2010高考数学复习专题:函数的最值
- 格式:doc
- 大小:1.38 MB
- 文档页数:16
第二节函数的单调性与最值一、基础知识批注——理解深一点1.增函数、减函数定义:设函数f(x)的定义域为I:(1)增函数:如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是增函数.(2)减函数:如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间D上是减函数.增(减)函数定义中的x1,x2的三个特征一是任意性;二是有大小,即x1<x2(x1>x2);三是同属于一个单调区间,三者缺一不可.2.单调性、单调区间若函数y=f(x)在区间D上是增函数或减函数,则称函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做函数y=f(x)的单调区间.有关单调区间的两个防范(1)单调区间只能用区间表示,不能用不等式表示.(2)有多个单调区间应分别写,不能用符号“∪”连接,也不能用“或”连接,只能用“逗号”或“和”连接.3.函数的最值设函数y=f(x)的定义域为I,如果存在实数M满足:(1)对于任意的x∈I,都有f(x)≤M或f(x)≥M.(2)存在x0∈I,使得f(x0)=M.那么,我们称M是函数y=f(x)的最大值或最小值.函数最值存在的两条结论(1)闭区间上的连续函数一定存在最大值和最小值.当函数在闭区间上单调时最值一定在端点取到.(2)开区间上的“单峰”函数一定存在最大(小)值.二、常用结论汇总——规律多一点在公共定义域内:(1)函数f (x )单调递增,g (x )单调递增,则f (x )+g (x )是增函数; (2)函数f (x )单调递减,g (x )单调递减,则f (x )+g (x )是减函数; (3)函数f (x )单调递增,g (x )单调递减,则f (x )-g (x )是增函数; (4)函数f (x )单调递减,g (x )单调递增,则f (x )-g (x )是减函数;(5)若k >0,则kf (x )与f (x )单调性相同;若k <0,则kf (x )与f (x )单调性相反; (6)函数y =f (x )(f (x )>0)在公共定义域内与y =-f (x ),y =1f x的单调性相反;(7)复合函数y =f [g (x )]的单调性与y =f (u )和u =g (x )的单调性有关.简记:“同增异减”.三、基础小题强化——功底牢一点一判一判对的打“√”,错的打“×”(1)函数y =1x的单调递减区间是(-∞,0)∪(0,+∞).( )(2)具有相同单调性的函数的和、差、积、商函数还具有相同的单调性.( ) (3)若定义在R 上的函数f (x )有f (-1)<f (3),则函数f (x )在R 上为增函数.( ) (4)函数y =f (x )在[1,+∞)上是增函数,则函数的单调递增区间是[1,+∞).( ) (5)如果一个函数在定义域内的某几个子区间上都是增函数,则这个函数在定义域上是增函数.( )(6)所有的单调函数都有最值.( )答案:(1)× (2)× (3)× (4)× (5)× (6)×(二)选一选1.若函数y =(2m -1)x +b 在R 上是减函数,则( ) A .m >12B .m <12C .m >-12D .m <-12解析:选B 若函数y =(2m -1)x +b 在R 上是减函数,则2m -1<0,即m <12.2.下列函数中,图象是轴对称图形且在区间(0,+∞)上单调递减的是( ) A .y =1xB .y =-x 2+1C .y =2xD .y =log 2|x |解析:选B 因为函数的图象是轴对称图形,所以排除A 、C ,又y =-x 2+1在 (0,+∞)上单调递减,y =log 2|x |在(0,+∞)上单调递增,所以排除D.故选B.3.函数f (x )=|x -2|x 的单调减区间是( ) A .[1,2]B .[-1,0]C .[0,2]D .[2,+∞)解析:选A 由于f (x )=|x -2|x =⎩⎪⎨⎪⎧x 2-2x ,x ≥2,-x 2+2x ,x <2.结合图象(图略)可知函数的单调减区间是[1,2].(三)填一填4.设定义在[-1,7]上的函数y =f (x )的图象如图所示,则函数y =f (x )的增区间为________.解析:由图可知函数的增区间为[-1,1]和[5,7]. 答案:[-1,1]和[5,7] 5.函数f (x )=2x -1在[-2,0]上的最大值与最小值之差为________. 解析:易知f (x )在[-2,0]上是减函数,∴f (x )max -f (x )min =f (-2)-f (0)=-23-(-2)=43.答案:43考点一 确定函数的单调性区间[典例] (1)求函数f (x )=-x 2+2|x |+1的单调区间. (2)试讨论函数f (x )=axx -1(a ≠0)在(-1,1)上的单调性.[解] (1)易知f (x )=⎩⎪⎨⎪⎧-x 2+2x +1,x ≥0,-x 2-2x +1,x <0=⎩⎪⎨⎪⎧-x -12+2,x ≥0,-x +12+2,x <0.画出函数图象如图所示,可知单调递增区间为(-∞,-1]和[0,1],单调递减区间为[-1,0]和[1,+∞).(2)法一:定义法 设-1<x 1<x 2<1,f (x )=a ⎝⎛⎭⎪⎫x -1+1x -1=a ⎝ ⎛⎭⎪⎫1+1x -1,则f (x 1)-f (x 2)=a ⎝⎛⎭⎪⎫1+1x 1-1-a ⎝ ⎛⎭⎪⎫1+1x 2-1 =a x 2-x 1x 1-1x 2-1.由于-1<x 1<x 2<1,所以x 2-x 1>0,x 1-1<0,x 2-1<0,故当a >0时,f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 函数f (x )在(-1,1)上单调递减;当a <0时,f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 函数f (x )在(-1,1)上单调递增. 法二:导数法f ′(x )=ax ′x -1-ax x -1′x -12=a x -1-ax x -12=-ax -12.当a >0时,f ′(x )<0,函数f (x )在(-1,1)上单调递减; 当a <0时,f ′(x )>0,函数f (x )在(-1,1)上单调递增.[解题技法] 判断函数单调性和求单调区间的方法(1)定义法:一般步骤为设元―→作差―→变形―→判断符号―→得出结论.(2)图象法:如果f (x )是以图象形式给出的,或者f (x )的图象易作出,则可由图象的上升或下降确定单调性.(3)导数法:先求导数,利用导数值的正负确定函数的单调性及区间.(4)性质法:对于由基本初等函数的和、差构成的函数,根据各初等函数的增减性及复合函数单调性性质进行判断;复合函数单调性,可用同增异减来确定.[题组训练]1.下列函数中,满足“∀x 1,x 2∈(0,+∞)且x 1≠x 2,(x 1-x 2)·[f (x 1)-f (x 2)]<0”的是( )A .f (x )=2xB .f (x )=|x -1|C .f (x )=1x-xD .f (x )=ln(x +1)解析:选C 由(x 1-x 2)·[f (x 1)-f (x 2)]<0可知,f (x )在(0,+∞)上是减函数,A 、D 选项中,f (x )为增函数;B 中,f (x )=|x -1|在(0,+∞)上不单调;对于f (x )=1x-x ,因为y =1x与y =-x 在(0,+∞)上单调递减,因此f (x )在(0,+∞)上是减函数.2.函数f (x )=log 12(x 2-4)的单调递增区间是( )A .(0,+∞)B .(-∞,0)C .(2,+∞)D .(-∞,-2)解析:选D 令t =x 2-4,则y =log 12t .因为y =log 12t 在定义域上是减函数,所以求原函数的单调递增区间,即求函数t =x 2-4的单调递减区间,结合函数的定义域,可知所求区间为(-∞,-2).3.判断函数f (x )=x +ax(a >0)在(0,+∞)上的单调性. 解:设x 1,x 2是任意两个正数,且x 1<x 2, 则f (x 1)-f (x 2)=⎝⎛⎭⎪⎫x 1+a x 1-⎝ ⎛⎭⎪⎫x 2+a x 2=x 1-x 2x 1x 2(x 1x 2-a ).当0<x 1<x 2≤a 时,0<x 1x 2<a ,x 1-x 2<0, 所以f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 所以函数f (x )在(0,a ]上是减函数; 当a ≤x 1<x 2时,x 1x 2>a ,x 1-x 2<0, 所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 所以函数f (x )在[a ,+∞)上是增函数.综上可知,函数f (x )=x +ax(a >0)在(0,a ]上是减函数,在[a ,+∞)上是增函数. 考点二 求函数的值域最值[典例] (1)(2019•深圳调研)函数y =|x +1|+|x -2|的值域为________.(2)若函数f (x )=-a x +b (a >0)在⎣⎢⎡⎦⎥⎤12,2上的值域为⎣⎢⎡⎦⎥⎤12,2,则a =________,b =________.(3)函数f (x )=⎩⎪⎨⎪⎧-x 2-4x ,x ≤0,sin x ,x >0的最大值为________.[解析] (1)图象法 函数y =⎩⎪⎨⎪⎧-2x +1,x ≤-1,3,-1<x <2,2x -1,x ≥2.作出函数的图象如图所示.根据图象可知,函数y =|x +1|+|x -2|的值域为[3,+∞). (2)单调性法∵f (x )=-a x +b (a >0)在⎣⎢⎡⎦⎥⎤12,2上是增函数, ∴f (x )min =f ⎝ ⎛⎭⎪⎫12=12,f (x )max =f (2)=2.即⎩⎪⎨⎪⎧-2a +b =12,-a2+b =2,解得a =1,b =52.(3)当x ≤0时,f (x )=-x 2-4x =-(x +2)2+4,而-2∈(-∞,0],此时f (x )在x =-2处取得最大值,且f (-2)=4;当x >0时,f (x )=sin x ,此时f (x )在区间(0,+∞)上的最大值为1.综上所述,函数f (x )的最大值为4.[答案] (1)[3,+∞) (2)1 52 (3)4[解题技法] 求函数最值的5种常用方法[口诀归纳]单调性,左边看,上坡递增下坡减; 函数值,若有界,上界下界值域外.[提醒] (1)求函数的最值时,应先确定函数的定义域.(2)求分段函数的最值时,应先求出每一段上的最值,再选取其中最大的作为分段函数的最大值,最小的作为分段函数的最小值.[题组训练]1.函数f (x )=x 2+4x的值域为________.解析:当x >0时,f (x )=x +4x≥4,当且仅当x =2时取等号;当x <0时,-x +⎝ ⎛⎭⎪⎫-4x ≥4,即f (x )=x +4x≤-4,当且仅当x =-2取等号,所以函数f (x )的值域为(-∞,-4]∪[4,+∞). 答案:(-∞,-4]∪[4,+∞)2.若x ∈⎣⎢⎡⎦⎥⎤-π6,2π3,则函数y =4sin 2x -12sin x -1的最大值为________,最小值为________.解析:令t =sin x ,因为x ∈⎣⎢⎡⎦⎥⎤-π6,2π3,所以t ∈⎣⎢⎡⎦⎥⎤-12,1,y =f (t )=4t 2-12t -1,因为该二次函数的图象开口向上,且对称轴为t =32,所以当t ∈⎣⎢⎡⎦⎥⎤-12,1时,函数f (t )单调递减,所以当t =-12时,y max =6;当t =1时,y min =-9. 答案:6 -93.已知f (x )=x 2+2x +ax,x ∈[1,+∞),且a ≤1.若对任意x ∈[1,+∞),f (x )>0恒成立,则实数a 的取值范围是________.解析:对任意x ∈[1,+∞),f (x )>0恒成立等价于x 2+2x +a >0在x ∈[1,+∞)上恒成立,即a >-x 2-2x 在x ∈[1,+∞)上恒成立.又函数y =-x 2-2x 在[1,+∞)上单调递减, ∴(-x 2-2x )max =-3,故a >-3, 又∵a ≤1,∴-3<a ≤1. 答案:(-3,1]考点三 函数单调性的应用考法(一) 比较函数值的大小[典例] 设偶函数f (x )的定义域为R ,当x ∈[0,+∞)时,f (x )是增函数,则f (-2),f (π),f (-3)的大小关系是( )A .f (π)>f (-3)>f (-2)B .f (π)>f (-2)>f (-3)C .f (π)<f (-3)<f (-2)D .f (π)<f (-2)<f (-3)[解析] 因为f (x )是偶函数,所以f (-3)=f (3),f (-2)=f (2). 又因为函数f (x )在[0,+∞)上是增函数. 所以f (π)>f (3)>f (2),即f (π)>f (-3)>f (-2). [答案] A[解题技法] 比较函数值大小的解题思路比较函数值的大小时,若自变量的值不在同一个单调区间内,要利用其函数性质,转化到同一个单调区间内进行比较,对于选择题、填空题能数形结合的尽量用图象法求解.考法(二) 解函数不等式[典例] 设函数f (x )=⎩⎪⎨⎪⎧2x,x <2,x 2,x ≥2.若f (a +1)≥f (2a -1),则实数a 的取值范围是( )A .(-∞,1]B .(-∞,2]C .[2,6]D .[2,+∞)[解析] 易知函数f (x )在定义域(-∞,+∞)上是增函数,∵f (a +1)≥f (2a -1), ∴a +1≥2a -1,解得a ≤2.故实数a 的取值范围是(-∞,2]. [答案] B[解题技法] 求解含“f ”的函数不等式的解题思路先利用函数的相关性质将不等式转化为f (g (x ))>f (h (x ))的形式,再根据函数的单调性去掉“f ”,得到一般的不等式g (x )>h (x )(或g (x )<h (x )).考法(三) 利用单调性求参数的范围(或值)[典例] (2019•南京调研)已知函数f (x )=x -a x +a2在(1,+∞)上是增函数,则实数a的取值范围是________.[解析] 设1<x 1<x 2,∴x 1x 2>1. ∵函数f (x )在(1,+∞)上是增函数,∴f (x 1)-f (x 2)=x 1-a x 1+a 2-⎝⎛⎭⎪⎫x 2-a x 2+a2=(x 1-x 2)⎝⎛⎭⎪⎫1+a x 1x 2<0. ∵x 1-x 2<0,∴1+ax 1x 2>0,即a >-x 1x 2. ∵1<x 1<x 2,x 1x 2>1,∴-x 1x 2<-1,∴a ≥-1. ∴a 的取值范围是[-1,+∞). [答案] [-1,+∞)[解题技法]利用单调性求参数的范围(或值)的方法(1)视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数;(2)需注意若函数在区间[a ,b ]上是单调的,则该函数在此区间的任意子集上也是单调的.[题组训练]1.已知函数f (x )的图象向左平移1个单位后关于y 轴对称,当x 2>x 1>1时,[f (x 2)-f (x 1)]·(x 2-x 1)<0恒成立,设a =f ⎝ ⎛⎭⎪⎫-12,b =f (2),c =f (3),则a ,b ,c 的大小关系为( )A .c >a >bB .c >b >aC .a >c >bD .b >a >c解析:选D 由于函数f (x )的图象向左平移1个单位后得到的图象关于y 轴对称,故函数y =f (x )的图象关于直线x =1对称,所以a =f ⎝ ⎛⎭⎪⎫-12=f ⎝ ⎛⎭⎪⎫52.当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,等价于函数f (x )在(1,+∞)上单调递减,所以b >a >c .2.已知函数f (x )=⎩⎪⎨⎪⎧ax 2-x -14,x ≤1,log a x -1,x >1是R 上的单调函数,则实数a 的取值范围是( )A.⎣⎢⎡⎭⎪⎫14,12B.⎣⎢⎡⎦⎥⎤14,12C.⎝ ⎛⎦⎥⎤0,12 D.⎣⎢⎡⎭⎪⎫12,1 解析:选B 由对数函数的定义可得a >0,且a ≠1.又函数f (x )在R 上单调,而二次函数y =ax 2-x -14的图象开口向上,所以函数f (x )在R 上单调递减,故有⎩⎪⎨⎪⎧ 0<a <1,12a≥1,a ×12-1-14≥log a1-1,即⎩⎪⎨⎪⎧0<a <1,0<a ≤12,a ≥14.所以a ∈⎣⎢⎡⎦⎥⎤14,12.[课时跟踪检测]A 级——保大分专练1.下列四个函数中,在x ∈(0,+∞)上为增函数的是( ) A .f (x )=3-x B .f (x )=x 2-3x C .f (x )=-1x +1D .f (x )=-|x |解析:选C 当x >0时,f (x )=3-x 为减函数;当x ∈⎝ ⎛⎭⎪⎫0,32时,f (x )=x 2-3x 为减函数,当x ∈⎝ ⎛⎭⎪⎫32,+∞时,f (x )=x 2-3x 为增函数;当x ∈(0,+∞)时,f (x )=-1x +1为增函数;当x ∈(0,+∞)时,f (x )=-|x |为减函数.2.若函数f (x )=ax +1在R 上单调递减,则函数g (x )=a (x 2-4x +3)的单调递增区间是( )A .(2,+∞)B .(-∞,2)C .(4,+∞)D .(-∞,4)解析:选B 因为f (x )=ax +1在R 上单调递减,所以a <0. 而g (x )=a (x 2-4x +3)=a (x -2)2-a . 因为a <0,所以g (x )在(-∞,2)上单调递增.3.已知函数f (x )是定义在区间[0,+∞)上的函数,且在该区间上单调递增,则满足f (2x -1)<f ⎝ ⎛⎭⎪⎫13的x 的取值范围是( )A.⎝ ⎛⎭⎪⎫13,23B.⎣⎢⎡⎭⎪⎫13,23C.⎝ ⎛⎭⎪⎫12,23 D.⎣⎢⎡⎭⎪⎫12,23 解析:选D 因为函数f (x )是定义在区间[0,+∞)上的增函数,满足f (2x -1)<f ⎝ ⎛⎭⎪⎫13.所以0≤2x -1<13,解得12≤x <23. 4.(2019·菏泽模拟)定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值等于( )A .-1B .1C .6D .12解析:选C 由题意知当-2≤x ≤1时,f (x )=x -2,当1<x ≤2时,f (x )=x 3-2,又f (x )=x -2,f (x )=x 3-2在相应的定义域内都为增函数,且f (1)=-1,f (2)=6,∴f (x )的最大值为6.5.已知函数f (x )是R 上的增函数,A (0,-3),B (3,1)是其图象上的两点,那么不等式-3<f (x +1)<1的解集的补集是(全集为R)( )A .(-1,2)B .(1,4)C .(-∞,-1)∪[4,+∞)D .(-∞,-1]∪[2,+∞)解析:选D 由函数f (x )是R 上的增函数,A (0,-3),B (3,1)是其图象上的两点,知不等式-3<f (x +1)<1即为f (0)<f (x +1)<f (3),所以0<x +1<3,所以-1<x <2,故不等式-3<f (x +1)<1的解集的补集是(-∞,-1]∪[2,+∞).6.已知函数f (x )=⎩⎪⎨⎪⎧ -x 2-ax -5,x ≤1,a x,x >1是R 上的增函数,则实数a 的取值范围是( )A .[-3,0)B .(-∞,-2]C .[-3,-2]D .(-∞,0)解析:选C 若f (x )是R 上的增函数,则应满足⎩⎪⎨⎪⎧ -a 2≥1,a <0,-12-a ×1-5≤a 1,解得-3≤a ≤-2.7.已知函数f (x )=x 2-2x -3,则该函数的单调递增区间为________.解析:设t =x 2-2x -3,由t ≥0,即x 2-2x -3≥0,解得x ≤-1或x ≥3,所以函数f (x )的定义域为(-∞,-1]∪[3,+∞).因为函数t =x 2-2x -3的图象的对称轴为x =1,所以函数t =x 2-2x -3在(-∞,-1]上单调递减,在[3,+∞)上单调递增,所以函数f (x )的单调递增区间为[3,+∞).答案:[3,+∞)8.函数f (x )=⎩⎪⎨⎪⎧1x,x ≥1,-x 2+2,x <1的最大值为________. 解析:当x ≥1时,函数f (x )=1x为减函数,所以f (x )在x =1处取得最大值,为f (1)=1;当x <1时,易知函数f (x )=-x 2+2在x =0处取得最大值,为f (0)=2.故函数f (x )的最大值为2.答案:29.若函数f (x )=1x 在区间[2,a ]上的最大值与最小值的和为34,则a =________. 解析:由f (x )=1x 的图象知,f (x )=1x在(0,+∞)上是减函数,∵[2,a ]⊆(0,+∞), ∴f (x )=1x在[2,a ]上也是减函数, ∴f (x )max =f (2)=12,f (x )min =f (a )=1a, ∴12+1a =34,∴a =4. 答案:410.(2019·甘肃会宁联考)若f (x )=x +a -1x +2在区间(-2,+∞)上是增函数,则实数a 的取值范围是________.解析:f (x )=x +a -1x +2=x +2+a -3x +2=1+a -3x +2,要使函数在区间(-2,+∞)上是增函数,需使a -3<0,解得a <3.答案:(-∞,3)11.已知函数f (x )=1a -1x(a >0,x >0). (1)求证:f (x )在(0,+∞)上是增函数;(2)若f (x )在⎣⎢⎡⎦⎥⎤12,2上的值域是⎣⎢⎡⎦⎥⎤12,2,求a 的值. 解:(1)证明:任取x 1>x 2>0,则f (x 1)-f (x 2)=1a -1x 1-1a +1x 2=x 1-x 2x 1x 2, ∵x 1>x 2>0,∴x 1-x 2>0,x 1x 2>0,∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2),∴f (x )在(0,+∞)上是增函数.(2)由(1)可知,f (x )在⎣⎢⎡⎦⎥⎤12,2上是增函数, ∴f ⎝ ⎛⎭⎪⎫12=1a-2=12,f (2)=1a -12=2, 解得a =25. 12.已知f (x )=xx -a (x ≠a ).(1)若a =-2,试证f (x )在(-∞,-2)内单调递增;(2)若a >0且f (x )在(1,+∞)内单调递减,求a 的取值范围.解:(1)证明:当a =-2时,f (x )=xx +2.任取x 1,x 2∈(-∞,-2),且x 1<x 2,则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2x 1-x 2x 1+2x 2+2. 因为(x 1+2)(x 2+2)>0,x 1-x 2<0,所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),所以f (x )在(-∞,-2)内单调递增.(2)任取x 1,x 2∈(1,+∞),且x 1<x 2,则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a =a x 2-x 1x 1-a x 2-a. 因为a >0,x 2-x 1>0,又由题意知f (x 1)-f (x 2)>0,所以(x 1-a )(x 2-a )>0恒成立,所以a ≤1.所以0<a ≤1.所以a 的取值范围为(0,1].B 级——创高分自选1.若f (x )=-x 2+4mx 与g (x )=2m x +1在区间[2,4]上都是减函数,则m 的取值范围是( )A .(-∞,0)∪(0,1]B .(-1,0)∪(0,1]C .(0,+∞)D .(0,1] 解析:选D 函数f (x )=-x 2+4mx 的图象开口向下,且以直线x =2m 为对称轴,若在区间[2,4]上是减函数,则2m ≤2,解得m ≤1;g (x )=2m x +1的图象由y =2m x的图象向左平移一个单位长度得到,若在区间[2,4]上是减函数,则2m >0,解得m >0.综上可得,m 的取值范围是(0,1].2.已知函数f (x )=ln x +x ,若f (a 2-a )>f (a +3),则正数a 的取值范围是________. 解析:因为f (x )=ln x +x 在(0,+∞)上是增函数, 所以⎩⎪⎨⎪⎧ a 2-a >a +3,a 2-a >0,a +3>0,解得-3<a <-1或a >3.又a >0,所以a >3.答案:(3,+∞)3.已知定义在R 上的函数f (x )满足:①f (x +y )=f (x )+f (y )+1,②当x >0时,f (x )> -1.(1)求f (0)的值,并证明f (x )在R 上是单调增函数;(2)若f (1)=1,解关于x 的不等式f (x 2+2x )+f (1-x )>4.解:(1)令x =y =0,得f (0)=-1.在R 上任取x 1>x 2,则x 1-x 2>0,f (x 1-x 2)>-1.又f (x 1)=f [(x 1-x 2)+x 2]=f (x 1-x 2)+f (x 2)+1>f (x 2),所以函数f (x )在R 上是单调增函数.(2)由f (1)=1,得f (2)=3,f (3)=5.由f (x 2+2x )+f (1-x )>4得f (x 2+x +1)>f (3),又函数f (x )在R 上是增函数,故x 2+x +1>3,解得x <-2或x >1,故原不等式的解集为{x |x <-2或x >1}.。
高中数学基础之函数最值的求法函数的最值定义:(1)一般地,设函数y =f (x )的定义域为I .如果存在实数M 满足:①∀x ∈I ,都有f (x )≤M ;②∃x 0∈I ,使得f (x 0)=M .那么,我们称M 是函数y =f (x )的最大值.(2)一般地,设函数y =f (x )的定义域为I .如果存在实数M 满足:①∀x ∈I ,都有f (x )≥M ;②∃x 0∈I ,使得f (x 0)=M .那么,我们称M 是函数y =f (x )的最小值.函数最值存在的两条结论:(1)闭区间上的连续函数一定存在最大值和最小值.当函数在闭区间上单调时最值一定在端点取到.(2)开区间上的“单峰”函数一定存在最大(小)值.例1 函数y =x x -1在区间[2,3]上的最大值是________. 答案 2解析 函数y =x x -1=1+1x -1在区间[2,3]上是减函数,当x =2时,y =x x -1取得最大值22-1=2. 例2 函数y =x -x (x ≥0)的最大值为________.答案 14解析 令t =x ,则t ≥0,所以y =t -t 2=-⎝ ⎛⎭⎪⎫t -122+14,当t =12,即x =14时,y max =14. 例3 若函数f (2-x )=x -x 2,则f (x )在[0,1]上的最大值与最小值之和为( )A.-2 B .-74 C .0 D .14答案 A解析 令2-x =t ,则x =2-t ,所以f (t )=(2-t )-(2-t )2=-t 2+3t -2,所以f (x )=-x 2+3x -2,图象开口向下,对称轴为直线x =-32×(-1)=32,所以f (x )在[0,1]上单调递增,f (x )max =f (1)=0,f (x )min =f (0)=-2,所以f (x )在[0,1]上的最大值与最小值之和为-2.故选A.例4 若函数y =f (x )的值域是⎣⎢⎡⎦⎥⎤12,3,则函数F (x )=f (2x +1)+1f (2x +1)的值域是________.答案 ⎣⎢⎡⎦⎥⎤2,103解析 由函数y =f (x )的值域是⎣⎢⎡⎦⎥⎤12,3,得函数t =f (2x +1)的值域为⎣⎢⎡⎦⎥⎤12,3,函数F (x )变为y =t +1t ,t ∈⎣⎢⎡⎦⎥⎤12,3,由对勾函数的性质知y =t +1t 在⎣⎢⎡⎦⎥⎤12,1上递减,在[1,3]上递增,t =1时,y min =2,而t =12时,y =52,t =3时,y =103,即y max =103,所以原函数的值域是⎣⎢⎡⎦⎥⎤2,103. 例5 函数f (x )=2-x +x 2-6x +10的值域为________.答案 [)2,+∞解析 由已知得⎩⎨⎧2-x ≥0,x 2-6x +10≥0,解得x ≤2,所以f (x )的定义域为{x |x ≤2},且x ≤2时,y =2-x 与y =x 2-6x +10都是减函数,所以f (x )在(-∞,2]上是减函数,f (x )≥f (2)=2,所以f (x )的值域为[2,+∞).例6 已知二次函数f (x )=mx 2-4x +n 的值域为[0,+∞),且f (1)≤4,则K =m 2+n 2m +n的最大值为________.答案 7解析 由题意可知m >0,n >0,Δ=16-4mn =0,得mn =4,f (1)=m +n -4≤4,即m +n ≤8,又m +n ≥2mn =4,当且仅当m =n =2时取等号,所以4≤m +n ≤8,K =m 2+n 2m +n=(m +n )2-2mn m +n =m +n -8m +n,设m +n =t ,则4≤t ≤8,y =t -8t ,函数y =t -8t 在[4,8]上单调递增,所以当t =8时,函数y =t -8t 取得最大值,y max =8-88=7.求函数值域(最值)的方法(1)分离常数法形如y =cx +d ax +b(ac ≠0)的函数的值域经常使用“分离常数法”求解. (2)配方法配方法是求“二次函数型函数”值域的基本方法,形如F (x )=a [f (x )]2+bf (x )+c (a ≠0)的函数的值域问题,均可使用配方法.(3)换元法①代数换元.形如y =ax +b ±cx +d (a ,b ,c ,d 为常数,ac ≠0)的函数,可设 cx +d =t(t≥0),转化为二次函数求值域.②三角换元:如y=x+1-x2,可令x=cos θ,θ∈[0,π].利用换元法求值域,一定要注意新元的范围对值域的影响.(4)判别式法把函数转化成关于x的一元二次方程,通过方程有实根,知判别式Δ≥0,从而求得原函数的值域,形如y=a1x2+b1x+c1a2x2+b2x+c2(a1,a2不同时为零)的函数的值域常用此法求解.用判别式法求值域的注意事项:①函数的定义域应为R;②分式的分子、分母没有公因式.(5)有界性法形如sin α=f(y),x2=g(y),a x=h(y)等,由|sin α|≤1,x2≥0,a x>0可解出y的范围,从而求出其值域.(6)数形结合法若函数的解析式的几何意义较明显,如距离、斜率等,可用数形结合的方法.(7)基本不等式法利用基本不等式:a+b≥2ab(a>0,b>0).用此法求函数值域时,要注意条件“一正,二定,三相等”.(8)单调性法:先确定函数的单调性,再由单调性求最值.(9)图象法:先作出函数的图象,再观察其最高点、最低点,求出最值.(10)导数法:先求导,然后求出在给定区间上的极值,最后结合端点值,求出最值.。
2010某某专题:代数推理题的经典类型与解法一.移项,数形结合例1设函数134)(,4)(2+=--+=x x g x x a x f ,已知]0,4[-∈x ,时恒有)()(x g x f ≤,求a 的取值X 围.二.构造函数,恒成立的问题, 函数最值解法例2 已知不等式32)1(log 121212111+-≥+++++a n n n a 对于大于1的正整数n 恒成立,试确定a 的取值X 围.三.分类讨论例3 已知函数)0(49433)(22>++--=b b x x x f 在区间[-b ,1-b]上的最大值为25,求b 的值.四.逆向分析法例4已知).1(1)(-≠+=x x xx f)()1(x f 求的单调区间;(2)若.43)()(:,)(1,0>+-=>>c f a f b b a c b a 求证五.数学猜想能力。
证明.对称可采用解几中的坐标证法例5 已知函数f(x)=a a a xx+(a>0,a≠1).(1) 证明函数f(x)的图象关于点P(21,21)对称.(2) 令an =)1()(n f n f a -,对一切自然数n ,先猜想使an >n2成立的最小自然数a,并证明之.(3) 求证:n n n n )(!(lg 3lg )1(41>+∈N).六.采用反证法例6对于函数)(x f ,若存在000)(,x x f R x =∈使成立,则称)(0x f x 为的不动点。
如果函数),()(2N c b c bx a x x f ∈-+=有且只有两个不动点0,2,且,21)2(-<-f(1)求函数)(x f 的解析式;(2)已知各项不为零的数列1)1(4}{=⋅nn n a f S a 满足,求数列通项n a ;(3)如果数列}{n a 满足)(,411n n a f a a ==+,求证:当2≥n 时,恒有3<n a 成立.七.赋值法例7.已知函数f(t)满足对任意实数x 、y 都有f(x+y)=f(x)+f(y)+xy+1,且f(-2)=-2. (1)求f(1)的值;(2)证明:对一切大于1的正整数t ,恒有f(t)>t ; (3)试求满足f(t)=t 的整数t 的个数,并说明理由.例8已知函数f (x )在(-1,1)上有定义,1)21(-=f 且满足x 、y ∈(-1,1) 有 )1()()(xy y x f y f x f ++=+.(1)证明:f (x )在(-1,1)上为奇函数;(2)对数列,12,21211nn n x x x x +==+求)(n x f ;(3)求证.252)(1)(1)(121++->+++n n x f x f x f n八.解析几何中的推理证明例9.一动圆经过点A (2,0),且在y 轴上截得的弦长为4. (1)求动圆圆心P 的轨迹方程;(2)设AO 的中点为B (其中O 为坐标原点),如果过点B 的直线l 与动圆圆心P 的轨迹相交于不同的两点C 、D ,证明:以CD 为直径的圆与一定直线相切.例10.如图,直角坐标系xOy 中,一直角三角形ABC ,∠C =90°,B 、C 在x 轴上且关于原点O 对称,D 在边BC 上,BD =3DC ,∆ABC 的周长为12.若一双曲线E 以B 、C 为焦点,且经过A 、D 两点.(1)求双曲线E 的方程;(2)若一过点P (m ,0)(m 为非零常数)的直线l 与双曲线E 相交于不同于双曲线顶点的两点M 、N ,且→MP =λ→PN ,问在x 轴上是否存在定点G ,使→BC ⊥(→GM -λ→GN )?若存在,求出所有这样定点G 的坐标;若不存在,请说明理由.例11.已知焦点在x 轴上的双曲线C 的两条渐近线过坐标原点,且两条渐近线与以点A (0,2)为圆心,1为半径为圆相切,又知C 的一个焦点与A关于直线y =x 对称. (1)求双曲线C 的方程;(2)若Q 是双曲线C 上的任一点,F1、F2为双曲线C 的左、右两个焦点,从F1引∠F1QF2的平分线的垂线,垂足为N ,试求点N 的轨迹方程;(3)设直线y =mx +1与双曲线C 的左支交于A 、B 两点,另一直线l 经过M (-2,0)及AB 的中点,求直线l 在y 轴上的截距b 的取值X 围.例12.设函数f (x )的定义域为R ,当x <0时,0<f (x )<1,且对任意的实数x 、y ∈R ,有f (x +y )=f (x )f (y ). (1)求f (0);(2)试判断函数f (x )在(-∞,0]上是否存在最大值,若存在,求出该最大值,若不存在说明理由;(3)设数列{an }各项都是正数,且满足a1=f (0),f (an +12-an2)=1f (an +1-3an -2),(n ∈N*)又设bn =(12)an ,Sn =b1+b2+…+bn ,Tn =1a1a2+1a2a3+…+1anan +1,试比较Sn 与Tn 的大小.13.已知等比数列{xn }的各项为不等于1的正数,数列{yn }满足ynlogaxn =2(a >0,且a≠1),设y3=18,y6=12.(1)数列{yn }的前多少项和最大,最大值为多少?(2)试判断是否存在自然数M ,使得当n >M 时,xn >1恒成立,若存在,求出相应的M ;若不存在,请说明理由;(3)令an =logxnxn +1(n >13,n ∈N ),试比较an 与an +1的大小.例14.设对于任意实数x 、y ,函数f (x )、g (x )满足f (x +1)=13f (x ),且f (0)=3,g (x +y )=g (x )+2y ,g (5)=13,n ∈N*. (1)求数列{f (n )}、{g (n )}的通项公式; (2)设=g [n2f (n )],求数列{}的前n 项和Sn ;(3)设F (n )=Sn -3n ,是否存在整数m 和M ,使得对任意正整数n 不等式m <F (n )<M 恒成立?若存在,分别求出m 和M 的集合,并求出M -m 的最小值;若不存在,请说明理由.例15.已知F1、F2分别是椭圆x2a2+y2b2=1(a >b >0)的左、右焦点,P 是此椭圆的一动点,并且→PF1⋅→PF2的取值X 围是[-43,43].(1)求此椭圆的方程;(2)点A 是椭圆的右顶点,直线y =x 与椭圆交于B 、C 两点(C 在第一象限内),又P 、Q 是椭圆上两点,并且满足(→CP |→CP |+→CQ |→CQ |)⋅→F1F2=0,求证:向量→PQ 与→AB 共线.例16.设f (n ,p )=C p2n (n ,p ∈N ,p ≤2n ).数列{a (n ,p )}满足a (1,p )+a (2,p )+…+a (n ,p )=f (n ,p ). (1)求证:{a (n ,p )}是等差数列;(2)求证:f (n ,1)+f (n ,2)+…+f (n ,n )=22n -1+12C n2n-1;(3)设函数H (x )=f (n ,1)x +f (n ,2)x2+…+f (n ,2n )x2n ,试比较H (x )-H (a )与2n (1+a )2n -1(x -a )的大小.例17.已知系统M 是由6条网线并联而成,且这6条网线能通过的信息量个数分别为1,1,2,2,3,3。
函数最值知识点总结函数最值是指在一个定义域内,函数取得的最大值和最小值。
在数学中,函数最值是一个重要的概念,它可以帮助我们找到函数的极值点和函数的最大值和最小值。
本文将对函数最值的相关知识点进行总结,包括定义、性质、求解方法等内容。
一、函数最值的定义函数最值是指在一个定义域内,函数取得的最大值和最小值。
例如,对于函数f(x),如果存在一个实数x1,使得对于任意的x∈D,都有f(x)≤f(x1),那么f(x1)就是函数f(x)在定义域D上的最大值。
类似地,如果存在一个实数x2,使得对于任意的x∈D,都有f(x)≥f(x2),那么f(x2)就是函数f(x)在定义域D上的最小值。
二、函数最值的性质1. 如果函数f(x)在定义域D上有最大值或最小值,那么它一定是在D的边界上取得的。
2. 如果函数f(x)在区间[a,b]上连续,并且在内部有一点c使得f(c)是最值,那么f(c)一定是函数f(x)在区间[a,b]内的最大值或最小值。
3. 如果函数f(x)在定义域D上存在最值,那么必须是一个有界函数。
4. 如果函数f(x)在定义域D上存在最值,那么它必定有一个最大值和一个最小值。
三、求解函数最值的方法1. 利用导数对于一元函数f(x),我们可以通过求解导数f'(x)来找到函数的最值点。
具体步骤如下:(1)求出函数f(x)的导函数f'(x);(2)解出导函数f'(x)=0的解,即导数为0的点;(3)将解代入原函数f(x)中,求出相应的函数值;(4)比较函数值,得出最大值和最小值。
2. 利用二次函数的性质对于二次函数f(x)=ax^2+bx+c,我们可以通过二次函数的性质来找到函数的最值点。
具体步骤如下:(1)求出二次函数的顶点坐标(-b/2a,f(-b/2a));(2)根据a的正负来判断最值点的情况:a)若a>0,函数有最小值,最小值为f(-b/2a);b)若a<0,函数有最大值,最大值为f(-b/2a)。
高考数学一轮复习---导数与函数的极值、最值考点一 利用导数研究函数的极值考法(一) 已知函数的解析式求函数的极值点个数或极值例、已知函数f (x )=x -1+a e x (a ∈R ,e 为自然对数的底数),求函数f (x )的极值.考法(二) 已知函数的极值点的个数求参数例、已知函数g (x )=ln x -mx +m x存在两个极值点x 1,x 2,求m 的取值范围.考法(三) 已知函数的极值求参数例、设函数f (x )=[ax 2-(4a +1)x +4a +3]e x .(1)若曲线y =f (x )在点(1,f (1))处的切线与x 轴平行,求a ;(2)若f (x )在x =2处取得极小值,求a 的取值范围.考点二 利用导数研究函数的最值例、已知函数f (x )=ln x x-1. (1)求函数f (x )的单调区间;(2)设m >0,求函数f (x )在区间[m,2m ]上的最大值.[跟踪训练1.已知函数f (x )=2sin x +sin 2x ,则f (x )的最小值是________.2.已知函数f (x )=ln x +ax 2+bx (其中a ,b 为常数且a ≠0)在x =1处取得极值.考点三 利用导数求解函数极值和最值的综合问题例、已知函数f (x )=ln x +12x 2-ax +a (a ∈R). (1)若函数f (x )在(0,+∞)上为单调递增函数,求实数a 的取值范围;(2)若函数f (x )在x =x 1和x =x 2处取得极值,且x 2≥ e x 1(e 为自然对数的底数),求f (x 2)-f (x 1)的最大值.跟踪训练1.已知函数f (x )=ax 2+bx +c e x(a >0)的导函数f ′(x )的两个零点为-3和0. (1)求f (x )的单调区间;(2)若f (x )的极小值为-e 3,求f (x )在区间[-5,+∞)上的最大值.[课时跟踪检测]1.函数f (x )=x e -x ,x ∈[0,4]的最小值为( )A .0 B.1e C.4e 4 D.2e2 2.若函数f (x )=a e x -sin x 在x =0处有极值,则a 的值为( )A .-1B .0C .1D .e3.已知x =2是函数f (x )=x 3-3ax +2的极小值点,那么函数f (x )的极大值为( )A .15B .16C .17D .184.已知函数f (x )=x 3+bx 2+cx 的大致图象如图所示,则x 21+x 22等于( ) A.23 B.43C.83D.1635.已知直线y =a 分别与函数y =e x +1和y = x -1交于A ,B 两点,则A ,B 之间的最短距离是( ) A.3-ln 22 B.5-ln 22 C.3+ln 22 D.5+ln 226.若函数f (x )=x 3-3a 2x +a (a >0)的极大值是正数,极小值是负数,则a 的取值范围是________.7.已知y =f (x )是奇函数,当x ∈(0,2)时,f (x )=ln x -ax ⎝⎛⎭⎫a >12,当x ∈(-2,0)时,f (x )的最小值为1,则a =________.8.已知函数f (x )=a sin x +b cos x (a ,b ∈R),曲线y =f (x )在点⎝⎛⎭⎫π3,f ⎝⎛⎭⎫π3处的切线方程为y =x -π3. (1)求a ,b 的值;(2)求函数g (x )=f ⎝⎛⎭⎫x +π3x在⎝⎛⎦⎤0,π2上的最小值.9.已知函数f (x )=a ln x +1x(a >0). (1)求函数f (x )的单调区间和极值;(2)是否存在实数a ,使得函数f (x )在[1,e]上的最小值为0?若存在,求出a 的值;若不存在,请说明理由.。
函数的最值知识梳理1. 函数最大值一般地,设函数()y f x =的定义域为I . 如果存在实数M 满足:①对于任意x 都有()f x M ≤. ②存在0x I ∈,使得0()f x M =.那么,称M 是函数()y f x =的最大值.2. 函数最小值一般地,设函数()y f x =的定义域为I . 如果存在实数M 满足:①对于任意x 都有()f x M ≥.②存在0x I ∈,使得0()f x M =.那么,称M 是函数()y f x =的最小值.注意:对于一个函数来说,不一定有最值,若有最值,则最值一定是值域中的一个元素.3. 函数的最值与其单调性的关系.(1)若函数在闭区间[,]a b 上是减函数,则()f x 在[,]a b 上的最大值为 f (a ),最小值为 f (b );(2)若函数在闭区间[,]a b 上是增函数,则()f x 在[,]a b 上的最大值为 f (b ),最小值为 f (a ).4.二次函数在闭区间上的最值.探求二次函数在给定区间上的最值问题,一般要先作出()y f x =的草图,然后根据图象的增减性进行研究.特别要注意二次函数的对称轴与所给区间的位置关系,它是求解二次函数在已知区间上最值问题的主要依据,并且最大(小)值不一定在顶点处取得.例题精讲【例1】求函数()3f x x =在[0,3]上的最大值和最小值.解:因为函数()3f x x =在[0,3]上单调递增所以()3f x x =在[0,3]上的最大值为(3)339f =⨯=;()3f x x =在[0,3]上的最小值为(0)300f =⨯=;【例2】求函数12-=x y 在区间[2,6]上的最大值和最小值. 解:函数12-=x y 的图象如下图所示,所以12-=x y 在区间[2,6]上单调递减; 所以12-=x y 在区间[2,6]上的最大值为2221=-; 最小值为22615=-.题型一 利用图象求最值【例3】求下列函数的最大值和最小值.(1)25332,[,]22y x x x =--∈- (2)|1||2|y x x =+--解:(1)二次函数232y x x =--的对称轴为 x =-1.画出函数的图象,由下图,可知:当1x =-时,max 4y =;当32x =时,min 94y =-. 所以函数25332,[,]22y x x x =--∈-最大值为4,最小值为94-. (2)3,2|1||2|21,123,1x y x x x x x ≥⎧⎪=+--=--<<⎨⎪-≤-⎩ 作出函数图象,如下图,可知:[3,3]y ∈-所以函数的最大值为 3, 最小值为-3.题型二 利用函数单调性求最值【例4】求函数9()f x x x=+在[1,3]x ∈上的最大值和最小值. 分析:先判断函数的单调性,再求最值.解:因为1213x x ≤<≤所以12121299()()()f x f x x x x x -=+-+121299()x x x x =-+-2112129()x x x x x x -=-+ 12129()(1)x x x x =--因为1213x x ≤<≤所以120x x -<,129x x ≤所以12910x x -<,所以12()()0f x f x ->,12()()f x f x > 所以9()f x x x=+在区间[1,3]上单调递减;所以求函数()f x 在[1,3]x ∈上的最小值为918(3)333f =+=,最大值为9(1)1101f =+=. 题型三 函数最值的应用【例5】已知函数22()x x af x x ++=,[1,)x ∈+∞(1)当12a =时,求函数()f x 的最小值.(2)若对任意的[1,)x ∈+∞,()0f x >恒成立,试求a 的取值范围.解:(1)当12a =时,2122()x x f x x ++=设121x x ≤<则12121211()()(2)(2)22f x f x x x x x -=++-++21121212121221()()22x x x x x x x x x x x x --=-+=-因为120x x -<,所以1221x x >,12210x x ->所以12()()0f x f x -<,12()()f x f x <所以()f x 在区间[1,)+∞上单调递增所以的最小值为17(1)1222f =++=.(2)()0f x >对[1,)x ∈+∞恒成立⇔220x x a ++>对[1,)x ∈+∞恒成立⇔22a x x >-- 对[1,)x ∈+∞恒成立.令222(1)1u x x x =--=-++,其在[1,)+∞上是减函数,∴当1x =时,max 3u =-. 因此3a >-.故实数a 的取值范围是(3,)-+∞.课堂练习仔细读题,一定要选择最佳答案哟!1.函数f (x )=⎩⎨⎧ 2x +6 x ∈[1,2]x +7 x ∈[-1,1],则f (x )的最大值、最小值分别为() A .10,6 B .10,8 C .8,6 D .以上都不对2.已知f (x )在R 上是增函数,对实数a 、b 若a +b >0,则有( )A .f (a )+f (b )>f (-a )+f (-b )B .f (a )+f (b )<f (-a )+f (-b )C .f (a )-f (b )>f (-a )-f (-b )D .f (a )-f (b )<f (-a )+f (-b )3. 若f (x )=-x 2+2ax 与g (x )=ax +1在区间[1,2]上都是减函数,则a 的取值范围是( )A .(-1,0)∪(0,1)B .(-1,0)∪(0,1]C .(0,1)D .(0,1] 4.函数y =|x -3|-|x +1|有( )A .最大值4,最小值0B .最大值0,最小值-4C .最大值4,最小值-4D .最大值、最小值都不存在5.函数y =-x 2-10x +11在区间[-1,2]上的最小值是________.6.如果函数f (x )=-x 2+2x 的定义域为[m ,n ],值域为[-3,1],则|m -n |的最小值为________.7. 已知函数2()23f x x x =--,若[,2]x t t ∈+时,求函数()f x 的最值.8. 求函数()1x f x x =-在区间[2,5]上的最大值和最小值.9. 已知函数f(x)=x2+2ax+2,x∈[-5,5].(1)当a=-1 时,求f(x)的最大值和最小值;(2)求使函数y=f(x)在区间[-5,5]上是单调函数的a 的取值范围.。
例析高考函数最值的常见类型及其求法高考中,函数最值问题是常见且重要的题型。
下面将介绍一些常见的函数最值类型及其求解方法。
一、最值类型1.函数最大值:即求函数在定义域上的最大值。
2.函数最小值:即求函数在定义域上的最小值。
3.最大最小值:即求函数在定义域上的最大值和最小值。
4.函数最值交替:即求函数在定义域上的最大值和最小值,且最大值和最小值交替出现。
二、求解方法1.导数法:导数法是求解函数最值的常见方法。
通过求解函数的导数,可以得到函数的增减性和临界点。
具体步骤如下:(1)求函数的导数;(2)求解导数为零的点,即临界点;(3)根据导数的增减性和临界点,判断函数的最值。
2.不等式法:不等式法常用于一次函数的最值求解。
根据函数的性质和不等式的性质,可以通过构建不等式求解函数的最值。
具体步骤如下:(1)根据函数的性质,构建不等式;(2)解不等式,得到函数的定义域;(3)根据定义域和函数的性质,求解函数的最值。
3.定义域法:定义域法常用于分段函数或有条件的函数的最值求解。
通过分析函数的定义域,可以确定函数的取值范围,并求解函数的最值。
具体步骤如下:(1)分析函数的定义域;(2)根据定义域和函数的性质,求解函数的最值。
4.二次函数最值求解:对于一元二次函数,可以通过求解顶点的方法来求解函数的最值。
具体步骤如下:(1)构建二次函数的标准式;(2)根据顶点公式,求解顶点坐标;(3)根据顶点坐标,确定函数的最值。
5.极值点法:对于一些特殊函数,可以通过求解函数的极值点来求解函数的最值。
具体步骤如下:(1)求函数的极值点;(2)根据极值点的性质,判断函数的最值。
以上是常见的函数最值类型及其求解方法。
在解决函数最值问题时,需要根据具体题目的要求和函数的性质选择合适的方法。
掌握这些方法,并通过大量的练习,可以提高函数最值问题的解答能力,从而在高考中取得更好的成绩。
历年高考数学真题精选(按考点分类) 专题九函数的最值与值域 (学生版)一•选择题(共11小题)(2019∙上海)下列函数中,值域为[O, +∞)的是( )l,x> O(2015∙湖北)设XeR,泄义符号函数£g“x = ]O,x = O ,贝%-Lx < O(2014∙全国)函数y = 4SinX+ cos2x 的值域为()4. (2013∙辽宁)已知函数 /(Λ) = Λ-2-2G∕ + 2)X + √ , g(x) =—疋+2(α-2)x-/+8 ・设H I (X) = max{f(x) , g(x)} , H 2(x) ≈ muι{f(x) , g(x)} , (HUιx{jκq])表示 P , q 中的较大{S> min{p, q}表示p , q 中的较小值),记H∣(x )的最小值为A , H 2(x )的最大值为3,贝 ∣JΛ-B = ( )取值范围是(8・(2008-重庆)已知函数y = √Γ^7÷√773的最大值为M ,最小值为加,则伫的值为(M)笫]页(共久O 页)6. A ・[-13, 19]B. [-13, 21] C ・[-6, 12] D ・[一6, 19]7.A[-1. A ・ y = 2ΛB. y = xC. y = IanxD.y = COSx2. A ・ IXl= Λ∣sg,2xl B. IXl=JVSgHIXlC. IXI=I xID. I Λ∙ I= XSglIx3. A ・[-5, 4]B. [3, 7]C. [—5, 3]D.5. A. 16B. 一 16C. -16/一加一16D. 1&/+加一16(2010-全国大纲版I )已知函数f (x )=^lgx ∖.若"工〃且,/ (a) =/ (b),则α+b 的A ・(l,+∞)B. [1, +oo)C. (2,+oo) D ・[2, +x)9.(2006∙浙江)对a, beRΛ^max{a, b} = <u 、a 》b/?,a <h 函数/(x) = Tnttr{lx+ll » lx-2l}(x∈∕?)的最小值是()A. 0B.-C.3 D ・32210. (2010∙全国) 函数心Z ::•?歸g 吟的最大值妆)A.-B.-C. √3D.-434211・(2010∙山东) 函数/(X) = Iog 2O x +!)的值域为()A ・(0,+oo) B. [0, +∞) C ・ (1,+x)D ∙ [1, +oo)二•填空题(共8小题)12. (2016∙北京)函数rω = -u≥2)的最大值为 __________ ・x-113. (2O15∙天津)已知b>O, ab = 8∙则当&的值为 ________________ 时,log 2^log 2(2b)取得最大值.414. (2017*浙江)已知aeR,函数/(x)dx + 一―“l+“在区间[1, 4]上的最大值是5,贝IJdX的取值范围是—•15. (2015-湖北)“为实数,函数/CI)=IFiXl 在区间[o,i ]上的最大值记为g (a ).当“=时,S (a)的值最小.2 216・(2015∙山东)泄义运算x0y = ΔlΞ22(x , Ye R f ^≠0).当 x>O, y>0 时,A ®>- + (2y) ® A-的最小值为_.17・(2012 •新课标)设函数/(x) = +sinv的最大值为M ,最小值为川,则A* TlM +m= ________ ・18. (2008∙全国)函数y = V A"厂(QO)的最小值为 ・(x÷l)(4x + l)19. (2O12∙L1∣东)若函数f(x)≈a l (a>0,a≠∖)在[_1 , 2]上的最大值为4,最小值为加,且函数g(x) = (I -伽)√7在[0, +co)上是增函数,贝IJa = ____ ・√2τ√3τD历年高考数学真题精选(按考点分类) 专题九函数的最值与值域 (教师版)一•选择题(共11小题)1. (2019∙±海)下列函数中,值域为[0, +00)的是()【答案】B 【解析】A, y = 2'的值域为(0,+oo ),故A 错B: y = √7的定义域为[O, +oc ),值域也是[0, +oc ),故B 正确. C : y = tanx 的值域为(-x,+oc),故C 错,DZ y = cosx 的值域为[-1,l,x> 00,x = 0 ,则(-LA<0【答案】D故选:D.3・(2014∙全国)函数y = 4sinx + cos2x 的值域为(【答案】CA ・ y = 2ΛB. y = xC. y = IanxD.y = COSx+1],故D 错.2. (2015-湖北)设χ∈R,定义符号函数S gnX = A ・ IXl=XlSg,2xlB. IXl=Xyg 舁IXlC. IXl=IXIsgH Λ∙D. I Λ∙ I= XSgnX【解析】对于选项A ,右边= x∣5^rl=<X. 0,:二,而左边Tgκ>0二。
高考数学复习考点知识与题型专题讲解函数的单调性与最值考试要求1.借助函数图象,会用数学符号语言表达函数的单调性、最值,理解实际意义.2.掌握函数单调性的简单应用.知识梳理1.函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数f(x)的定义域为I,区间D⊆I,如果∀x1,x2∈D当x1<x2时,都有f(x1)<f(x2),那么就称函数f(x)在区间D上是增函数当x1<x2时,都有f(x1)>f(x2),那么就称函数f(x)在区间D上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的(2)单调区间的定义如果函数y=f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D 叫做y =f (x )的单调区间. 2.函数的最值前提设函数y =f (x )的定义域为I ,如果存在实数M 满足 条件(1)∀x ∈I ,都有f (x )≤M ; (2)∃x 0∈I ,使得f (x 0)=M (1)∀x ∈I ,都有f (x )≥M ;(2)∃x 0∈I ,使得f (x 0)=M结论M 为最大值M 为最小值常用结论1.∀x 1,x 2∈D 且x 1≠x 2,有f (x 1)-f (x 2)x 1-x 2>0(<0)或(x 1-x 2)[f (x 1)-f (x 2)]>0(<0)⇔f (x )在区间D上单调递增(减).2.在公共定义域内,增函数+增函数=增函数,减函数+减函数=减函数. 3.函数y =f (x )(f (x )>0或f (x )<0)在公共定义域内与y =-f (x ),y =1f (x )的单调性相反. 4.复合函数的单调性:函数y =f (u ),u =φ(x )在函数y =f (φ(x ))的定义域上,如果y =f (u )与u =φ(x )的单调性相同,那么y =f (φ(x ))单调递增;如果y =f (u )与u =φ(x )的单调性相反,那么y =f (φ(x ))单调递减. 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)若f (x )的定义域为R ,且f (-3)<f (2),则f (x )为R 上的增函数.(×) (2)函数f (x )在(-2,3)上单调递增,则函数的单调递增区间为(-2,3).(×) (3)因为y =x 与y =e x 都是增函数,所以y =x e x 在定义域内为增函数.(×)(4)函数y =1x 的单调递减区间是(-∞,0)∪(0,+∞).(×) 教材改编题1.下列函数中,在区间(0,1)上是增函数的是() A .y =|x +1|B .y =2-x C .y =1x D .y =x 2-x +1 答案A2.函数y =xx -1在区间[2,3]上的最大值是________.答案2解析函数y =x x -1=1+1x -1在[2,3]上单调递减,当x =2时,y =x x -1取得最大值22-1=2.3.函数y =ax -1在(-∞,1)上为增函数,则实数a 的取值范围是________. 答案(-∞,0)题型一 确定函数的单调性 命题点1求具体函数的单调区间例1下列函数在(0,+∞)上单调递增的是________.(填序号) ①y =e x -e -x ;②y =|x 2-2x |;③y =x +cos x ;④y =x 2+x -2. 答案①③解析∵y =e x 与y =-e -x 为R 上的增函数,∴y =e x -e -x 为R 上的增函数,故①正确; 由y =|x 2-2x |的图象知,故②不正确; 对于③,y ′=1-sin x ≥0,∴y =x +cos x 在R 上为增函数,故③正确;y =x 2+x -2的定义域为(-∞,-2]∪[1,+∞),故④不正确.命题点2判断或证明函数的单调性 例2试讨论函数f (x )=axx -1(a ≠0)在(-1,1)上的单调性. 解方法一设-1<x 1<x 2<1, f (x )=a ⎝ ⎛⎭⎪⎪⎫x -1+1x -1=a ⎝ ⎛⎭⎪⎫1+1x -1, f (x 1)-f (x 2)=a ⎝ ⎛⎭⎪⎫1+1x 1-1-a ⎝ ⎛⎭⎪⎫1+1x 2-1 =a (x 2-x 1)(x 1-1)(x 2-1),由于-1<x 1<x 2<1,所以x 2-x 1>0,x 1-1<0,x 2-1<0,故当a >0时,f (x 1)-f (x 2)>0,即f (x 1)>f (x 2),函数f (x )在(-1,1)上单调递减; 当a <0时,f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),函数f (x )在(-1,1)上单调递增.方法二f ′(x )=(ax )′(x -1)-ax (x -1)′(x -1)2=a (x -1)-ax (x -1)2=-a(x -1)2. 当a >0时,f ′(x )<0,函数f (x )在(-1,1)上单调递减; 当a <0时,f ′(x )>0,函数f (x )在(-1,1)上单调递增. 教师备选1.设函数f (x )=⎩⎨⎧1,x >0,0,x =0,-1,x <0,g (x )=x 2f (x -1),则函数g (x )的单调递减区间是__________. 答案[0,1)解析由题意知g (x )=⎩⎪⎨⎪⎧x 2,x >1,0,x =1,-x 2,x <1,该函数的图象如图所示,其单调递减区间是[0,1).2.已知a >0,函数f (x )=x +ax (x >0),证明:函数f (x )在(0,a ]上单调递减,在[a ,+∞)上单调递增.证明方法一(定义法)设x 1>x 2>0, f (x 1)-f (x 2)=x 1+a x 1-x 2-ax 2=(x 1-x 2)+a (x 2-x 1)x 1x 2=(x 1-x 2)(x 1x 2-a )x 1x 2,∵x 1>x 2>0,∴x 1-x 2>0,x 1x 2>0, 当x 1,x 2∈(0,a ]时,0<x 1x 2<a , ∴x 1x 2-a <0,∴f (x 1)-f (x 2)<0,f (x 1)<f (x 2), ∴f (x )在(0,a ]上单调递减, 当x 1,x 2∈[a ,+∞)时,x 1x 2>a , ∴x 1x 2-a >0,∴f (x 1)-f (x 2)>0, ∴f (x 1)>f (x 2),∴f (x )在[a ,+∞)上单调递增. 方法二(导数法)f ′(x )=1-a x 2=x 2-ax2(x >0),令f ′(x )>0⇒x 2-a >0⇒x >a , 令f ′(x )<0⇒x 2-a <0⇒0<x <a ,∴f (x )在(0,a ]上单调递减,在[a ,+∞)上单调递增.思维升华 确定函数单调性的四种方法 (1)定义法:利用定义判断.(2)导数法:适用于初等函数可以求导的函数.(3)图象法:由图象确定函数的单调区间需注意两点:一是单调区间必须是函数定义域的子集;二是图象不连续的单调区间要分开写,用“和”或“,”连接,不能用“∪”连接.(4)性质法:利用函数单调性的性质,尤其是利用复合函数“同增异减”的原则时,需先确定简单函数的单调性.跟踪训练1(1)函数f (x )=ln(4+3x -x 2)的单调递减区间是() A.⎝ ⎛⎦⎥⎤-∞,32B.⎣⎢⎡⎭⎪⎫32,+∞ C.⎝ ⎛⎦⎥⎤-1,32D.⎣⎢⎡⎭⎪⎫32,4 答案D解析f (x )=ln(4+3x -x 2)的定义域为4+3x -x 2>0, 解得x ∈(-1,4).令t =4+3x -x 2,对称轴为x =32,故单调递增区间为⎝ ⎛⎭⎪⎫-1,32,单调递减区间为⎣⎢⎡⎭⎪⎫32,4,因为y =ln t 为增函数,所以f (x )=ln(4+3x -x 2)的单调递减区间为⎣⎢⎡⎭⎪⎫32,4.(2)函数f (x )=|x -2|x 的单调递减区间是________. 答案[1,2]解析f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≥2,-x 2+2x ,x <2.画出f (x )的大致图象(如图所示),由图知f (x )的单调递减区间是[1,2]. 题型二 函数单调性的应用 命题点1比较函数值的大小例3(2022·成都模拟)已知函数f (x )为R 上的偶函数,对任意x 1,x 2∈(-∞,0),均有(x 1-x 2)[f (x 1)-f (x 2)]<0成立,若a =f (ln 2),b =f (133),c =f (13e ),则a ,b ,c 的大小关系是()A .c <b <aB .a <c <bC .a <b <cD .c <a <b 答案B解析∵对任意x 1,x 2∈(-∞,0), 均有(x 1-x 2)[f (x 1)-f (x 2)]<0成立,∴此时函数在区间(-∞,0)上单调递减,∵f(x)是偶函数,∴当x∈(0,+∞)时,f(x)单调递增,又f(x)=13x在x∈(0,+∞)上单调递增,∴1<13e<133,又0<ln2<1,∴ln2<13e<133,∴13(3)f>13(e)f>f(ln2),即a<c<b.命题点2求函数的最值例4(2022·深圳模拟)函数y=x2+5x2+4的最小值为________.答案5 2解析令x2+4=t,则t≥2,∴x2=t2-4,∴y=t2+1t=t+1t,函数y=t+1t在[2,+∞)上单调递增,∴当t =2时,y min =52. 命题点3解不等式例5已知函数f (x )=ln x +2x ,若f (x -1)<2,则实数x 的取值范围是________. 答案(1,2)解析f (x )在定义域(0,+∞)上是增函数, 且f (1)=2,∴原不等式可化为f (x -1)<f (1), ∴⎩⎪⎨⎪⎧x -1<1,x -1>0,解得1<x <2. 命题点4求参数的取值范围 例6函数f (x )=⎩⎪⎨⎪⎧a x ,x ≥1,⎝ ⎛⎭⎪⎫4-a 2x +2,x <1,且满足对任意的实数x 1≠x 2都有f (x 1)-f (x 2)x 1-x 2>0成立,则实数a 的取值范围是() A .[4,8) B .(4,8) C .(1,8] D .(1,8) 答案A解析函数f (x )=⎩⎨⎧a x ,x ≥1,⎝ ⎛⎭⎪⎫4-a 2x +2,x <1满足对任意的实数x 1≠x 2都有f (x 1)-f (x 2)x 1-x 2>0,所以函数f (x )=⎩⎨⎧ a x ,x ≥1,⎝ ⎛⎭⎪⎫4-a 2x +2,x <1是R 上的增函数,则由指数函数与一次函数的单调性可知应满足⎩⎪⎨⎪⎧ a >1,4-a 2>0,a ≥4-a 2+2,解得4≤a <8,所以实数a 的取值范围为[4,8).教师备选 1.(2022·嘉峪关模拟)函数f (x )=ln(x 2-ax -3)在(1,+∞)上单调递增,则a 的取值范围是()A .(-∞,-2]B .(-∞,-2)C .(-∞,2]D .(-∞,2)答案A 解析函数f (x )=ln(x 2-ax -3)为复合函数,令u (x )=x 2-ax -3,y =ln u 为增函数,故只要u (x )=x 2-ax -3在(1,+∞)上单调递增即可,只要⎩⎨⎧ a 2≤1,u (1)≥0,解得a ≤-2.2.对于任意实数a ,b ,定义min{a ,b }=⎩⎨⎧a ,a ≤b ,b ,a >b .设函数f (x )=-x +3,g (x )=log 2x ,则函数h (x )=min{f (x ),g (x )}的最大值是______.答案1解析方法一在同一坐标系中,作函数f (x ),g (x )的图象,依题意,h (x )的图象为如图所示的实线部分.易知点A (2,1)为图象的最高点,因此h (x )的最大值为h (2)=1.方法二依题意,h (x )=⎩⎪⎨⎪⎧log 2x ,0<x ≤2,-x +3,x >2.当0<x ≤2时,h (x )=log 2x 单调递增,当x >2时,h (x )=3-x 单调递减,因此h (x )在x =2时取得最大值h (2)=1.思维升华 (1)比较函数值的大小,应将自变量转化到同一个单调区间内,然后利用函数的单调性解决.(2)求解函数不等式,其实质是函数单调性的逆用,由条件脱去“f ”,转化为自变量间的大小关系,应注意函数的定义域.(3)利用单调性求参数的取值(范围).根据其单调性直接构建参数满足的方程(组)(不等式(组))或先得到其图象的升降,再结合图象求解.对于分段函数,要注意衔接点的取值.跟踪训练2(1)已知函数f (x )=e |x |,记a =f (log 23),b =f (-2),c =f (e),则a ,b ,c 的大小关系为()A .a <b <cB .c <b <aC .b <a <cD .b <c <a答案A解析函数f (x )=e |x |,其定义域为R ,且f (-x )=e |-x |=e |x |=f (x ),∴f (x )为偶函数,当x >0时,f (x )=e x 为增函数,又b =f (-2)=f (2),且e>2>log 23,∴f (e)>f (2)>f (log 23),即a <b <c .(2)设函数f (x )=⎩⎨⎧ -x 2+4x ,x ≤4,log 2x ,x >4,若函数y =f (x )在区间(a ,a +1)上单调递增,则实数a 的取值范围是()A .(-∞,1]B .[1,4]C .[4,+∞)D .(-∞,1]∪[4,+∞)答案D解析画出函数f (x )=⎩⎪⎨⎪⎧-x 2+4x ,x ≤4,log 2x ,x >4的图象,如图,由图可知函数f (x )=⎩⎪⎨⎪⎧-x 2+4x ,x ≤4,log 2x ,x >4的单调递增区间为(-∞,2),(4,+∞), ∵函数在(a ,a +1)上单调递增,∴a +1≤2或a ≥4,∴a ≤1或a ≥4.(3)已知f (x )是定义在R 上的偶函数,且在区间[0,+∞)上单调递减,则不等式f (2x -1)>f (x +1)的解集为________.答案(0,2)解析依题意f (x )是定义在R 上的偶函数,且在区间[0,+∞)上单调递减,所以 f (2x -1)>f (x +1)⇔(2x -1)2<(x +1)2,即4x 2-4x +1<x 2+2x +1,即x 2-2x =x (x -2)<0⇒x ∈(0,2).课时精练1.下列函数中,在区间(0,+∞)内单调递减的是()A .y =1x -xB .y =x 2-xC .y =ln x -xD .y =e x答案A解析当x∈(0,+∞)时,y=1x与y=-x单调递减,∴y=1x-x在(0,+∞)上单调递减.2.函数f(x)=x1-x在()A.(-∞,1)∪(1,+∞)上是增函数B.(-∞,1)∪(1,+∞)上是减函数C.(-∞,1)和(1,+∞)上是增函数D.(-∞,1)和(1,+∞)上是减函数答案C解析函数f(x)的定义域为{x|x≠1}.f(x)=x1-x=11-x-1,根据函数y=-1x的单调性及有关性质,可知f(x)在(-∞,1)和(1,+∞)上是增函数.3.(2022·安徽六安一中月考)若函数f(x)=2x2+31+x2,则f(x)的值域为()A.(-∞,3] B.(2,3) C.(2,3] D.[3,+∞) 答案C解析f(x)=2x2+31+x2=2+1x2+1,∵x 2≥0,∴x 2+1≥1,∴0<1x 2+1≤1, ∴f (x )∈(2,3].4.(2022·贵阳模拟)已知函数f (x )在(-∞,+∞)上单调递减,且为奇函数,若f (1)=-2,则满足-2≤f (x -2)≤2的x 的取值范围是()A .[-2,2]B .[-1,1]C .[1,3]D .[0,4]答案C解析因为f (x )为奇函数,若f (1)=-2,则f (-1)=2,所以不等式-2≤f (x -2)≤2可化为f (1)≤f (x -2)≤f (-1),又f (x )在(-∞,+∞)上单调递减,所以-1≤x -2≤1,解得1≤x ≤3.5.(2022·南通模拟)已知函数f (x )=⎩⎨⎧e x -e -x ,x >0,-x 2,x ≤0,若a =50.01,b =log 32,c =log 20.9,则有()A .f (a )>f (b )>f (c )B .f (b )>f (a )>f (c )C .f (a )>f (c )>f (b )D .f (c )>f (a )>f (b )答案A解析y =e x 是增函数,y =e -x 是减函数,因此在(0,+∞)上y =e x -e -x 单调递增,且此时f (x )>0.f (x )=-x 2在x ≤0时单调递增,所以f (x )在R 上单调递增.c =log 20.9<0,b =log 32,所以0<b <1,a =50.01>1,即a >b >c ,所以f (a )>f (b )>f (c ).6.已知函数f (x )=⎩⎪⎨⎪⎧ ln x +2x ,x >0,21-x,x ≤0,则下列结论正确的个数是()①f (x )在R 上为增函数;②f (e)>f (2);③若f (x )在(a ,a +1)上单调递增,则a ≤-1或a ≥0;④当x ∈[-1,1]时,f (x )的值域为[1,2].A .1B .2C .3D .4答案B解析易知f (x )在(-∞,0],(0,+∞)上单调递增,①错误,②正确;若f (x )在(a ,a +1)上单调递增,则a ≥0或a +1≤0,即a ≤-1或a ≥0,故③正确;当x ∈[-1,0]时,f (x )∈[1,2],当x ∈(0,1]时,f (x )∈(-∞,2],故x ∈[-1,1]时,f (x )∈(-∞,2],故④不正确.7.函数y =-x 2+2|x |+1的单调递增区间为__________,单调递减区间为________. 答案(-∞,-1]和[0,1](-1,0)和(1,+∞)解析由于y =⎩⎪⎨⎪⎧-x 2+2x +1,x ≥0,-x 2-2x +1,x <0, 即y =⎩⎪⎨⎪⎧-(x -1)2+2,x ≥0,-(x +1)2+2,x <0. 画出函数的图象如图所示,单调递增区间为(-∞,-1]和[0,1],单调递减区间为(-1,0)和(1,+∞).8.(2022·山东师大附中质检)已知函数f (x )=e |x -a |(a 为常数),若f (x )在区间[1,+∞)上单调递增,则实数a 的取值范围是________. 答案(-∞,1]解析f (x )=⎩⎪⎨⎪⎧e x -a ,x ≥a ,e a -x ,x <a , 当x ≥a 时,f (x )单调递增,当x <a 时,f (x )单调递减, 又f (x )在[1,+∞)上单调递增,所以a ≤1.9.已知函数f (x )=ax -1ax +2a (a >0),且f (x )在(0,1]上的最大值为g (a ),求g (a )的最小值. 解f (x )=ax -1ax +2a (a >0),∴f (x )在(0,1]上单调递增,∴f (x )max =f (1)=a +1a, ∴g (a )=a +1a ≥2,当且仅当a =1a 即a =1时取等号,∴g (a )的最小值为2.10.已知函数f (x )=a -22x +1. (1)求f (0);(2)探究f (x )的单调性,并证明你的结论;(3)若f (x )为奇函数,求满足f (ax )<f (2)的x 的取值范围. 解(1)f (0)=a -220+1=a -1.(2)f (x )在R 上单调递增.证明如下: ∵f (x )的定义域为R ,∴任取x 1,x 2∈R 且x 1<x 2, 则f (x 1)-f (x 2)=a -1221x +-a +2221x + =12122(22)(12)(12)x x x x ⋅-++, ∵y =2x 在R 上单调递增且x 1<x 2, ∴0<12x <22x ,∴12x -22x <0,12x +1>0,22x +1>0. ∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2). ∴f (x )在R 上单调递增.(3)∵f (x )是奇函数,∴f (-x )=-f (x ),即a -22-x +1=-a +22x +1,解得a =1. ∴f (ax )<f (2)即为f (x )<f (2),又∵f (x )在R 上单调递增,∴x <2. ∴x 的取值范围是(-∞,2).11.定义max{a ,b ,c }为a ,b ,c 中的最大值,设M =max{2x ,2x -3,6-x },则M 的最小值是()A .2B .3C .4D .6答案C解析画出函数M =max{2x ,2x -3,6-x }的图象(如图),由图可知,函数M 在A (2,4)处取得最小值22=6-2=4,故M 的最小值为4.12.已知函数f (x )=⎩⎪⎨⎪⎧ ⎝ ⎛⎭⎪⎫12x -1,x ≤0,-x 3,x >0,当x ∈[m ,m +1]时,不等式f (2m -x )<f (x +m )恒成立,则实数m 的取值范围是()A .(-∞,-4)B .(-∞,-2)C .(-2,2)D .(-∞,0)答案B解析易知函数f (x )=⎩⎨⎧ ⎝ ⎛⎭⎪⎫12x -1,x ≤0,-x 3,x >0在x ∈R 上单调递减,又f (2m -x )<f (x +m )在x ∈[m ,m +1]上恒成立,所以2m-x>x+m,即2x<m在x∈[m,m+1]上恒成立,所以2(m+1)<m,解得m<-2.13.如果几个函数的定义域相同,值域也相同,但解析式不同,称这几个函数为“同域函数”,则函数y=x+x+1的值域为________,与y是“同域函数”的一个解析式为________.答案[-1,+∞)y=x,x∈[-1,+∞)(答案不唯一)解析y=x+x+1的定义域为[-1,+∞),且在[-1,+∞)上单调递增,∴当x=-1时,y min=-1,∴值域为[-1,+∞),∴与y是“同域函数”的解析式可为y=x,x∈[-1,+∞).14.设函数f(x)=ax+1x+2a在区间(-2,+∞)上单调递增,那么a的取值范围是________.答案[1,+∞)解析f(x)=ax+2a2-2a2+1x+2a=a-2a2-1x+2a,定义域为{x|x≠-2a},所以⎩⎪⎨⎪⎧ 2a 2-1>0,-2a ≤-2,所以⎩⎪⎨⎪⎧2a 2-1>0,a ≥1,所以a ≥1.15.(2022·沧州模拟)设函数f (x )=x 3-sin x +x ,则满足f (x )+f (1-2x )<0的x 的取值范围是________.答案(1,+∞)解析f (x )=x 3-sin x +x ,∵f (-x )=(-x )3-sin(-x )+(-x )=-(x 3-sin x +x )=-f (x ),∴f (x )为奇函数,又f ′(x )=3x 2-cos x +1≥0,∴f (x )为R 上的增函数,∴f (x )+f (1-2x )<0可化为f (x )<-f (1-2x )=f (2x -1),∴x <2x -1,即x >1,∴满足f (x )+f (1-2x )<0的x 的取值范围是(1,+∞).16.已知定义在R 上的函数f (x )满足f (x +y )=f (x )+f (y )+1,且当x >0时,f (x )>-1.(1)求f (0)的值,并证明f (x )在R 上是增函数;(2)若f(1)=1,解关于x的不等式f(x2+2x)+f(1-x)>4. 解(1)令x=y=0,得f(0)=-1.在R上任取x1>x2,则x1-x2>0,所以f(x1-x2)>-1.又f(x1)=f[(x1-x2)+x2]=f(x1-x2)+f(x2)+1>f(x2),∴函数f(x)在R上是增函数.(2)由f(1)=1,得f(2)=3,f(3)=5.由f(x2+2x)+f(1-x)>4得f(x2+x+1)>f(3),因为函数f(x)在R上是增函数,所以x2+x+1>3,解得x<-2或x>1,故原不等式的解集为{x|x<-2或x>1}.。
函数的最值(值域)●高考要求掌握求函数值域的基本方法(直接法、换元法、判别式法);掌握二次函数值域(最值)或二次函数在某一给定区间上的值域(最值)的求法最值问题,几乎涉及到高中数学的各个分支,是历年高考重点考查的知识点之一,有一些基础题,也有一些小综合的中档题,更有一些以难题形式出现.它经常与三角函数、二次函数、一元二次方程、不等式及某些几何知识紧密联系.所以其解法灵活,综合性强,能力要求高.解决这类问题,要掌握各数学分支知识,能综合运用各种数学技能,灵活选择合理的解题方法.考生的运算能力,分析问题和解决问题能力在这里充分展现.因此我们应注意总结最大、最小值问题的解题方法与技巧,以提高高考应变能力因函数的最大、最小值求出来了,值域也就知道了反之,若求出的函数的值域为非开区间,函数的最大或最小值也等于求出来了●重难点归纳(1)求函数的值域此类问题主要利用求函数值域的常用方法 配方法、分离变量法、单调性法、导数法 数形结合法(图像法)导数法 数形结合法、判别式法、部分分式、均值不等式、换元法、不等式法等 无论用什么方法求函数的值域,都必须考虑函数的定义域(2)函数的综合性题目此类问题主要考查函数值域、单调性、奇偶性、反函数等一些基本知识相结合的题目 此类问题要求考生具备较高的数学思维能力和综合分析能力以及较强的运算能力 在今后的命题趋势中综合性题型仍会成为热点和重点,并可以逐渐加强(3)运用函数的值域解决实际问题此类问题关键是把实际问题转化为函数问题,从而利用所学知识去解决此类题要求考生具有较强的分析能力和数学建模能力 ●知识点归纳 一、相关概念1、值域:函数A x x f y ∈=,)(,我们把函数值的集合}/)({A x x f ∈称为函数的值域。
2、最值:求函数最值常用方法和函数值域的方法基本相同。
事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值。
因此,求函数的最值和值域,其实质是相同的,只是提问不同而已。
最大值:一般地,设函数y =f (x )的定义域为I ,如果存在实数M 满足:①对于任意的x ∈I ,都有f (x )≤M ;②存在x 0∈I ,使得f (x 0) = M 。
那么,称M 是函数y =f (x )的最大值。
记作()max 0y f x = 最小值:一般地,设函数y =f (x )的定义域为I ,如果存在实数M 满足:①对于任意的x ∈I ,都有f (x )≥M ;②存在x 0∈I ,使得f (x 0) = M 。
那么,称M 是函数y =f (x )的最小值。
记作()min 0y f x = 注意:①函数最大(小)首先应该是某一个函数值,即存在x 0∈I ,使得f (x 0) = M ;② 函数最大(小)应该是所有函数值中最大(小)的,即对于任意的x ∈I ,都有f (x )≤M (f (x )≥M )。
二、 确定函数值域的原则1、当函数)(x f y =用表格给出时,函数的值域指表格中实数y 的集合;则值域为{1,2,3,4}2、数)(x f y =的图像给出时,函数的值域是指图像在y 轴上的投影所覆盖的实数y 的集合;3、数)(x f y =用解析式给出时,函数的值域由函数的定义域及其对应法则唯一确定;4、由实际问题给出时,函数的值域由问题的实际意义决定。
三、基本函数的值域1、一次函数)(0≠+=a b kx y 的定义域为R ,值域为R ;2、二次函数)(02≠++=a c bx ax y 的定义域为R ,;当]44(0);44[022ab ac ,,a ,a b ac ,a --∞<∞+->值域是时值域是时3、反比例函数)0(≠=k xk y的定义域为{x|x ≠0},值域为}0/{≠y y ;4、数函数)10(≠>=a a a y x 且的值域为}0/{>y y ;5、对数函数)10(log ≠>=a a x y a 且的值域为R ;6、函数y=sinx 、y=cosx 的值域是 ][1,1-;7、函数 2k x ,tan ππ+≠=x y ,cot x y =),(Z k k x ∈≠π的值域为R 。
四、求函数值域的方法函数的值域是由其对应法则和定义域共同决定的其类型依解析式的特点分可分三类:(1)求常见函数值域;(2)求由常见函数复合而成的函数的值域;(3)求由常见函数作某些“运算”而得函数的值域求函数的值域是比较困难的数学问题,中学数学要求能用初等方法求一些简单函数的值域问题。
常用方法:(1)观察法(用非负数的性质,如:20x ≥;0x ≥0(0)x ≥≥等)例如:求下列函数的值域:y=-3x 2+2;{y|y ≥2}变式:y=5+21+x (x ≥-1).{y|y ≥5}最值问题,几乎涉及到高中数学的各个分支,是历年高考重点考查的知识点之一,有一些基础题,也有一些小综合的中档题,更有一些以难题形式出现.它经常与三角函数、二次函数、一元二次方程、不等式及某些几何知识紧密联系.所以其解法灵活,综合性强,能力要求高.解决这类问题,要掌握各数学分支知识,能综合运用各种数学技能,灵活选择合理的解题方法.考生的运算能力,分析问题和解决问题能力在这里充分展现.函数y=ax+1 (a ≠0,-1≤x ≤1)的值域是______. (2)直接法:利用常见函数的值域来求,(3)配方法:(二次或四次) 转化为二次函数,利用二次函数的特征来求值;常转化为含有自变量的平方式与常数的和,型如:),(,)(2n m x c bx ax x f ∈++=的形式,然后根据变量的取值范围确定函数的最值;例如:求值域:y=21x x ++,x R ∈;x []3,1-∈; (1,5]x ∈;[5,1]x ∈-- 变式1:y =-x 2+4x -1 x ∈[-1,3); 变式2:求函数y=34252+-x x 的值域.变式3:当]2,0(∈x 时,函数3)1(4)(2-++=x a ax x f 在2=x 时取得最大值,则a 的取值范围是___(答:21-≥a );(4)换元法(代数换元法)通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题,化归思想;例如:求函数x x y -+=142的值域. (]4,∞- 变式1:求函数y=3x-x 21-的值域.{y|y ≤23}变式2:21y x =++的值域为_____(答:(3,)+∞)t =,0t ≥。
运用换元法时,要特别要注意新元t 的范围);变式3:4y x =++的值域为____(答:[1,4]);变式4:函数21x x y --=的值域为____变式5:22sin 3cos 1y x x =--的值域为_____(答:17[4,]8-);变式6:sin cos sin cos y x x x x =++ 的值域为____(答:1[1,2-+);变式7:求函数)42(5loglog241241≤≤+-=x xx y的值域(5)分离常数法(分式转化法);对某些分式函数,可通过分离常数法,化成部分分式来求值域.(6)逆求法(反求法):通过反解,用y 来表示x ,再由x 的取值范围,通过解不等式,得出y 的取值范围;常用来解,型如:),(,n m x dcx b ax y ∈++=例如:求下列函数的值域:y=12++x x ({y|y 1≠})变式:函数y =2211xx +-的值域是( )A.[-1,1]B.(-1,1]C.[-1,1)D.(-1,1)解法一:y =2211xx +-=212x+-1. ∵1+x 2≥1,∴0<212x+≤2.∴-1<y ≤1.解法二:由y =2211xx +-,得x 2=yy +-11.∵x 2≥0,∴yy +-11≥0,解得-1<y ≤1.解法三:令x =tan θ(-2π<θ<2π),则y =θθ22tan 1tan 1+-=cos2θ.∵-π<2θ<π,∴-1<cos2θ≤1,即-1<y ≤1.答案:B 求函数()3025x y x x -=≥+的值域求函数122+=x xy 的值域(7)利用判别式法(将函数转化为二次方程);若函数y =f (x )可以化成一个系数含有y 的关于x 的二次方程a (y )x 2+ b (y )x +c (y )=0,则在a (y )≠0时,由于x 、y 为实数,故必须有Δ=b 2(y )-4a (y )·c (y )≥0,从而确定函数的最值,检验这个最值在定义域内有相应的x 值.例5 求函数y =432+x x 的最值.[-43,43]变式:22221x x y x x -+=++;[1,5](8)三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域;求函数2sin 11sin y θθ-=+,313x xy =+,2sin 11cos y θθ-=+的值域(答: 1(,]2-∞、(0,1)、3(,]2-∞);(9)基本不等式法:转化成型如:)0(>+=k xk x y ,利用基本不等式公式来求值域;设12,,,x a a y 成等差数列,12,,,x b b y 成等比数列,则21221)(b b a a +的取值范围是____________.(答:(,0][4,)-∞+∞ )。
求函数)52(1≤≤+=x xx y的值域求函数41422+++=xx y 的最小值(10)单调性法:函数为单调函数,可根据函数的单调性求值域如果函数y =f (x )在区间[a ,b ]上单调递增,在区间[b ,c ]上单调递减则函数y =f (x )在x =b 处有最大值f (b );如果函数y =f (x )在区间[a ,b ]上单调递减,在区间[b ,c ]上单调递增则函数y =f (x )在x =b 处有最小值f (b );求1(19)y x x x=-<<,229sin 1sin y x x=++的值域为______(答:80(0,)9、11[,9]2); 函数f (x )=xx x1log823-+-的值域【2,3⎡⎫+∞⎪⎢⎣⎭】 函数412)21(--=x x y 的值域【(】(11)数形结合:根据函数图象或函数的几何图形,利用数型结合的方法来求值域已知点(,)P x y 在圆221x y +=上,求2y x +及2y x -的取值范围(答:[33-、[); 求函数y =的值域. 求函数2sin 2cos x y x-=-的值域(12)导数法―求函数32()2440f x x x x =+-,[3,3]x ∈-的最小值。
(答:-48)●典例剖析题型一:函数值域问题 例1、求下列函数的值域① y=3x+2(-1≤x ≤1) ②x x f -+=42)( ③1+=x x y ④xx y 1+=解:①∵-1≤x ≤1,∴-3≤3x ≤3,∴-1≤3x+2≤5,即-1≤y ≤5,∴值域是[-1,5]②∵),0[4+∞∈-x ∴),2[)(+∞∈x f 即函数x x f -+=42)(的值域是 { y| y ≥2}③1111111+-=+-+=+=x x x x x y ∵011≠+x ∴1≠y当x<0时,)1(xx y -+--==-2)1(2----xx 2-≤∴值域是 ]2,(--∞[2,+∞)(此法也称为配方法) 函数xx y 1+=的图像为:∴值域是 ]2,(--∞[2,+∞)例2.求下列函数的值域:(1)232y x x =-+;(2)y =(3)312x y x +=-;(4)y x =+(5)y x =+(6)|1||4|y x x =-++;(7)22221x x y x x -+=++;(8)2211()212x x y x x -+=>-;(9)1sin 2cos x y x-=-。