3解析令f (x )=0,即2x +x 3-2=0,则2x -2=-x 3.在同一坐标系中分别画出y =2x-2和y =-x 3的图象,由图可知两个图象在区间(0,1)内只有一个交点,∴函数f (x )=2x +x 3-2在区间(0,1)内有一个零点,故选B. 答案 B6.(2015·湖南,15)已知函数f (x )=⎩⎪⎨⎪⎧x 3,x ≤a ,x 2,x >a ,若存在实数b ,使函数g (x )=f (x )-b 有两个零点,则a 的取值范围是________.解析 若0≤a ≤1时,函数f (x )=⎩⎪⎨⎪⎧x 3(x ≤a ),x 2 (x >a )在R 上递增,若a >1或a <0时,由图象知y =f (x )-b 存在b 使之有两个零点,故a ∈(-∞,0)∪(1,+∞). 答案 (-∞,0)∪(1,+∞)7.(2015·安徽,15)设x 3+ax +b =0,其中a ,b 均为实数,下列条件中,使得该三次方程仅有一个实根的是________(写出所有正确条件的编号).①a =-3,b =-3;②a =-3,b =2;③a =-3,b >2;④a =0,b =2;⑤a =1,b =2. 解析 令f (x )=x 3+ax +b ,f ′(x )=3x 2+a ,当a ≥0时,f ′(x )≥0,f (x )单调递增,必有一个实根,④⑤正确;当a <0时,由于选项当中a =-3,∴只考虑a =-3这一种情况,f ′(x )=3x 2-3=3(x +1)(x -1),∴f (x )极大=f (-1)=-1+3+b =b +2,f (x )极小=f (1)=1-3+b =b -2,要有一根,f (x )极大<0或f (x )极小>0,∴b <-2或b >2,①③正确,所有正确条件为①③④⑤. 答案 ①③④⑤8.(2015·江苏,13)已知函数f (x )=|ln x |,g (x )=⎩⎪⎨⎪⎧0,0<x ≤1,|x 2-4|-2,x >1,则方程|f (x )+g (x )|=1实根的个数为________.解析 令h (x )=f (x )+g (x ),则h (x )=⎩⎪⎨⎪⎧-ln x ,0<x ≤1,-x 2+ln x +2,1<x <2,x 2+ln x -6,x ≥2,当1<x <2时,h ′(x )=-2x +1x =1-2x2x<0,故当1<x <2时h (x )单调递减,在同一坐标系中画出y =|h (x )|和y =1的图象如图所示.由图象可知|f (x )+g (x )|=1的实根个数为4. 答案 49.(2015·北京,14)设函数f (x )=⎩⎪⎨⎪⎧2x-a ,x <1,4(x -a )(x -2a ),x ≥1.(1)若a =1,则f (x )的最小值为________;(2)若f (x )恰有2个零点,则实数a 的取值范围是________. 解析 (1)当a =1时,f (x )=⎩⎪⎨⎪⎧2x-1,x <1,4(x -1)(x -2),x ≥1.当x <1时,2x-1>-1. 当x ≥1时,且当x =32时,f (x )min =f ⎝ ⎛⎭⎪⎫32=-1,∴f (x )最小值为-1. (2)1°当a ≤0时,2x-a >0,由4(x -a )(x -2a )=0得x =a 或x =2a .a ∉[1,+∞), 2a ∉[1,+∞), ∴此时f (x )无零点.2°当0<a <1时,若有2个零点,只须⎩⎪⎨⎪⎧a <1,2a ≥1,∴12≤a <1.3°当1≤a <2时,x <1,2x=a ,x =log 2a ∈[0,1),x ≥1时,由f (x )=0,得x =a 或2a ,a ∈[1,+∞).2a ∈[1,+∞),有3个零点,不合题意. 4°当a ≥2时,x <1,则2x-a <0,x ≥1时,由f (x )=0,得x =a 或2a ,a ,2a ∈[1,+∞),此时恰有2个零点,综上12≤a <1或a ≥2.答案 (1)-1 (2)⎣⎢⎡⎭⎪⎫12,1∪[2,+∞) 10.(2013·陕西,21)已知函数f (x )=e x,x ∈R .(1)若直线y =kx +1与f (x )的反函数的图象相切,求实数k 的值; (2)设x >0,讨论曲线y =f (x )与曲线y =mx 2(m >0)公共点的个数; (3)设a <b ,比较f (a )+f (b )2与f (b )-f (a )b -a的大小,并说明理由.解 (1)f (x )的反函数为g (x )=ln x .设直线y =kx +1与g (x )=ln x 的图象在P (x 0,y 0)处相切,则有y 0=kx 0+1=ln x 0,k =g ′(x 0)=1x 0,解得x 0=e 2,k =1e 2.(2)曲线y =e x与y =mx 2的公共点个数等于曲线y =exx2与y =m 的公共点个数.令φ(x )=e x x 2,则φ′(x )=e x(x -2)x3, ∴φ′(2)=0.当x ∈(0,2)时,φ′(x )<0,φ(x )在(0,2)上单调递减;当x ∈(2,+∞)时,φ′(x )>0,φ(x )在(2,+∞)上单调递增,∴φ(x )在(0,+∞)上的最小值为φ(2)=e 24.当0<m <e 24时,曲线y =exx 2与y =m 无公共点;当m =e 24时,曲线y =exx2与y =m 恰有一个公共点;当m >e 24时,在区间(0,2)内存在x 1=1m ,使得φ(x 1)>m ,在(2,+∞)内存在x 2=m e 2,使得φ(x 2)>m (通过证明φ(x 2)=e x 2x 22>x 2即可).由φ(x )的单调性知,曲线y =exx2与y =m 在(0,+∞)上恰有两个公共点.综上所述,当x >0时,若0<m <e 24,曲线y =f (x )与y =mx 2没有公共点;若m =e 24,曲线y =f (x )与y =mx 2有一个公共点;若m >e 24,曲线y =f (x )与y =mx 2有两个公共点.(3)可以证明f (a )+f (b )2>f (b )-f (a )b -a.事实上,f (a )+f (b )2>f (b )-f (a )b -a ⇔e a +e b 2>e b -e a b -a ⇔b -a 2>e b -e a e b +e a ⇔b -a2>1-2e ae b +e a ⇔b -a 2>1-2e b -a +1(b >a ).(*) 令φ(x )=x 2+2e x +1-1(x ≥0),则φ′(x )=12-2e x (e x +1)2=(e x +1)2-4ex2(e x +1)2=(e x-1)22(e x +1)2≥0(当且仅当x =0时等号成立), ∴φ(x )在[0,+∞)上单调递增, ∴x >0时,φ(x )>φ(0)=0. 令x =b -a ,即得(*)式,结论得证.。
考点05 函数与方程一、考纲要求1、了解二次函数的零点与相对应的一元二次方程的根的联系·2、了解二分法求方程近似解的过程·3、会用函数的图像理解和研究函数的性质·4、掌握数形结合的思想,以及能运用数形结合解决一些函数问题。
二、近五年高考分析函数与方程的思想是数学的四大思想之一,也体现了数形结合的思想,是近几年江苏高考的热点也是江苏高考的重点,经常体现在填空题的后几天或者大题的压轴题。
通过近几年江苏高考不难发现高考对函数的方程即函数的零点以及函数的性质等是函数重点考查的内容,在复习中要重点关注。
三、考点总结在高考复习中要注意以下几点:①要熟悉一次函数、二次函数、三次函数、指数函数、对数函数等基本函数的图像,会处理含义绝对值函数的图像,等根据函数的图像的变换处理一些较为复杂的函数的图像问题。
②解决函数零点问题要用到以下方法(1)直接法,即求方程的根·(2)定理法,利用函数零点存在性定理估计零点的范围。
(3)数形结合,即与函数的图像结合找出函数的零点。
③正确掌握函数与方程的思想,能正确的对函数与图像进行转化。
能借助于图像解决函数与方程的问题。
四、五年真题1、(2019年江苏卷).设(),()f x g x 是定义在R 上的两个周期函数,()f x 的周期为4,()g x 的周期为2,且()f x 是奇函数.当2(]0,x ∈时,()f x =(2),01()1,122k x x g x x +<≤⎧⎪=⎨-<≤⎪⎩,其中0k >.若在区间(0]9,上,关于x 的方程()()f x g x =有8个不同的实数根,则k 的取值范围是_____.2、(2018年江苏试卷) 若函数在内有且只有一个零点,则在上的最大值与最小值的和为________.3、(2017年江苏试卷) 设f (x )是定义在R 上且周期为1的函数,在区间[0,1)上,()2,,x x Df x x x D⎧∈=⎨∉⎩,其中集合D =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪x =n -1n ,n ∈N *,则方程f (x )-lg x =0的解的个数是________.4、(2015年江苏试卷) 已知函数f (x )=|ln x |,g (x )=⎩⎪⎨⎪⎧0, 0<x ≤1,|x 2-4|-2, x >1,则方程|f (x )+g (x )|=1实根的个数为________. 五、三年模拟题型一: 判断函数零点个数问题1、(2019苏州三市、苏北四市二调)定义在R 上的奇函数f (x )满足f (x +4)=f (x ),且在区间[2,4)上⎩⎨⎧<≤-<≤-=43,432,2)(x x x x x f 则函数x x f y log 5)(-=的零点的个数为2、(2017南通期末) 已知函数f (x )是定义在[1,+∞)上的函数,且f (x )=⎩⎪⎨⎪⎧1-|2x -3|,1≤x <2,12f ⎝⎛⎭⎫12x , x ≥2,则函数y=2xf (x )-3在区间(1,2 015)上的零点个数为________.题型二:函数的图像问题1、(2019扬州期末)已知函数f(x)=a +3+4x -|x +a|有且仅有三个零点,并且这三个零点构成等差数列,则实数a 的值为________.2、(2018扬州期末) 已知函数f(x)=⎩⎪⎨⎪⎧log 12(-x +1)-1,x ∈[-1,k],-2|x -1|,x ∈(k ,a],若存在实数k 使得该函数的值域为[-2,0],则实数a 的取值范围是________.3.(2018苏锡常镇调研) 已知函数1(|3|1)0()2ln 0x x f x x x ⎧++≤⎪=⎨⎪>⎩,,, ,若存在实数a b c <<,满足()()()f a f b f c ==,则()()()af a bf b cf c ++的最大值是 .4、2017南京学情调研) 已知函数()312,02,0x x x f x x x ⎧-≤=⎨->⎩当x ∈(-∞,m ]时,f (x )的取值范围为[-16,+∞),则实数m 的取值范围是________. 题型三:根据函数零点确定参数问题1、(2019宿迁期末)已知函数f(x)=⎩⎪⎨⎪⎧x -1,1≤x<2,2f ⎝⎛⎭⎫12x ,x≥2, 如果函数g(x)=f(x)-k(x -3)恰有2个不同的零点,那么实数k 的取值范围是________.2、(2019通州、海门、启东期末)函数f(x)⎩⎪⎨⎪⎧x 2-2ax ,x<-1,e x-|x -a|,x≥-1有3个不同的零点,则实数a 的取值范围为________.3、(2018南京、盐城一模) 设函数f(x)是偶函数,当x≥0时,f(x)=⎩⎪⎨⎪⎧x (3-x ),0≤x≤3,-3x +1,x>3,若函数y =f(x)-m 有四个不同的零点,则实数m 的取值范围是________.4、(2018镇江期末) 已知k 为常数,函数f(x)=⎩⎪⎨⎪⎧x +2x +1,x≤0,|ln x|,x>0,若关于x 的方程f(x)=kx +2有且只有四个不同解,则实数k 的取值构成的集合为________.5.(2018南京、盐城、连云港二模) 已知函数f(x)=⎩⎪⎨⎪⎧-x 3+3x 2+t ,x <0,x ,x≥0,t ∈R .若函数g (x )=f (f (x )-1)恰有4个不同的零点,则t 的取值范围为________.6.(2018南通、扬州、淮安、宿迁、泰州、徐州六市二调) 设函数f(x)=⎩⎪⎨⎪⎧e -x -12,x>0,x 3-3mx -2,x≤0(其中e为自然对数的底数)有3个不同的零点,则实数m 的取值范围是________.7、(2017苏州暑假测试) 已知函数()31,1,11x f x x x x ⎧>⎪=⎨⎪-≤≤⎩若关于x 的方程f (x )=k (x +1)有两个不同的实数根,则实数k 的取值范围是________.。
11 函数与方程1、若函数y =f (x )(x ∈R )是奇函数,其零点分别为x 1,x 2,…,x 2 017,且x 1+x 2+…+x 2 017=m ,则关于x 的方程2x +x -2=m 的根所在区间是( ) A .(0,1) B .(1,2) C .(2,3) D .(3,4)【答案】A因为函数y =f (x )(x ∈R )是奇函数,故其零点x 1,x 2,…,x 2 017关于原点对称,且其中一个为0,所以x 1+x 2+…+x 2 017=m =0.则关于x 的方程为2x +x -2=0,令h (x )=2x +x -2,则h (x )为(-∞,+∞)上的增函数.因为h (0)=20+0-2=-1<0,h (1)=21+1-2=1>0,所以关于x 的方程2x +x -2=m 的根所在区间是(0,1). 2、若f (x )是奇函数,且x 0是y=f (x )+e x 的一个零点,则-x 0一定是下列哪个函数的零点( ) A.y=f (-x )e x -1 B.y=f (x )e -x +1C.y=e x f (x )-1D.y=e x f (x )+1【答案】C由已知可得f (x 0)=-,则·f (x 0)=-1,f (-x 0)=1,故-x 0一定是y=e xf (x )-1的零点. 3、.函数f (x )=2x +log 2|x|的零点个数为( ) A.0B.1C.2D.3【答案】C函数f (x )=2x+log 2|x|的零点个数,即为函数y=-2x的图像和函数y=log 2|x|的图像的交点个数.如图所示,交点个数为2.故选C .4、设函数f (x )=13x -ln x (x >0),则y =f (x )( )A .在区间⎝⎛⎭⎫1e ,1,(1,e)内均有零点 B .在区间⎝⎛⎭⎫1e ,1,(1,e)内均无零点C .在区间⎝⎛⎭⎫1e ,1内有零点,在区间(1,e)内无零点D .在区间⎝⎛⎭⎫1e ,1内无零点,在区间(1,e)内有零点 【答案】D由f (x )=13x -ln x (x >0)得f ′(x )=x -33x ,令f ′(x )>0得x >3,令f ′(x )<0得0<x <3,令f ′(x )=0得x =3,所以函数f (x )在区间(0,3)上为减函数,在区间(3,+∞)上为增函数,在点x =3处有极小值1-ln 3<0,又f (1)=13>0,f (e)=e3-1<0,f⎝⎛⎭⎫1e=13e+1>0,所以f(x)在区间⎝⎛⎭⎫1e,1内无零点,在区间(1,e)内有零点.故选D.5、直线y=x与函数f(x)=的图像恰有三个公共点,则实数m的取值范围是.【答案】[-1,2)直线y=x与射线y=2(x>m)有一个交点A(2,2),且与抛物线y=x2+4x+2在(-∞,m]上的部分有两个交点B、C.由解得B(-1,-1),C(-2,-2).∵抛物线y=x2+4x+2在(-∞,m]上的部分必须包含B、C两点,且点A(2,2)一定在射线y=2(x>m)上,才能使y=f(x)图像与y=x有3个交点,∴实数m的取值范围是-1≤m<2.6、已知f(x)是定义在R上的奇函数,且当x∈(0,+∞)时,f(x)=2 016x+log2 016x,则函数f(x)的零点个数是A.1B.2C.3D.4【答案】C作出函数y=2 016x和y=-log2 016x的图像如图所示,可知函数f(x)=2 016x+log2 016x在x∈(0,+∞)内存在一个零点.∵f(x)是定义在R上的奇函数,∴f(x)在x∈(-∞,0)内只有一个零点.又f(0)=0,∴函数f(x)的零点个数是3,故选C.7、已知函数f(x)=|2x-2|+b的两个零点分别为x1,x2(x1>x2),则下列结论正确的是()A.1<x1<2,x1+x2<2B.1<x1<2,x1+x2<1C.x1>1,x1+x2<2D.x1>1,x1+x2<1【答案】A函数f(x)=|2x-2|+b有两个零点,即y=|2x-2|与y=-b的图像有两个交点,交点的横坐标就是x1,x2(x2<x1),在同一坐标系中画出y=|2x-2|与y=-b的图像(如下),可知1<x1<2.当y=-b=2时,x1=2,两个函数图像只有一个交点,当y=-b<2时,由图可知x1+x2<2.8、已知函数f(x)是R上最小正周期为2的周期函数,且当0≤x<2时,f(x)=x3-x,则函数y=f(x)的图象在区间[0,6]上与x轴的交点的个数为()A.6 B.7C.8D.9【答案】B当0≤x<2时,令f(x)=x3-x=0,得x=0或x=1.根据周期函数的性质,由f(x)的最小正周期为2,可知y=f(x)在[0,6)上有6个零点,又f(6)=f(3×2+0)=f(0)=0,∴f(x)在[0,6]上与x轴的交点个数为7.9、已知函数f(x)=ax3-3x2+1,若f(x)存在三个零点,则a的取值范围是()A.(-∞,-2)B.(-2,2)C.(2,+∞)D.(-2,0)∪(0,2)【答案】D∵函数f (x )=ax 3-3x 2+1在R 上存在三个零点, ∴f (x )的极大值与极小值异号,很明显a ≠0,由题意可得:f'(x )=3ax 2-6x=3x (ax-2),则由f'(x )=0可得x 1=0,x 2=, 由题意得不等式:f (x 1)f (x 2)=-+1<0,即:>1,a 2<4,-2<a<2.综上,可得a 的取值范围是(-2,0)∪(0,2).10、已知函数f (x )=若方程f (x )=a 有四个不同的解x 1,x 2,x 3,x 4,且x 1<x 2<x 3<x 4,则x 3(x 1+x 2)+的取值范围是( ) A.(-1,+∞) B.(-1,1] C.(-∞,1) D.[-1,1)【答案】B作出函数f (x )=的图像如下,由图可知,x 1+x 2=-2,-log 2x 3=log 2x 4,即x 3·x 4=1,当x=0时,f (0)=1,当-log 2x 3=1时,x 3=. 故方程f (x )=a 有四个不同的解时,对应的x 3∈, 又x 3(x 1+x 2)+=-2x 3+,其在x 3∈上是减少的,∴-2+1<-2x 3+≤-1+2,即-1<-2x 3+≤1.∴x 3(x 1+x 2)+ ∈(-1,1].故选B .11、已知函数f (x )=3e |x -1|-a (2x -1+21-x )-a 2有唯一零点,则负实数a =( )A .-13B .-12C .-3D .-2【答案】C根据函数式可知,直线x =1是y =3e |x -1|和y =2x -1+21-x 图象的对称轴,故直线x =1是函数f (x )图象的对称轴.若函数f (x )有唯一零点,则零点必为1,即f (1)=3-2a -a 2=0,又a <0,所以a =-3.故选C. 12、设函数f (x )=若关于x 的方程[f (x )]2-af (x )=0恰有三个不同的实数解,则实数a 的取值范围为( ) A.(0,1]B.(0,1)C.[1,+∞)D.(-∞,1)【答案】A 关于x 的方程[f (x )]2-af (x )=0的解为f (x )=0或f (x )=a ,而函数f (x )的图像如图所示,由图像可知,方程f (x )=0只有一解x=1,而原方程有三解,所以方程f (x )=a 有两个不为1的相异的解,即0<a ≤1.13、已知函数f (x )是奇函数且是R 上的单调函数.若函数y =f (2x 2+1)+f (λ-x )只有一个零点,则实数λ的值是( ) A.14 B .18C .-78D .-38【答案】C令y =f (2x 2+1)+f (λ-x )=0,则f (2x 2+1)=-f (λ-x )=f (x -λ).因为f (x )是R 上的单调函数,所以2x 2+1=x -λ只有一个实根,即2x 2-x +1+λ=0只有一个实根,则Δ=1-8(1+λ)=0,解得λ=-78.14、定义在R 上的奇函数f (x ),当x ≥0时,f (x )=⎩⎪⎨⎪⎧log 12(x +1),x ∈[0,1),1-|x -3|,x ∈[1,+∞),则关于x 的函数F (x )=f (x )-a (0<a <1)的所有零点之和为( ) A .2a -1 B .2-a -1C .1-2-aD .1-2a【答案】D.当-1≤x <0时⇒1≥-x >0; x ≤-1⇒-x ≥1.又f (x )为奇函数,∴x <0时,f (x )=-f (-x )=⎩⎪⎨⎪⎧-log 12(-x +1),x ∈(-1,0),-1+|x +3|,x ∈(-∞,-1],画出y =f (x )和y =a (0<a <1)的图象,如图,共有5个交点,设其横坐标从左到右分别为x 1,x 2,x 3,x 4,x 5,则x 1+x 22=-3,x 4+x 52=3,而-log 12(-x 3+1)=a ⇒log 2(1-x 3)=a ⇒x 3=1-2a ,可得x 1+x 2+x 3+x 4+x 5=1-2a ,故选D.15、已知当x ∈[0,1]时,函数y =(mx -1)2的图象与y =x +m 的图象有且只有一个交点,则正实数m 的取值范围是( ) A .(0,1]∪[23,+∞) B .(0,1]∪[3,+∞) C .( 0, 2 ]∪[23,+∞)D .(0,2]∪[3,+∞)【答案】B在同一直角坐标系中,分别作出函数f (x )=(mx -1)2=m 2⎝⎛⎭⎫x -1m 2与g (x )=x +m 的大致图象.分两种情形: (1)当0<m ≤1时,1m≥1,如图①,当x ∈[0,1]时,f (x )与g (x )的图象有一个交点,符合题意.(2)当m >1时,0<1m <1,如图②,要使f (x )与g (x )的图象在[0,1]上只有一个交点,只需g (1)≤f (1),即1+m ≤(m -1)2,解得m ≥3或m ≤0(舍去). 综上所述,m ∈(0,1]∪[3,+∞). 故选B.16、已知函数f (x )=⎩⎪⎨⎪⎧ln x ,x ≥1,1-x2,x <1,若F (x )=f [f (x )+1]+m 有两个零点x 1,x 2,则x 1·x 2的取值范围是( ) A .[4-2ln 2,+∞) B .(e ,+∞) C .(-∞,4-2ln 2] D .(-∞,e)【答案】D因为函数f (x )=⎩⎪⎨⎪⎧ln x ,x ≥1,1-x 2,x <1,所以F (x )=⎩⎪⎨⎪⎧ln (ln x +1)+m ,x ≥1,ln ⎝⎛⎭⎫2-x 2+m ,x <1,由F (x )=0得,x 1=e e -m -1,x 2=4-2e -m,其中m =-ln ⎝⎛⎭⎫2-x 2<-ln 32,∴m <ln 23.设t =e -m ,则t >32,所以x 1·x 2=2e t -1(2-t ),设g (t )=2e t -1(2-t ),则g ′(t )=2e t -1(1-t ),因为t >32,所以g ′(t )=2e t -1(1-t )<0,即函数g (t )=2e t -1(2-t )在区间⎝⎛⎭⎫32,+∞上是减函数,所以g (t )<g ⎝⎛⎭⎫32=e ,故选D.17、已知函数f (x )=若函数g (x )=f (x )-m 有3个零点,则实数m 的取值范围是 . 【答案】(0,1)因为函数g (x )=f (x )-m 有3个零点,所以f (x )-m=0有3个根,所以y=f (x )的图像与直线y=m 有3个交点.画出函数y=f (x )的图像,由抛物线顶点为(-1,1),可知实数m 的取值范围是(0,1).18、已知a >0,函数f (x )=⎩⎪⎨⎪⎧x 2+2ax +a ,x ≤0,-x 2+2ax -2a ,x >0.若关于x 的方程f (x )=ax 恰有2个互异的实数解,则a 的取值范围是________.【答案】(4,8)当x ≤0时,由x 2+2ax +a =ax ,得a =-x 2-ax ;当x >0时,由-x 2+2ax -2a =ax ,得2a =-x 2+ax .令g (x )=⎩⎪⎨⎪⎧-x 2-ax ,x ≤0,-x 2+ax ,x >0.作出直线y =a ,y =2a ,函数g (x )的图象如图所示,g (x )的最大值为-a 24+a 22=a 24,由图象可知,若f (x )=ax 恰有2个互异的实数解,则a <a 24<2a ,得4<a <8.19、已知函数f (x )=log 2x +2x -m 有唯一零点,若它的零点在区间(1,2)内,则实数m 的取值范围是________. 【答案】(2,5)因为f (x )在(0,+∞)上单调递增,函数的零点在区间(1,2)内,所以f (1)·f (2)<0,即(log 21+21-m )·(log 22+22-m )<0⇒(2-m )(5-m )<0,解得2<m <5,所以实数m 的取值范围是(2,5). 20、已知二次函数f (x )=x 2+(2a -1)x +1-2a ,(1)判断命题:“对于任意的a ∈R ,方程f (x )=1必有实数根”的真假,并写出判断过程; (2)若y =f (x )在区间(-1,0)及⎝⎛⎭⎫0,12内各有一个零点,求实数a 的取值范围. 【答案】⎝⎛⎭⎫12,34(1)“对于任意的a ∈R ,方程f (x )=1必有实数根”是真命题.依题意,f (x )=1有实根,即x 2+(2a -1)x -2a =0有实根,因为Δ=(2a -1)2+8a =(2a +1)2≥0对于任意的a ∈R 恒成立,即x 2+(2a -1)x -2a =0必有实根,从而f (x )=1必有实根.(2)依题意,要使y =f (x )在区间(-1,0)及⎝⎛⎭⎫0,12内各有一个零点,只需⎩⎪⎨⎪⎧f (-1)>0,f (0)<0,f ⎝⎛⎭⎫12>0,即⎩⎪⎨⎪⎧3-4a >0,1-2a <0,34-a >0,解得12<a <34.故实数a 的取值范围为⎝⎛⎭⎫12,34.21、已知函数f (x )=3x -log 2x 的零点为x 0,若x 0∈(k ,k +1),其中k 为整数,则k =________.【答案】2由题意得f (x )在(0,+∞)上单调递减,f (1)=3>0,f (2)=32-log 22=12>0,f (3)=1-log 23<0,∴f (2)f (3)<0,∴函数f (x )=3x -log 2x 的零点x 0∈(2,3),∴k =2.22、设函数f (x )=⎪⎪⎪⎪1-1x (x >0). (1)做出函数f (x )的图象;(2)当0<a <b ,且f (a )=f (b )时,求1a +1b的值;(3)若方程f (x )=m 有两个不相等的正根,求m 的取值范围.【答案】(1)函数f (x )的图象如图 (2) 2 (3) 0<m <1 (1)函数f (x )的图象如图所示. (2)∵f (x )=⎪⎪⎪⎪1-1x = ⎩⎨⎧1x-1,x ∈,1],1-1x ,x ∈,+,故f (x )在(0,1]上是减函数,在(1,+∞)上是增函数.由0<a <b 且f (a )=f (b ),得0<a <1<b ,且1a -1=1-1b ,所以1a +1b=2.(3)由函数f (x )的图象可知,当0<m <1时,函数f (x )的图象与直线y =m 有两个不同的交点,即方程f (x )=m 有两个。
第七节 函数与方程
考点 函数的零点与方程的根
1.(2015·天津,8)已知函数f (x )=⎩⎨⎧2-|x |,x ≤2,(x -2)2,x >2,
函数g (x )=3-f (2-x ),则函数y =f (x )-g (x )的零点个数为( )
A .2
B .3
C .4
D .5
解析 函数y =f (x )-g (x )的零点个数即为函数f (x )与g (x )
图象的交点个数,记h (x )=-f (2-x ),在同一坐标系中作
出函数f (x )与h (x )的图象,如图,g (x )的图象为h (x )的图象
向上平移3个单位,可知f (x )与g (x )的图象有两个交点,
故选A.
答案 A
2.(2015·安徽,4)下列函数中,既是偶函数又存在零点的是( )
A .y =ln x
B .y =x 2+1
C .y =sin x
D .y =cos x 解析 对数函数y =ln x 是非奇非偶函数;y =x 2+1为偶函数但没有零点;y =sin x 是奇函数;y =cos x 是偶函数且有零点,故选D.
答案 D
3.(2014·重庆,10)已知函数f (x )=⎩⎪⎨⎪⎧1x +1-3,x ∈(-1,0],x ,x ∈(0,1],
且g (x )=f (x )-mx -m 在(-1,1]内有且仅有两个不同的零点,则实数m 的取值范围是( )
A.⎝ ⎛⎦⎥⎤-94,-2∪⎝ ⎛⎦
⎥⎤0,12 B.⎝ ⎛⎦⎥⎤-114,-2∪⎝ ⎛⎦
⎥⎤0,12 C.⎝ ⎛⎦⎥⎤-94,-2∪⎝ ⎛⎦
⎥⎤0,23 D.⎝ ⎛⎦⎥⎤-114,-2∪⎝ ⎛⎦
⎥⎤0,23
解析 g (x )=f (x )-mx -m 在(-1,1]内有且仅有两个不同的零点就是函数y =f (x )的图象与函数y =m (x +1)的图象有两个交点,在同一直角坐标系内作出函数f (x )=⎩⎪⎨⎪⎧1x +1-3,x ∈(-1,0],x ,x ∈(0,1]
和函数y =m (x +1)的图象,如图,当直线y =m (x +1)与y =1x +1
-3,x ∈(-1,0]和y =x ,x ∈(0,1]都相交时0<m ≤12;当直线y =m (x +1)与y =1x +1-3,x ∈(-1,0]有两个交点时,由方程组⎩⎪⎨⎪⎧y =m (x +1),y =1x +1
-3,消元得1x +1
-3=m (x +1),即m (x +1)2+3(x +1)-1=0,化简得mx 2+(2m +3)x +m +2=0,当Δ=9+4m =0,即m =-94时直线y =m (x +1)与y =1x +1
-3相切,当直线y =m (x +1)过点(0,-2)时,m =-2,所以m ∈⎝ ⎛⎦
⎥⎤-94,-2.综上,实数m 的取值范围是⎝ ⎛⎦
⎥⎤-94,-2∪(0,12],选择A.
答案 A
4.(2014·北京,6)已知函数f (x )=6x -log 2x .在下列区间中,包含f (x )零点的区间是
( )
A .(0,1)
B .(1,2)
C .(2,4)
D .(4,+∞)
解析 因为f (1)=6-log 21=6>0,f (2)=3-log 22=2>0,f (4)=32-log 24=-12<
0,所以函数f (x )的零点所在区间为(2,4),故选C.
答案 C
5.(2013·天津,8)设函数f (x )=e x +x -2,g (x )=ln x +x 2-3.若实数a ,b 满足f (a )=0,g (b )=0,则( )
A .g (a )<0<f (b )
B .f (b )<0<g (a )
C .0<g (a )<f (b )
D .f (b )<g (a )<0
解析 由f (a )=e a +a -2=0得0<a <1.
由g (b )=ln b +b 2-3=0得1<b <2.
因为g (a )=ln a +a 2-3<0,
f (b )=e b +b -2>0,
所以f (b )>0>g (a ),故选A.
答案 A
6.(2012·湖北,3)函数f (x )=x cos 2x 在区间[0,2π]上的零点的个数为( )
A .2
B .3
C .4
D .5
解析 令f (x )=x cos 2x =0,∴x =0或cos 2x =0,
即x =0或2x =k π+π2,k ∈Z .
∵x ∈[0,2π],∴x =0,π4,3π4,54π,74π,故选D.
答案 D
7.(2011·陕西,6)方程|x |=cos x 在(-∞,+∞)内( )
A .没有根
B .有且仅有一个根
C .有且仅有两个根
D .有无穷多个根 解析 画y =|x |与y =cos x 图象,可得它们有两个交点,故选C.
答案 C
8.(2015·江苏,13)已知函数f (x )=|ln x |,g (x )=⎩
⎨⎧0,0<x ≤1,|x 2-4|-2,x >1,则方程|f (x )+g (x )|=1实根的个数为________.
解析 令h (x )=f (x )+g (x ),则h (x )=
⎩⎨⎧-ln
x ,0<x ≤1,-x 2+ln x +2,1<x <2,x 2+ln x -6,x ≥2,
当1<x <2时,h ′(x )=-2x +1x =1-2x 2x <0,故当1
<x <2时h (x )单调递减,在同一坐标系中画出y =|h (x )|和y =1的图象如图所示.
由图象可知|f (x )+g (x )|=1的实根个数为4.
答案 4
9.(2015·湖北,13)函数f (x )=2sin x sin ⎝
⎛⎭⎪⎫x +π2-x 2的零点个数为________. 解析 f (x )=2sin x sin ⎝
⎛⎭⎪⎫x +π2-x 2=2sin x cos x -x 2=sin 2x -x 2.令f (x )=0,则sin 2x =x 2,则函数f (x )的零点个数即为函数y =sin 2x 与函数y =x 2的图象的交点个数.作出函数图象知,两函数交点有2个,即函数f (x )的零点个数为2.
答案 2
10.(2014·天津,14)已知函数f (x )=⎩⎨⎧|x 2+5x +4|,x ≤0,2|x -2|,x >0.
若函数y =f (x )-a |x |恰有4个零点,则实数a 的取值范围为________.
解析 由题意,函数y =f (x )-a |x |恰有4个零点,得函数y 1=f (x )与y 2=a |x |的图象有4个不同的交点.在同一坐标系中作出两个函数的图象如图所示(a 显然大于0).由图可知,当y 2=-ax (x <0)与y 1=-x 2-5x -4(-4<x <-1)相切时,x 2+(5-a )x +4=0有两个相等的实数根,则(5-a )2-16=0,解得a =1(a =9舍去),所以当x <0时,y 1与y 2的图象恰有3个不同的交点.显然,当1<a <2时,两个函数的图象恰有4个不同的交点,即函数y =f (x )-a |x |恰有4个零点.]
答案 (1,2)
11.(2014·福建,15))函数f (x )=⎩
⎨⎧x 2-2,x ≤0,2x -6+ln x ,x >0的零点个数是________. 解析 当x ≤0时,令x 2-2=0,
解得x =-2;
当x >0时,f (x )=2x -6+ln x ,
因为f ′(x )=2+1x >0,
所以函数f (x )=2x -6+ln x 在(0,+∞)上单调递增,
因为f (1)=2-6+ln 1=-4<0,f (3)=ln 3>0,
所以函数f (x )=2x -6+ln x 在(0,+∞)有且只有一个零点.综上, 函数f (x )的零点个数为2.
答案 2。