假设法讲义及练习
- 格式:doc
- 大小:97.00 KB
- 文档页数:12
第 21 讲假设法解题基础卷1.小明有 2 元和 5 元的邮票共 100 枚,总价钱为 320 元,这两种邮票各有多少枚?5×100=500元,500-320=180元2元:180÷﹙5-2﹚=60枚5元:100-60=40枚2.松鼠妈妈采松子,晴天每天可以采 20 个,雨天每天只能采 12 个。
它一连几天采了 112 个松子,平均每天采 14 个。
问:这几天当中有几天有雨?采了:112÷14=8天假设全是晴天应该采 20×8=160个比实际少了 160-112=48个是由于把雨天也看成了晴天每天相差 20-12=8个雨天:48÷8=6天3.徒工小王雕刻红木玩具,平均每天雕刻玩具 48 件。
每雕刻出一件正品,可创造财富 12 元:但如果雕刻坏了一件就要损失 98 元。
他平均每天创造财富 466 元。
小王平均每天雕刻出的正品是多少件?可以这么列:(48×12-466)÷(12+98)=1(件)48-1=47(件)4.数学竞赛中抢答题共 10 道题,规定答对一题得 15 分,答错一题倒扣 10 分(不答按答错计算)。
晓敏回答了所有的问题,结果共得 100 分,问:答对和答错各几题?设答对x题,答错(10-x)题.15x-10(10-x)=10015x+10x-100=10025x=200x=8∴答错10-8=2题答:答对8题,答错2题.5.学校组织春游,一共用了 10 辆客车,已知大客车每辆坐 100 人,小客车每辆坐 60 人,大客车比小客车一共多载 520 人,问:大、小客车各几辆?假设大客车为x辆,小客车则为10-x ,又大客车多坐520人那么100*x-520= 60*(10-x)求得x=7所以7辆大客车,3辆小客车6.人民电影院有座位 1200 个,前排票每张 1.5 元,后排票每张 2.5 元。
已知后排票比前排票的总价多1080 元,该电影院有前排座位和后排座位各多少个?假设前排和后排的座位是相同的,那么后排票会比前排票总价多600元(1200除以2等于600, ,2.5减1.5等于1,1X600=600)而现在实际多了1080元,1080—600=480元因此相当于少算了480除以4等于120个后排的座位.(本来是后排就是2.5却被算成前排,对于后排来说就相差2.5加1.5等于4元)所以前排有600-120=480个座位,后排有600+120=720个座位.1200÷2=600(元) 1080—600=480(元)后排:480÷(2.5+1.5)+600=720(个)前排:1200-720=480(个)提高卷1.有 1 元硬币和 5 角硬币若干枚,共值 675 角。
“假设”解题一、专题简析:假设是数学中思考问题的一种常见方法,有些应用题乍看很难求出答案,但是如果我们合理地进行假设,往往会使问题得到解决。
所谓假设法就是依照已知条件进行推算,根据数量上出现的矛盾作合适调整,从而找到正确答案。
我国古代趣题“鸡兔同笼”就是运用假设法解决问题的一个范例。
解答“鸡兔同笼”问题的基本关系式是:兔数=(总脚数一每只鸡脚数x鸡兔总数)÷(每只兔脚数-每只鸡脚数)鸡数=鸡兔总数-兔数用假设法解答类似“鸡兔同笼”的问题时,可以根据题意假设多少个量相同,然后进行推算,所得结果与题中对应的数量不符时,要能够正确地运用别的量加以调整,从而得到正确的答案。
二、典型例题:1.鸡、兔共30只,共有脚84只,鸡、兔各有多少只?【分析】鸡、兔共30只,共有脚84只。
如果假设这30只全部是鸡,一只鸡2只脚,那么30只鸡脚的只数是2x30=60。
又已知脚有84只,比假设的30只鸡的脚多84-60=24只,多的24只脚是因为每只兔有4只脚,它比鸡多2只脚,一只兔多2只脚,24只脚就有24÷2=12只兔,鸡就有30-12=18只。
列式如下:(84-30x2)÷(4-2)=12(只)30-12=18(只)也可先假设这30只全部是兔,一只兔4只脚,那么30只兔脚的只数是4x30=120,又已知共有脚84只,比假设的30只兔脚的只数少120-84=36,少36只脚是因为每只鸡只有2只脚,比兔少2只脚,一只鸡少2只脚,36只脚就有36÷2=18只鸡,兔就有30-18=12只。
列式如下:(4x30-84)÷(4-2)=18(只)30-18=12(只)答:鸡有18只,兔有12只。
2.鸡、兔同笼,鸡比兔多30只,一共有脚168只。
鸡、兔各多少只?【分析】因为鸡比兔多30只,则可以把30只鸡的脚数从总脚数中去掉,剩下的鸡、兔就同样多了。
每一只鸡和兔共4+2=6只脚,用6只脚除剩下的鸡、兔的脚的只数,就可求出兔的只数为(168-2x30)÷6=18,再求出鸡为18+30=48只。
六年级数学奥数讲义练习假设法解题(一)(全国通用版含答案)一、知识要点假设法解体的思考方法是先通过假设来改变题目的条件,然后再和已知条件配合推算。
有些题目用假设法思考,能找到巧妙的解答思路。
运用假设法时,可以假设数量增加或减少,从而与已知条件产生联系;也可以假设某个量的分率与另一个量的分率一样,再根据乘法分配律求出这个分率对应的和,最后依据它与实际条件的矛盾求解。
二、精讲精练【例题1】甲、乙两数之和是185,已知甲数的1/4与乙数的1/5的和是42,求两数各是多少?【思路导航】假设将题中“甲数的1/4”、“乙数的1/5”与“和为42”同时扩大4倍,则变成了“甲数与乙数的4/5的和为168”,再用185减去168就是乙数的1/5。
解:乙:(185-42×4)÷(1-1/5×4)=85答:甲数是100,乙数是85。
练习1:1、甲、乙两人共有钱150元,甲的1/2与乙的1/10的钱数和是35元,求甲、乙两人各有多少元钱?2、甲、乙两个消防队共有338人。
抽调甲队人数的1/7,乙队人数的1/3,共抽调78人,甲、乙两个消防队原来各有多少人?3、海洋化肥厂计划第二季度生产一批化肥,已知四月份完成总数的1/3多50吨,五月份完成总数的2/5少70吨,还有420吨没完成,第二季度原计划生产多少吨?【答案】1.甲有50元,乙有100元 2.甲有182人,乙有156人 3.1500吨【例题2】彩色电视机和黑白电视机共250台。
如果彩色电视机卖出1/9,则比黑白电视机多5台。
问:两种电视机原来各有多少台?【思路导航】从图中可以看出:假设黑白电视机增加5台,就和彩色电视机卖出1/9后剩下的一样多。
黑白电视机增加5台后,相当于彩色电视机的(1-1/9)= 8/9。
(250+5)÷(1+1-1/9)=135(台)250-125=115(台)答:彩色电视机原有135台,黑白电视机原有115台。
第十二讲用假设法解题【专题解析】假设是数学中思考问题的一常见的方法,有些应用题乍看很难求出答案,但是如果我们合理地进行假设,往往会使问题得到解决。
所谓假设法就是依照已知条件进行推算,根据数量上出现的矛盾,作适当的调整,从而找到正确答案。
我国古代趣题“鸡兔同笼”就是运用假设法解决问题的一个范例。
【例题精讲】例1:鸡、兔共30只,共有脚84只。
鸡、兔各有多少只?【思路导航】方法一:列表法鸡的只数兔的只数脚的总数15 15 15×2+15×4=9016 14 16×2+14×4=8817 13 17×2+13×4=8618 12 18×2+12×4=84所以,共有兔子12只,有鸡18只。
通过图表可以发现,把一只兔子变成鸡,总脚数会减少2只。
故可以用假设法:方法二:假设法假设全是鸡,共有脚:30×2=60(只);比实际少:84-60=24(只);这是因为把4只脚的兔子都按2只脚的鸡计算了。
每把一只兔子算作一只鸡,少算:4-2=2(只)脚,现在共少算了24只脚,说明把:24÷2=12(只)兔子按鸡算了。
所以,共有兔子12只,有鸡30-12=18(只)。
【练习】1、鸡兔同笼,共有头48个,脚132只,鸡和兔各有多少只?2、一个饲养组一共养鸡、兔共50只,共有脚160只。
饲养组养鸡、兔各几只?例2:小邮迷郑渊用10元钱正好买了20分和50分的邮票共35枚,这两种邮票各买了多少枚?【思路导航】方法一:列表法方法二:假设法:假设35枚邮票全部是20分的,那么一共用了20×35=700(分)。
与实际用的钱数相差1000-700=300(分)。
将一枚50分的邮票看成20分的少算了50-20=30(分),故50分邮票有300÷30=10(枚),20分的邮票有35-10=25(枚)。
【练习】1、刘杰用13元6角钱正好买了50分和80分的邮票共计20枚,求两种邮票各买了多少枚?2、小红的储蓄罐里共有2分和5分的硬币70枚,小红算了一下,一共有194分,求两种硬币各有多少枚?例3:一次数学竞赛共有20道题。
第五讲 假设法解题在有些应用题中,看起来缺少条件,按照一般思路似乎无法解答。
但如果我们假设一个数或一个条件,可以把题目中原先的已知条件有序地组合起来,容易找到解题的方法。
在解题过程中会发现你假设的这个数的大小并不影响问题的答案,而你假设的条件与实际情况产生的矛盾,正好是你的突破口。
【精讲例题1】某游乐场门票50元一张,降价后有课增加了一倍,收入增加了51.,你能算出一张门票降价多少元吗?【巩固训练】某商场以60元每件的价格卖衣服,降价后购买者多了1倍,收入增加了31。
你能算出一件衣服降价了多少元吗?某商城以72元每个的价格卖书包,降价后购买者多了2倍,收入增加了34。
你能算出一个书包降价多少元吗?【精讲例题2】六年级(1),(2)两个班举行智力竞赛,两个班的平均竞赛成绩为83.4分。
已知六(1)班的平均分为82分,六(2)班的平均分85分,六(1)班和六(2)班的人数比是多少?【巩固训练】六年级(1),(2)两个班举行数学竞赛,两个班的平均竞赛成绩为78分。
已知六(1)班的平均分为73分,六(2)班的平均分80分,六(1)班和六(2)班的人数比是多少?六年级(1),(2)两个班月考的平均成绩为82分。
已知六(1)班的平均分为83.2分,六(2)班的平均分81分,六(1)班和六(2)班的人数比是多少?面包房里有甜面包和咸面包共88个,如果甜面包卖出81,则比咸面包还多2个。
原来这两种面包有多少个?【巩固训练】书店里有文艺书和科技书125本,如果文艺书卖出71,则比科技书还多5本.原来这两种书各有多少本?商场里共有上衣和裙子356件,如果上衣卖出91,则比裙子少16件。
原来这两种服装各有多少件?【精讲例题4】学校食堂买来两筐大白菜共120千克。
第一天用去甲筐的51和乙筐的101共17千克。
甲乙两筐原来各有大白菜多少千克?【巩固训练】商城里有苹果和梨共360千克,第一天卖出了苹果的91和梨的51共60千克。
假设法解题(一)一、知识要点假设法解体的思考方法是先通过假设来改变题目的条件,然后再和已知条件配合推算。
有些题目用假设法思考,能找到巧妙的解答思路。
运用假设法时,可以假设数量增加或减少,从而与已知条件产生联系;也可以假设某个量的分率与另一个量的分率一样,再根据乘法分配律求出这个分率对应的和,最后依据它与实际条件的矛盾求解。
二、精讲精练【例题1】甲、乙两数之和是185,已知甲数的1/4与乙数的1/5的和是42,求两数各是多少?【思路导航】假设将题中“甲数的1/4”、“乙数的1/5”与“和为42”同时扩大4倍,则变成了“甲数与乙数的4/5的和为168”,再用185减去168就是乙数的1/5。
解:乙:(185-42×4)÷(1-1/5×4)=85答:甲数是100,乙数是85。
【例题2】彩色电视机和黑白电视机共250台。
如果彩色电视机卖出1/9,则比黑白电视机多5台。
问:两种电视机原来各有多少台?【思路导航】从图中可以看出:假设黑白电视机增加5台,就和彩色电视机卖出1/9后剩下的一样多。
黑白电视机增加5台后,相当于彩色电视机的(1-1/9)= 8/9。
(250+5)÷(1+1-1/9)=135(台)250-125=115(台)答:彩色电视机原有135台,黑白电视机原有115台。
【例题3】师傅与徒弟两人共加工零件105个,已知师傅加工零件个数的3/8与徒弟加工零件个数的4/7的和为49个,师、徒各加工零件多少个?【思路导航】假设师、徒两人都完成了4/7,一个能完成(105×4/7)=60个,和实际相差(60-49)=11个,这11个就是师傅完成将零件的3/8与完成加工零件的4/7相差的个数。
这样就可以求出师傅加工了【11÷(4/7-3/8)】=56个。
即:师傅:(105×4/7-49)÷(4/7-3/8)=56(个)徒弟:105-56=49(个)答:师傅加工了56个,徒弟加工了49个。
假设法是一种思考问题的方法,例1:有5元的和10元的人民币共14张,共100元。
问5元币和10元币各多少张?思路导航:(1)假设这14张全是5元的,则总钱数只有5×14=70(元),比实际少了100-70=30(元)。
为什么会少了30元呢?因为这14张人民币中有的是10元的。
只要把一张10元假设成5元,就会少5元,总共比实际少30元,30元里面有6个5元,就有6张10元假设成5元,所以一共有6张10元的,有14-6=8(张)是5元的。
(100-5×14)÷(10-5)=6(张)10元币14-6=8(张)5元币(2)假设这14张全是10元的,则总钱数只有10×14=140(元),比实际多了100-70=40(元)。
为什么会多了40元呢?因为这14张人民币中有的是5元的。
只要把一张5元假设成10元,就会多出5元,总共比实际多了40元,40元里面有8个5元,就有8张5元假设成10元,所以一共有8张5元的,有14-8=6(张)是10元的。
(10×14-100)÷(10-5)=8(张)5元币14-8=6(张)10元币答:5元币有8张,10元币有6张。
【小试身手】1.一堆2分和5分的硬币共39枚,共值1.5元。
问2分和5分的各有多少枚?2.营业员把一张5元人民币和一张5角的人民币换成了28张面值为1元和一角的人民币,求换来这两种人民币各多少张?3.在储藏室的一角有三脚凳和四脚凳共13只。
已知这些凳子脚的总数是41只,你能说出三脚凳和四脚凳各有多少只吗?【精典例题2】例2:松鼠妈妈采松子,晴天每天可以采20个,雨天每天只能采12个。
它一共采了112个松子,平均每天采14个。
问:这几天当中有几天有雨?思路导航:由“它一共采了112个松子,平均每天采14个”,可以求出松鼠妈妈采松子的天数是112÷14=8(天)用假设法做。
假设这8天全是晴天,晴天每天可以采20个,一共可以采松子20×8=160(个),实际采的松子数比假设的少了160-112=48(个)。
四年级奥数培优专题第十一讲运用假设法解应用题知识要点:“假设法”就是根据题目中的已知条件或结论作出某种假设,然后按已知条件进行推算,根据数量上出现的矛盾作适当调整,从而找到正确答案。
例题讲解【例1】笼子里有鸡和兔共30只,总共有70条腿,问鸡和兔各有几只?分析:如果假设全是鸡,则30只鸡的腿数应为2×30=60(条),比题目中的条件少了70 – 60=10(条),因为每只鸡比兔少2条腿,所以,少了10条腿就说明10÷2=5(只)兔。
也可以假设全是兔,首先可推算出鸡的只数。
方法一解:假设全部是鸡(1)30×2 =60(条)(2)70 - 60=10(条)(3)兔:10 ÷(4 - 2) =5(只)(4)鸡:30 – 5=25(只)答:鸡有25只,兔有5只。
方法二解:假设全部是兔(1)30×4 =120(条)(2)120 - 70=50(条)(3)鸡:50 ÷(4 - 2) =25(只)(4)兔:30 – 25=5(只)答:鸡有25只,兔有5只。
【例2】四(2)班学生52人,到公园去划船,共租用11条船,每条大船坐6人,每条小船坐4人,刚好坐满,求租用的大船、小船各多少只?分析:假设租用的全部是小船,因为每条小船坐4人,那么11条船共坐44人,与班级原有人数进行比较,少了8人,变化的原因是原来每条大船,现在假设坐小船,每条船少坐了2人,很显然,大船数就是8÷2=4(条),再求出小船数。
解:假设全部是小船(1)11×4 =44(人)(2)52 - 44=8(人)(3)大船:8 ÷(6 - 4) =4(条)(4)小船:11 – 4=7(只)答:小船有7条,大船有4条。
基础巩固一、填空1、笼子里有鸡和兔共29只,总共有92条腿,那么兔有_______只。
2、15元钱买50分邮票和20分邮票共63张,那么20分邮票和50分邮票相差_______张。
假设法讲义及练习1.假设法的概念。
假设法是通过对数学问题的一些数据做适当的改变,然后根据题目的数量关系进行计算和推理,再根据计算所得数据与原数据的差异进行修正和还原,最后使原问题得到解决的思想方法。
假设法是小学数学中比较常用的方法,实际上也是转化方法的一种。
2.假设法的重要意义。
假设法实际上是根据原来的数据、数量关系和逻辑关系,做一些数据的改变,把原问题转化成新的问题,而且新的问题易于理解和解决,是一种迂回战术,表面上看解题的步骤变多了,但实际上退一步海阔天空,更有利于计算和推理,有利于培养灵活的思维方式、解决问题的能力和推理能力。
3.假设法的具体应用。
假设法在小学数学中的应用比较普遍,例如在有关分数的实际问题,比和比例的实际问题,鸡兔同笼问题,逻辑推理问题,图形的周长、面积和体积等问题中都有应用。
4.假设法的学习。
假设法的学习应注意以下几点。
第一,根据题目的特点,选择适当的数据进行假设。
在解决问题的过程中,如果遇到数量关系稍复杂的问题,要思考它与已掌握的什么知识有关系,用什么思想方法或者模型来解决,然后想方设法把它转化成数量关系明确而且易于理解的已有的知识。
案例1:(1) 六年级参加植树的男生和女生共有36人,其中男生人数是女生人数的3倍。
男生和女生各有多少人?(2) 六年级参加植树的男生和女生共有36人,其中男生人数的是女生人数的2倍。
男生和女生各有多少人?分析:第(1)题,是学生非常熟悉的问题,男生人数与女生人数的数量关系非常清楚且易于理解,既可以用方程解决,也可以用一般的算术方法计算。
第(2)题,数量关系与第(1)题有类似的地方,但又稍复杂,可看作是第(1)题的变型题。
两个数量无法直接用一个未知数表示,因而无法直接用一元一次方程解决;如果用算术方法,可这样想:根据题中的条件可知,在不改变男生和女生的比例关系前提下,可假设男生有3人,那么3的三分之二是2,2除以2等于1,因而女生有1人,所以男生人数是女生的3倍。
这样就把第(2)题转化成了第(1)题,再用算术方法列式计算便可。
案例2:小明和妈妈恰好花100元买了10本书,单价有8元一本的和13元一本的两种。
其中8元一本的和13元一本的各买了几本?分析:假设10本书都是买的8元一本的,那么才花了80元,比实际少花20元。
两种书的单价相差5元,20里有几个5,就得出13元的有几本。
20÷(13-8)=4,所以8元的买了6本,13元的买了4本。
第二,在数量之间具有一定的比例关系前提下,可假设其中的一个数量为单位“1”,可大大简化计算的繁琐程度。
案例3:足球比赛门票是20元一张,平均每场有5000名观众,降价后每场观众增加了50%,收入增加了20%,降价后门票的价格是多少?分析:首先要明确一个基本的数量关系式:观众人数×门票价格=收入。
先按照一般的解题思路分析,根据题意,要求的是降价后门票的价格,需要知道降价后的收入和观众人数。
降价后的收入是:5000×20×(1+20%)=120000(元)。
降价后的观众人数是:5000×(1+50%)=7500(人)。
所以降价后的门票价格是:120000÷7500=16(元)。
实际上此题还可以用假设法,根据题意,降价后的人数和收入都是在原来的基础上分别按照一定比例变化,实际上观众人数是5000还是500并不影响计算的结果,因此只需要设观众人数为单位1就行。
假设降价前的观众人数是1,则降价后的观众人数是1×(1+50%)=1.5, 降价前的收入是20×1,则降价后的收入是20×1×(1+20%)=24,所以降价后的门票价格是:24÷1.5=16(元)。
案例4:如下图所示,水池和菜地组成了一个正方形,水池和林地组成了一个长方形,重叠的部分是水池。
水池的面积占长方形的,占正方形的。
林地的面积比菜地多200平方米,水池的占地面积是多少?分析:因为水池的面积既与长方形有比例关系,也与正方形有比例关系,所以可设水池的面积为1,那么林地的面积为。
菜地的面积为,那么林地比菜地多2(5-3)个单位面积,1个单位面积是200÷(5-3)=100(平方米)。
所以水池的占地面积为100平方米。
第三,“数量的增减”假设1.分数乘除法问题中的增减假设。
案例5 一桶油,第一次倒出五分之二,第二次比第一次多倒出10千克,桶里还剩下30千克油,这桶油共重多少千克?分析:从“第二次比第一次多倒出10千克”入手,假设第二次没有多倒10千克,而是与第一次倒出的同样多,则多倒的10千克就归属于剩下的,也就是第二次倒少了,则桶内就剩多了。
这道题就转变成:第一次倒出■,第二次也倒出■,还剩下(30+10)=40千克。
前两次共倒出■+■=■,还剩下1-■=■,那么剩下的40千克对应着这桶油的■。
列式解答:(10+30)÷(1-■×2)=200(千克)。
2.工程问题中的增减假设。
案例6 一批零件,甲单独做8天完成,乙单独做10天完成,现在由甲乙共同完成这批零件,中途甲因事请假一天,完成这批零件共用了多少天?分析:假设甲没有请假,则甲、乙工作时间相同,共完成这批零件的(1+■)倍。
列式解答:(1+■)÷(■+■)=5(天)。
或假设乙中途也请假一天,则甲、乙工作时间也相同,只完成这批零件的(1-■)。
列式解答:(1-■)÷(■+■)+1=5(天)。
3.几何图形中的增减假设。
案例7 在一个面积为32平方厘米的正方形内画一个最大的圆,这个圆的面积是多少平方厘米?分析:根据题意作图(如图1)。
计算圆的面积需要知道圆的半径,图中这个圆的半径恰好是正方形边长的一半,但是正方形的边长是多少呢?这对小学生来说,的确是一道无法逾越的障碍,因此,解答这一问题时就应另辟蹊径。
假设将正方形的面积32cm■扩大2倍,得到64cm■,则正方形的边长就是8cm,即可得圆的直径也为8cm,半径为4cm,由此推算出圆的面积:3.14×(■)■÷2=25.12(cm■)。
为什么要除以2?因为假设将正方形的面积扩大2倍,算出的结果要回到原题就要缩小2倍,所以要除以2。
或假设将正方形的面积32cm■缩小2倍,得到16cm■,则正方形的边长为4cm,由此推出圆的面积:3.14×(■)■×2=25.12(cm■)。
第四,“以实代虚”假设案例8 甲、乙两所小学,甲校人数相当于乙校人数的40%,甲校女生占30%,乙校男生占42%,如果将甲、乙两校合并,那么女生占总人数的百分之几?分析:题目中没有具体的人数,三个百分数之间又没有直接联系,使问题变得更为抽象。
解题时可以采用“以实代虚”的方法,假设乙校的人数,则可以求出甲、乙两校的男、女生人数。
假设乙校人数为100人,则甲校人数为100×40%=40(人);甲校女生有40×30%=12(人),乙校女生有100×(1-42%)=58(人),所以甲、乙两校合并后,女生占总人数的百分数是(12+58)÷(100+40)=50%。
本题的乙校人数可以假设成任何数,但假设成100人更便于计算。
第五,“同一量”假设当问题里有两个或两个以上未知数量时,可以假设它们为同一种量,然后按照题中的已知条件进行推算。
案例9 在一个笼子里关了一些鸡和一些兔子,数头一共有36个,数脚一共有100只。
问鸡和兔各多少只?分析:假设36只全是鸡,就应该有2×36=72(只)脚,这就比题目所说的100只脚,少了100-72=28(只)。
为什么脚会少呢?很显然是把四只脚的兔子当成了两只脚的鸡,把一只兔当成一只鸡就少了(4-2)=2(只)脚,少了28只脚,就相当于把14只兔子当成鸡,由此可求出兔子的只数,列式计算如下:兔子只数为(100-2×36)÷(4-2)=14(只),鸡的只数为36-14=22(只)。
或假设36只全是兔子,它们的脚共有4×36=144(只),这又比100只脚多了44只脚,显然是把两只脚的鸡当成四只脚的兔子而多算的,由此可推算鸡的只数,列式计算如下:鸡的只数为(4×36-100)÷(4-2)=22(只),兔子的只数为36-22=14(只)。
用假设法解题时,一定要抓住假设后的结果和实际结果之间的不同,找出不同的缘由,这就是解题的突破口。
恰当地运用好假设法,不仅能够促进学生灵活运用所学知识,而且有利于学生思维能力的培养。
练习:解:假设篮球没有借出,足球借出一个,那么,可以把现有篮球的个数看作是3份数,把现有足球的个数看作2份数,两种球的总份数是:3+2=5(份)原来篮球的个数是:原来足球的个数是:21-12=9(个)解:此题可以有三种答案。
答:剩下的两根绳子一样长。
答:甲绳剩下的部分比乙绳剩下的部分长。
(3)假设两根绳子都比1米长。
任意假定为1.5米,则甲绳剪去答:乙绳剩下的部分比甲绳剩下的部分长。
3, 甲乙两个煤场共存煤92吨,从甲场运出28吨后,乙场的存煤比甲场的4倍少6吨。
两场原来各存煤多少吨?(适于六年级程度)解:假设从甲场运出的不是28吨,而是比28吨少6吨的22吨,那么,乙场的存煤数就正好是甲场的4倍,甲场的存煤是1份数,乙场的存煤是4甲场原来存煤: 92-50=42(吨)4,有两块地,平均亩产粮食185千克。
其中第一块地5亩,平均亩产粮食203千克。
如果第二块地平均亩产粮食170千克,第二块地有多少亩?(适于五年级程度)解:假设两块地平均亩产粮食都是170千克,则第一块地的平均亩产量比两块地的平均亩产多:203-170=33(千克)5亩地要多产:33×5=165(千克)两块地实际的平均亩产量比假设的平均亩产量多:185-170=15(千克)因为165千克中含有多少个15千克,两块地就一共有多少亩,所以两块地的亩数一共是:165÷15=11(亩)第二块地的亩数是:11-5=6(亩)5,一项工作,甲、乙两队单独做各需要10天完成,丙队单独做需要7.5天完成。
在三队合做的过程中,甲队外出1天,丙队外出半天。
问三队合做完成这项工作实际用了几天?(适于六年级程度)解:假设甲没有外出,丙也未外出,也就是说,甲、乙、丙三个队的工作天数一样多,则三队合做的工作量可达到:三队合做这项工作,实际用的天数是:6, 一项工程,甲、乙两队合做80天完成。
如果先由甲队单独做72天,再由乙队单独做90天,可以完成全部工程。
甲、乙两队单独完成全部工程各需要用多少天?(适于六年级程度)解:假设甲队做72天后,乙队也做72天,则剩下的工程是:乙队还需要做的时间是:90-72=18(天)乙队单独完成全部工程的时间是:甲队单独完成全部工程的时间是:7,某商店上月购进的蓝墨水瓶数是黑墨水瓶数的3倍,每天平均卖出黑墨水45瓶,蓝墨水120瓶。