计算机组成原理-运算方法与运算器-浮点运算方法和浮点运算器
- 格式:ppt
- 大小:383.00 KB
- 文档页数:38
计算机组成原理知识点汇总一、冯.诺依曼思想体系——计算机由运算器、控制器、存储器、输入输出设备五部分组成,存储程序,按地址访问、顺序执行。
二、计算机系统的层次结构——微程序级→机器级→操作级→汇编→高级语言。
第二章一、一个定点数由符号位和数值域两部分组成。
按小数点位置不同,定点数有纯小数和纯整数两种表示方法。
二、一个浮点数标准化表示由符号位S、阶码E、尾数M三个域组成。
其中阶码E的值等于指数的真值e加上一个固定偏移值。
三、为了计算机能直接处理十进制形式的数据,采用两种表示形式:⑴字符串形式,主要用在非数值计算的应用领域;⑵压缩的十进制数串形式,用于直接完成十进制数的算术运算。
四、数的真值变成机器码时有四种表示方法:原码表示法,反码表示法,补码表示法,移码表示码。
其中移码主要用于表示浮点数的阶码E,以利于比较两个指数的大小和对阶操作。
五、字符信息属于符号数据,是处理非数值领域的问题。
国际上采用的字符系统是七单位的ASCII码。
六、直接采用西文标准键盘输入汉字,进行处理,并显示打印汉字,是一项重大成就。
为此要解决汉字的输入编码、汉字内码、字膜码等三种不同用途的编码。
七、为运算器构造的简单性,运算方法中算术运算通常采用补码加、减法,原码乘除法或补码乘除法。
为了运算器的高速性和控制的简单性,采用了先行进位、阵列乘除法、流水线等并行技术措施。
八、定点运算器和浮点运算器的结构复杂程度有所不同。
早期微型机中浮点运算器放在CPU芯片外,随着高密度集成电路技术的发展,现已移至CPU内部。
第三章一、存储器分类——主存、辅存、cache二、按介质分类——半导体、磁表面、激光三、按存取方式分类——随机、顺序、半顺序四、多级存储器结构——cache—主存—辅存五、主存技术指标——存储容量、存取时间、存储周期、存储器带宽六、DRAM刷新方式——集中式、分散式七、多模块交叉方式——顺序方式、交驻方式八、相联存储器组成——存储体、检索寄存器、屏蔽寄存器、符合寄存器、比较线路、代码寄存器、控制线路。
计算机组成原理答案第一章计算机系统概论1.比较数字计算机和模拟计算机的特点。
解:模拟计算机的特点:数值由连续量来表示,运算过程是连续的;数字计算机的特点:数值由数字量(离散量)来表示,运算按位进行。
两者主要区别见P1 表1.1。
2.数字计算机如何分类?分类的依据是什么?解:分类:数字计算机分为专用计算机和通用计算机。
通用计算机又分为巨型机、大型机、中型机、小型机、微型机和单片机六类。
分类依据:专用和通用是根据计算机的效率、速度、价格、运行的经济性和适应性来划分的。
通用机的分类依据主要是体积、简易性、功率损耗、性能指标、数据存储容量、指令系统规模和机器价格等因素。
4.冯. 诺依曼型计算机的主要设计思想是什么?它包括哪些主要组成部分?解:冯. 诺依曼型计算机的主要设计思想是:存储程序和程序控制。
存储程序:将解题的程序(指令序列)存放到存储器中;程序控制:控制器顺序执行存储的程序,按指令功能控制全机协调地完成运算任务。
主要组成部分有:(控制器、运算器)(CPU的两部分组成)、存储器、输入设备、输出设备(I/O设备)。
5.什么是存储容量?什么是单元地址?什么是数据字?什么是指令字?解:存储容量:指存储器可以容纳的二进制信息的数量,通常用单位KB、MB、GB来度量,存储容量越大,表示计算机所能存储的信息量越多,反映了计算机存储空间的大小。
单元地址:简称地址,在存储器中每个存储单元都有唯一的地址编号,称为单元地址。
数据字:若某计算机字是运算操作的对象即代表要处理的数据,则称数据字。
指令字:若某计算机字代表一条指令或指令的一部分,则称指令字。
6.什么是指令?什么是程序?解:指令:计算机所执行的每一个基本的操作。
程序:解算某一问题的一串指令序列称为该问题的计算程序,简称程序。
7.指令和数据均存放在内存中,计算机如何区分它们是指令还是数据?解:一般来讲,在取指周期中从存储器读出的信息即指令信息;而在执行周期中从存储器中读出的信息即为数据信息。
第三章运算方法和运算器3.1补码的移位运算1、左移运算:各位依次左移,末位补0对于算术左移,若没有改变符号位,左移相当于乘以2。
2、右移运算:算术右移:符号位不变,各位(包括符号位)依次右移。
(相当于除以2)逻辑右移:最高位补0,其余各位依次右移例1:已知X=0.1011 ,Y=-0.0101 求 [0.5X]补;[0.25X]补;[-X]补;2[-X]补;[0.5Y]补;[0.25Y]补; [-Y]补;2[-Y]补[X]补=0.1011 [Y]补=1.1011[0.5X]补=0.01011 [0.5Y]补=1.11011[0.25X]补=0.001011 [0.25Y]补=1.111011[-X]补=1.0101 [-Y]补=0.01012[-X]补=0.1010 (溢出) 2[-Y]补=0.10103.2定点加减法运算及其实现3.2.1 补码加减法运算方法由于计算机中的进行定点数的加减运算大都是采用补码。
(1)公式:[X+Y]补=[X]补+[Y]补[X-Y]补=[X]补+[-Y]补(证明过程见教材P38)例1 X=0.001010 Y=-0.100011 求[X-Y]补,[X+Y]补解:[X]补=0.001010 [-Y]补=0.100011则 [X-Y]补=[X]补+[-Y]补=0.001010 + 0.100011=0.101101 [X]补=0.001010 [Y]补=1.011101则 [X+Y]补=[X]补+[Y]补=0.001010 + 1.011101=1.100111例2:已知X=+0.25,Y=-0.625,求X+Y; X-Y写出计算的过程.例3:已知X=25,Y=-9,求X+Y; X-Y写出计算的过程.例4:已知X=-25,Y=-9,求X+Y; X-Y写出计算的过程.解: (8位二进制表示)例2: X=0.0100000 Y=-0.1010000[X]补=0.0100000 [Y]补=1.0110000则 [X+Y]补=[X]补+[Y]补=0.0100000 + 1.0110000=1.1010000[X+Y]原=-0.0110000=(-0.375)D[X]补=0.0100000 ,[-Y]补=0.1010000则 [X-Y]补 = [X]补+[-Y]补 = 0.0100000+0.1010000=0.1110000[X+Y]原 = 0.1110000 =(0.875)D例3: X=+0011001 Y=-0001001[X]补=00011001,[Y]补=11110111则 [X+Y]补 = [X]补+[Y]补= 00011001 + 11110111= 00010000[X+Y]原 =+0010000=(+16)D[X]补= 00011001 ,[-Y]补= 00001001则 [X-Y]补 = [X]补+[-Y]补= 00011001 + 00001001= 00100010[X+Y]原 = +0100010 =(34)D例4: X=-0011001 Y=-0001001[X]补=11100111,[Y]补=11110111则 [X+Y]补 = [X]补+[Y]补= 11100111 + 11110111[X+Y]原 =-00100010=(-34)D[X]补= 11100111 ,[-Y]补= 00001001则 [X-Y]补 = [X]补+[-Y]补= 11100111 + 00001001= 11110000[X+Y]原 = -0010000 =(-16)D3.2.2 定点加减法运算中的溢出问题溢出:运算结果大于机器所能表示的最大正数或者小于机器所能表示的最小负数.溢出只是针对带符号数的运算.比如:[X]补=0.1010,[Y]补=0.1001,那么[X]补+[Y]补=1.0011(溢出)溢出是一种错误,计算机中运算时必须能够发现这个现象,并加以处理判断溢出的方法:1、采用变形补码法[X+Y] 变补=[X] 变补+[Y] 变补[X-Y] 变补=[X] 变补+[-Y] 变补例1 X=0.1011 Y=0.0011 求[X+Y]补解: [X]变补 = 00.1011, [Y]变补 = 00.0011[X+Y]变补 = 00.1011 + 00.0011 = 00.1110所以 [X+Y]补 = 0.1110例2 X=0.1011 Y=0.1001 求[X+Y]补解: [X]变补 = 00.1011 [Y]变补 = 00.1001[X+Y]变补 = 00.1011 + 00.1001 = 01.0100运算结果的两符号位是01,不相同,发生溢出,因第一符号位是0,代表正数,所以称这种溢出为“正溢出”。
1.l 解释下列名词摩尔定律:对集成电路上可容纳的晶体管数目、性能和价格等发展趋势的预测,其主要内容是:成集电路上可容纳的晶体管数量每18个月翻一番,性能将提高一倍,而其价格将降低一半。
主存:计算机中存放正在运行的程序和数据的存储器,为计算机的主要工作存储器,可随机存取。
控制器:计算机的指挥中心,它使计算机各部件自动协调地工作。
时钟周期:时钟周期是时钟频率的倒数,也称为节拍周期或T周期,是处理操作最基本的时间单位。
多核处理器:多核处理器是指在一枚处理器中集成两个或多个完整的计算引擎(内核)。
字长:运算器一次运算处理的二进制位数。
存储容量: 存储器中可存二进制信息的总量。
CPI:指执行每条指令所需要的平均时钟周期数。
MIPS:用每秒钟执行完成的指令数量作为衡量计算机性能的一个指标,该指标以每秒钟完成的百万指令数作为单位。
CPU时间:计算某个任务时CPU实际消耗的时间,也即CPU真正花费在某程序上的时间。
计算机系统的层次结构:计算机系统的层次结构由多级构成,一般分成5级,由低到高分别是:微程序设计级,机器语言级,操作系统级,汇编语言级,高级语言级。
基准测试程序:把应用程序中使用频度最高的那那些核心程序作为评价计算机性能的标准程序。
软/硬件功能的等价性:从逻辑功能的角度来看,硬件和软件在完成某项功能上是相同的,称为软/硬件功能是等价的,如浮点运算既可以由软件实现,也可以由专门的硬件实现。
固件:是一种软件的固化,其目的是为了加快软件的执行速度。
可靠性:可靠性是指系统或产品在规定的条件和规定的时间内,完成规定功能的能力。
产品可靠性定义的要素是三个“规定”:“规定条件”、“规定时间”和“规定功能”。
MTTF:平均无故障时间,指系统自使用以来到第一次出故障的时间间隔的期望值。
MTTR:系统的平均修复时间。
MTBF:平均故障间隔时间,指相邻两次故障之间的平均工作时间。
可用性:指系统在任意时刻可使用的概率,可根据MTTF、MTTR和MTBF等指标计算处系统的可用性。