1全等三角形及图形轴对称(一对一
- 格式:docx
- 大小:1.49 MB
- 文档页数:37
常见图形一、轴对称型:二、相交线型三、旋转型【典型例题】一、和差倍分——轴对称型 1、如图①,OP 是∠MON 的平分线,请你利用该图形画一对以OP 所在直线为对称轴的全等三角形。
请你参考这个作全等三角形的方法,解答下列问题:(1)如图②,在△ABC 中,∠ACB 是直角,∠B =60°,AD 、CE 分别是∠BAC 、∠BCA 的平分线,AD 、CE 相交于点F 。
请你判断并写出FE 与FD 之间的数量关系;(2)如图③,在△ABC 中,如果∠ACB 不是直角,而(1)中的其它条件不变,请问,你在(1)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由。
2、(第19届“希望杯”)如图1,矩形ABCD 的长AD=9cm ,宽AB=3cm ,将它折叠,使点D 与点B 重合,求折叠后DE 的长和折痕EF 的长A BCD A B C DE AB C D E AB C D E FAB CDE P A M N E B C DF A E F B图① 图②图③ O (第20题图) C D A B CD E F分别是( )A 、cm cm 10,5B 、cm cm3,5 C 、cm cm 10,6 D 、cm cm 4,5 3、如图,△ABC 中,∠A =90°,AB =AC ,BD 平分∠ABC 交AC 于D ,CE ⊥BD 的延长线于E ,求证:BD =2CE 。
4、如图所示,已知△ABC 中,∠B=60°,∠BAC 和∠BCA 的平分线AD 与CE 相交于点O 。
求证:AE+CD=AC 。
二、利用旋转,构造全等三角形 1、(2008年泰安市)两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B,C,E 在同一条直线上,连结DC .(1)请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母);(2)证明:.2、已知:如图△ABC 是边长为1的等边三角形,△BDC 是顶角∠BDC =120°的等腰三角形,点M 、N 分别在AB 、AC 上,且∠MDN =60°求证:△AMN 的周长l =2A EB D CO三、中点或中线问题 1、已知:如图2,AD 为△ABC 的中线,BE 交AC 于E ,交AD 于F ,且AE=EF ,求证:AC=B F.2、如图,已知ΔABC 中,A B=5,A C=3,连BC 上的中线AD=2,求BC 的长。
如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴。
这时我们也说这个图形关于这条直线成轴对称。
把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线成轴对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点。
经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。
如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
类似地,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
线段垂直平分线的性质:一半
线段垂直平分线上的点与这条线段两个端点的距离相等。
与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
等腰三角形的性质:
性质1 等腰三角形的两个底角相等;等边对等角
性质2 等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。
三线合一
等边三角形的判定定理:
定理1 如果一个三角形有两个角相等,那么这两个角所对的边也相等。
等角对等边
等边三角形是三边都相等的特殊的等腰三角形。
等边三角形的性质:
等边三角形的三个内角都相等,并且每一个角度等于60度。
三个角都相等的三角形是等边三角形。
有一个角是60度的等腰三角形是等边三角形。
在直角三角形中,如果一个锐角等于30度,那么它所对的直角边等于斜边的一半。
苏科版2024-2025学年度八年级(上)单元基础训练第1-2章全等三角形轴对称图形一、选择题(每题3分)1.(3分)下列说法正确的是( )A.三个角对应相等的两个三角形全等B.面积相等的两个三角形全等C.全等三角形的面积相等D.两边和其中一边的对角对应相等的两个三角形全等2.(3分)如图,AB=DB,∠1=∠2,请问添加下面哪个条件不能判断△ABC≌△DBE的是( )A.BC=BE B.AC=DE C.∠A=∠D D.∠ACB=∠DEB3.(3分)如图,要测量河两岸相对的两点A、B间的距离,先在过B点的AB的垂线L上取两点C、D,使CD=BC,再在过D点的垂线上取点E,使A、C、E在一条直线上,这时,△ACB≌△ECD,ED=AB,测ED的长就得AB得长,判定△ACB≌△ECD的理由是( )A.SAS B.ASA C.SSS D.AAS4.(3分)如图,点P是∠BAC的平分线AD上一点,PE⊥AC于点E.已知PE=3,则点P到AB的距离是( )A.3B.4C.5D.65.(3分)△ABC是格点三角形(顶点在网格线的交点),则在图中能够作出△ABC全等且有一条公共边的格点三角形(不含△ABC)的个数是( )A.1个B.2个C.3个D.4个6.(3分)如图,已知AB∥CD,AD∥BC,AC与BD交于点O,AE⊥BD于点E,CF⊥BD于点F,那么图中全等的三角形有( )A.5对B.6对C.7对D.8对7.(3分)如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是( )A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短8.(3分)如图,在△ABC与△DEF中,给出以下六个条件:(1)AB=DE;(2)BC=EF;(3)AC=DF;(4)∠A=∠D;(5)∠B=∠E;(6)∠C=∠F.以其中三个作为已知条件,不能判断△ABC与△DEF全等的是( )A.(1)(5)(2)B.(1)(2)(3)C.(4)(6)(1)D.(2)(3)(4)9.(3分)如图,已知∠1=∠2,AC=AD,增加下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E.其中能使△ABC≌△AED成立的条件有( )A.4个B.3个C.2个D.1个10.(3分)如图,∠DBC和∠ECB是△ABC的两个外角,点P是∠DBC、∠ECB两角的平分线的交点,PM、PN、PQ分别是P点到AB、AC、BC三边的垂线段,PM、PN、PQ的数量关系为( )A.PM>PN>PQ B.PM<PN<PQ C.PM=PN=PQ D.PM=PN>PQ11.(3分)如图,△DAC和△EBC均是等边三角形,AE、BD分别与CD、CE交于点M、N,有如下结论:①△ACE≌△DCB;②CM=CN;③AC=DN.其中,正确结论的个数是( )A.3个B.2个C.1个D.0个12.(3分)如图,在△ABC中,AB=AC,∠BAC=90°.直角∠EPF的顶点P是BC中点,PE、PF分别交AB、AC于点E、F.给出以下四个结论:①AE=CF;②△EPF是等腰直角三角形;③S四边形AEPF=S△ABC;④EF=AP.当∠EPF在△ABC内绕顶点P旋转时(点E不与A、B重合),上述结论中始终正确的有( )A.1个B.2个C.3个D.4个二、填空(每题2分)13.(2分)△ABC≌△DEC,△ABC的周长为100cm,DE=30cm,EC=25cm,那么BC长为 .14.(2分)如图,若△ABC≌△ADE,∠EAC=35°,则∠BAD= °.15.(2分)如图,在△ABC中,D、E分别是边AC、BC上的点,若△ADB≌△EDB≌△EDC,AB=10cm,则BC= cm.16.(2分)如图,已知AB⊥BD,垂足为B,ED⊥BD,垂足为D,AB=CD,BC=DE,则∠ACE= 度.17.(2分)如图,将长方形ABCD沿AM折叠,使D点落在BC上的N点处,如果AD=7cm,∠DAM=15°,则AN= cm,∠NAB= .18.(2分)如图,在△ABC中,∠A:∠ABC:∠ACB=3:5:10,若△EDC≌△ABC,则∠BCE:∠BCD= .19.(2分)如图,△ABE和△ACD是△ABC分别沿着AB,AC边翻折180°形成的,若∠BAC=150°,则∠θ的度数是 度.20.(2分)如图所示,∠E=∠F=90°,∠B=∠C,AE=AF.给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.其中正确的结论是 .(将你认为正确的结论的序号都填上)21.(2分)在如图所示的4×4正方形网格中.∠1+∠2+∠3+∠4+∠5+∠6+∠7= 度.22.(2分)BG、EH分别为△ABC与△DEF的高,且AB=DE,BC=EF,BG=EH,若∠ACB=60°,则∠DFE= .三、解答题23.(8分)如图,把大小为4×4的正方形方格图形分别分割成两个全等图形,例如图①,请在下图中,沿着虚线画出四种不同的分法,把4×4的正方形分割成两个全等图形.24.(5分)如图,△ABO≌△CDO,点B在CD上,AO∥CD,∠BOD=30°,求∠A的度数.25.(5分)如图,AB∥ED,点F、C在AD上,AB=DE,AF=DC,试说明BC=EF.26.(8分)如图,在△ABC中,点E在BC上,点D在AE上,∠ABD=∠ACD,∠BDE=∠CDE.试说明BE=CE.27.(8分)如图1、图2,AC⊥BC,AD⊥DE,BE⊥DE,垂足分别为C、D、E,C、D、E三点共线,AC=BC.(1)在图1中,若AD=2,BE=5,则DE的长为多少?请说明理由.(2)在图2中,若AD=5,BE=2,则DE= .28.(10分)如图,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF.(1)求证:AD平分∠BAC;(2)直接写出AB+AC与AE之间的等量关系.参考答案与试题解析一、选择题(每题3分)1.(3分)下列说法正确的是( )A.三个角对应相等的两个三角形全等B.面积相等的两个三角形全等C.全等三角形的面积相等D.两边和其中一边的对角对应相等的两个三角形全等【分析】根据三角形全等条件可以得出全等从形状和大小两个方面同时满足就可以从备选答案中得出结论.【解答】解:A、说明两三角形的形状相同,不能确定大小,故错误;B、强调了两三角形的大小,没有确定形状,故错误;C、由全等三角形的性质可以得出结论;D、两边和其中一边的对角对应相等的两个三角形不一定全等,故错误.∴正确答案为为C.故选:C.【点评】本题考查了全等三角形的判定及性质的运用,解答本题时弄清全等三角形的了两个必备条件是关键.2.(3分)如图,AB=DB,∠1=∠2,请问添加下面哪个条件不能判断△ABC≌△DBE的是( )A.BC=BE B.AC=DE C.∠A=∠D D.∠ACB=∠DEB【分析】本题要判定△ABC≌△DBE,已知AB=DB,∠1=∠2,具备了一组边一个角对应相等,对选项一一分析,选出正确答案.【解答】解:A、添加BC=BE,可根据SAS判定△ABC≌△DBE,故正确;B、添加AC=DE,SSA不能判定△ABC≌△DBE,故错误;C、添加∠A=∠D,可根据ASA判定△ABC≌△DBE,故正确;D、添加∠ACB=∠DEB,可根据AAS判定△ABC≌△DBE,故正确.故选:B.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.3.(3分)如图,要测量河两岸相对的两点A、B间的距离,先在过B点的AB的垂线L上取两点C、D,使CD=BC,再在过D点的垂线上取点E,使A、C、E在一条直线上,这时,△ACB≌△ECD,ED=AB,测ED的长就得AB得长,判定△ACB≌△ECD的理由是( )A.SAS B.ASA C.SSS D.AAS【分析】根据已知条件分析,题目中给出了三角形的边相等,两条垂线,可得一对角相等,加上图形中的对顶角相等,条件满足了ASA,答案可得.【解答】解:∵AB⊥BC,DE⊥BC,∴∠ABC=∠EDC=90°,又CD=BC,∠ACB=∠ECD,∴△ABC≌△EDC符合两角一边对应相等,所以利用的判定方法为ASA.故选:B.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL,要根据已知选择方法.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.4.(3分)如图,点P是∠BAC的平分线AD上一点,PE⊥AC于点E.已知PE=3,则点P到AB的距离是( )A.3B.4C.5D.6【分析】已知条件给出了角平分线、PE⊥AC于点E等条件,利用角平分线上的点到角的两边的距离相等,即可求解.【解答】解:利用角的平分线上的点到角的两边的距离相等可知点P到AB的距离是也是3.故选:A.【点评】本题主要考查了角平分线上的一点到角的两边的距离相等的性质.做题时从已知开始思考,想到角平分线的性质可以顺利地解答本题.5.(3分)△ABC是格点三角形(顶点在网格线的交点),则在图中能够作出△ABC全等且有一条公共边的格点三角形(不含△ABC)的个数是( )A.1个B.2个C.3个D.4个【分析】和△ABC全等,那么必然有一边等于3,有一边等于,又一角等于45°.据此找点即可,注意还需要有一条公共边.【解答】解:分三种情况找点,①公共边是AC,符合条件的是△ACE;②公共边是BC,符合条件的是△BCF、△CBG、△CBH;③公共边是AB,符合条件的三角形有,但是顶点不在网格上.故选:D.【点评】本题利用了全等三角形的判定和性质,思考要全面,不重不漏.6.(3分)如图,已知AB∥CD,AD∥BC,AC与BD交于点O,AE⊥BD于点E,CF⊥BD于点F,那么图中全等的三角形有( )A.5对B.6对C.7对D.8对【分析】根据平行四边形的性质,以及全等三角形的判定即可求出答案.【解答】解:由平行四边形的性质可知:△ABD≌△CDB,△ABO≌△CDO,△ADE≌△CBF,△AOE≌△COF,△AOD≌△COB,△ABC≌△CDA,△ABE和△CDF故选:C.【点评】本题考查全等三角形的判定,涉及全等三角形的性质,平行四边形的性质.7.(3分)如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是( )A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短【分析】根据三角形的稳定性即可解决问题.【解答】解:根据三角形的稳定性可固定窗户.故选:A.【点评】本题考查了三角形的稳定性,熟练掌握三角形的稳定性是解题的关键.8.(3分)如图,在△ABC与△DEF中,给出以下六个条件:(1)AB=DE;(2)BC=EF;(3)AC=DF;(4)∠A=∠D;(5)∠B=∠E;(6)∠C=∠F.以其中三个作为已知条件,不能判断△ABC与△DEF全等的是( )A.(1)(5)(2)B.(1)(2)(3)C.(4)(6)(1)D.(2)(3)(4)【分析】根据已知及全等三角形的判定方法进行分析,从而得到答案,而具备SSA的不能作为判定三角形全等的依据.【解答】解:A、正确,符合判定方法SAS;B、正确,符合判定方法SSS;C、正确,符合判定方法AAS;D、不正确,不符合全等三角形的判定方法.故选:D.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.9.(3分)如图,已知∠1=∠2,AC=AD,增加下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E.其中能使△ABC≌△AED成立的条件有( )A.4个B.3个C.2个D.1个【分析】∠1=∠2,∠BAC=∠EAD,AC=AD,根据三角形全等的判定方法,可加一角或已知角的另一边.【解答】解:已知∠1=∠2,AC=AD,由∠1=∠2可知∠BAC=∠EAD,加①AB=AE,就可以用SAS判定△ABC≌△AED;加③∠C=∠D,就可以用ASA判定△ABC≌△AED;加④∠B=∠E,就可以用AAS判定△ABC≌△AED;加②BC=ED只是具备SSA,不能判定三角形全等.其中能使△ABC≌△AED的条件有:①③④故选:B.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、AAS、HL.做题时要根据已知条件在图形上的位置,结合判定方法,进行添加.10.(3分)如图,∠DBC和∠ECB是△ABC的两个外角,点P是∠DBC、∠ECB两角的平分线的交点,PM、PN、PQ分别是P点到AB、AC、BC三边的垂线段,PM、PN、PQ的数量关系为( )A.PM>PN>PQ B.PM<PN<PQ C.PM=PN=PQ D.PM=PN>PQ【分析】由已知条件,根据角平分线上的点到角的两边的距离相等的性质得到线段相等,利用等量代换结论可得.【解答】解:∵PB平分∠DBC,PM⊥AD,PQ⊥BC,∴PM=PQ,∵PC平分∠BCE,PN⊥AE,PQ⊥BC,∴PQ=PN,∴PM=PN=PQ,故选:C.【点评】本题主要考查角平分线的性质;利用线段的等量代换是正确解答本题的关键.11.(3分)如图,△DAC和△EBC均是等边三角形,AE、BD分别与CD、CE交于点M、N,有如下结论:①△ACE≌△DCB;②CM=CN;③AC=DN.其中,正确结论的个数是( )A.3个B.2个C.1个D.0个【分析】根据等边三角形性质得出AC=CD,BC=CE,∠ACD=∠BCE=60°,求出∠ACE=∠BCD,根据SAS证△ACE≌△DCB,推出∠NDC=∠CAM,求出∠DCE=∠ACD,证△ACM≌△DCN,推出CM=CN,AM=DN,即可判断各个结论.【解答】解:∵△DAC和△EBC均是等边三角形,∴AC=CD,BC=CE,∠ACD=∠BCE=60°,∴∠ACD+∠DCE=∠BCE+∠DCE,∴∠ACE=∠BCD,在△ACE和△BCD中∴△ACE≌△DCB(SAS);∴①正确;∵∠ACD=∠BCE=60°,∴∠DCE=180°﹣60°﹣60°=60°=∠ACD,∵△ACE≌△DCB,∴∠NDC=∠CAM,在△ACM和△DCN中∴△ACM≌△DCN(ASA),∴CM=CN,AM=DN,∴②正确;∵△ADC是等边三角形,∴AC=AD,∠ADC=∠ACD,∵∠AMC>∠ADC,∴∠AMC>∠ACD,∴AC>AM,即AC>DN,∴③错误;故选:B.【点评】本题考查了等边三角形的性质和全等三角形的性质和判定的应用,主要考查学生的推理能力和辨析能力.12.(3分)如图,在△ABC中,AB=AC,∠BAC=90°.直角∠EPF的顶点P是BC中点,PE、PF分别交AB、AC于点E、F.给出以下四个结论:①AE=CF;②△EPF是等腰直角三角形;③S四边形AEPF=S△ABC;④EF=AP.当∠EPF在△ABC内绕顶点P旋转时(点E不与A、B重合),上述结论中始终正确的有( )A.1个B.2个C.3个D.4个【分析】由等腰直角三角形的性质可得∠B=∠C=45°,AP=BP=CP,∠BAP=∠CAP=45°,AP⊥BC,由直角三角形的两个锐角互余,可得∠EPA=∠FPC,所以△EPA≌△FPC,所以①②③都得到证明.当EF是三角形ABC的中位线时,才有EF=AP.【解答】解:∵AB=AC,∠BAC=90°,∴∠B=∠C=45°,∵P为边BC的中点,∴AP=BP=CP,∠BAP=∠CAP=45°,AP⊥BC,∴∠EAP=∠C,又∵∠EPA+∠APF=90°,∠FPC+∠APF=90°,∴∠EPA=∠FPC,在△EPA和△FPC中∴△EPA≌△FPC(ASA),∴AE=CF,EP=FP,所以①正确;∴△EPF是等腰直角三角形,所以②正确;∵四边形AEPF的面积等于△APC的面积,∴2S四边形AEPF=S△ABC,所以③正确;又∵EF=,而只有F点为AC的中点时,AP=即点F为AC的中点时有EF=AP,所以④不一定正确.所以当∠EPF在ABC内绕顶点P旋转时(点E不与A、B重合),上述结论中始终正确的有①②③,共3个.故选:C.【点评】本题考查了三角形全等的证明、直角等腰三角形的性质、以及三角形的中位线定理.解决本题的关键是利用直角三角形的性质,说明△EPA≌△FPC.二、填空(每题2分)13.(2分)△ABC≌△DEC,△ABC的周长为100cm,DE=30cm,EC=25cm,那么BC长为 45cm .【分析】根据题意,△ABC≌△DEC,可知BC=CD,△ABC的周长为100cm,DE=30cm,EC=25cm,所以CD=45cm,即得BC=45cm.【解答】解:∵△ABC≌△DEF,∴BC=CD,又△ABC的周长为100cm,DE=30cm,DF=25cm,∴BC=CD=100﹣30﹣25=45cm.故填45【点评】此题主要考查了全等三角形对应边的对应问题,以及对三角形周长的考查.14.(2分)如图,若△ABC≌△ADE,∠EAC=35°,则∠BAD= 35 °.【分析】由全等三角形的性质知:对应角∠CAB=∠EAD相等,再从上图中找出等量关系:∠BAD=∠CAB﹣∠EAB=∠EAC.【解答】解:∵△ABC≌△ADE,∴∠CAB=∠EAD,∵∠EAC=∠CAB﹣∠EAB,∠BAD=∠EAD﹣∠EAB,∴∠BAD=∠EAC,∴∠BAD=∠EAC=35°.故填35【点评】本题主要考查的是全等三角形的性质:对应角相等,仔细读图,利用图形上的关系做题时比较好的一种方法.15.(2分)如图,在△ABC中,D、E分别是边AC、BC上的点,若△ADB≌△EDB≌△EDC,AB=10cm,则BC= 20 cm.【分析】根据全等三角形的性质得出AB=BE=CE=10cm,即可求出答案.【解答】解:∵△ADB≌△EDB≌△EDC,AB=10cm,∴AB=BE=CE=10cm,∴BC=BE+CE=20cm,故答案为:20.【点评】本题考查了全等三角形的性质的应用,注意:全等三角形的对应边相等.16.(2分)如图,已知AB⊥BD,垂足为B,ED⊥BD,垂足为D,AB=CD,BC=DE,则∠ACE= 90 度.【分析】由已知条件可判断△ABC≌△CDE,所以∠ECD=∠A,再根据平角的定义可求得∠ACE的值.【解答】解:∵AB⊥BD、ED⊥BD,∴∠ABC=∠EDC=90°∵AB=CD,BC=DE∴△ABC≌△CDE(SAS)∴∠ECD=∠A∵在Rt△ABC中,∠A+∠ACB=90°∴∠ECD+∠ACB=90°∴∠ACE=180°﹣(∠ECD+∠ACB)=180°﹣90°=90°.故填90.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、AAS、HL 本题要借助平角来求90°.17.(2分)如图,将长方形ABCD沿AM折叠,使D点落在BC上的N点处,如果AD=7cm,∠DAM=15°,则AN= 7 cm,∠NAB= 60° .【分析】利用折叠的性质得到∠DAM=∠NAM,AN=AD,求出所求即可.【解答】解:由折叠得:∠DAM=∠NAM=15°,AN=AD=7cm,∴∠DAN=30°,∵∠BAD=90°,∴∠NAB=60°.故答案为:7;60°【点评】此题考查了翻折变换,以及矩形的性质,熟练掌握折叠的性质是解本题的关键.18.(2分)如图,在△ABC中,∠A:∠ABC:∠ACB=3:5:10,若△EDC≌△ABC,则∠BCE:∠BCD= 1:4 .【分析】先求出△ABC的各角的度数,再根据全等三角形对应角相等求出∠ECD的度数,利用邻补角的定义先求出∠ECA的度数,根据∠BCE=∠ACB﹣∠ECA求出∠BCE的度数,然后求出比值.【解答】解:∵∠A:∠ABC:∠ACB=3:5:10,∴∠ACB=180°×=100°,∵△EDC≌△ABC,∴∠ECD=∠ACB=100°,∴∠ECA=180°﹣∠ECD=180°﹣100°=80°,∠BCE=∠ACB﹣∠ECA=100°﹣80°=20°,∴∠BCD=80°∴∠BCE:∠BCD=20°:80°=1:4.故答案为1:4.【点评】本题主要考查全等三角形对应角相等的性质和邻补角之和等于180°,根据比值和三角形内角和定理求出∠ACB的度数是解题的关键.19.(2分)如图,△ABE和△ACD是△ABC分别沿着AB,AC边翻折180°形成的,若∠BAC=150°,则∠θ的度数是 60 度.【分析】解题关键是把所求的角转移成与已知角有关的角.【解答】解:根据对顶角相等,翻折得到的∠E=∠ACB可得到∠θ=∠EAC,∵△ABE和△ACD是△ABC分别沿着AB,AC边翻折180°形成的,∠BAC=150°,∴∠DAC=∠BAE=∠BAC=150°.∴∠DAE=∠DAC+∠BAE+∠BAC﹣360°=150°+150°+150°﹣360°=90°.∴∠θ=∠EAC=∠DAC﹣∠DAE=60°.【点评】翻折前后对应角相等.20.(2分)如图所示,∠E=∠F=90°,∠B=∠C,AE=AF.给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.其中正确的结论是 ①②③ .(将你认为正确的结论的序号都填上)【分析】此题考查的是全等三角形的判定和性质的应用,只要先找出图中的全等三角形就可判断题中结论是否正确.【解答】解:∵∠E=∠F=90°,∠B=∠C,AE=AF,∴△ABE≌△ACF(AAS),∴AC=AB,BE=CF,即结论②正确;∵AC=AB,∠B=∠C,∠CAN=∠BAM,∴ACN≌△ABM(ASA),即结论③正确;∵∠BAE=∠CAF,∵∠1=∠BAE﹣∠BAC,∠2=∠CAF﹣∠BAC,∴∠1=∠2,即结论①正确;∴△AEM≌△AFN(ASA),∴AM=AN,∴CM=BN,∵∠CDM=∠BDN,∠C=∠B,∴△CDM≌△BDN,∴CD=BD,无法判断CD=DN,故④错误,∴题中正确的结论应该是①②③.故答案为:①②③.【点评】此题考查了三角形全等的判定和性质;对图中的全等三角形作出正确判断是正确解答本题的关键.21.(2分)在如图所示的4×4正方形网格中.∠1+∠2+∠3+∠4+∠5+∠6+∠7= 315 度.【分析】根据正方形的轴对称性得∠1+∠7=90°,∠2+∠6=90°,∠3+∠5=90°,∠4=45°.【解答】解:由图可知,∠1所在的三角形与∠7所在的三角形全等,所以∠1+∠7=90°.同理得∠2+∠6=90°,∠3+∠5=90°.又因为∠4=45°,所以∠1+∠2+∠3+∠4+∠5+∠6+∠7=315°.故答案为:315.【点评】本题考查了全等三角形的性质,全等三角形的对应角相等.发现并利用全等三角形是解决本题的关键.22.(2分)BG、EH分别为△ABC与△DEF的高,且AB=DE,BC=EF,BG=EH,若∠ACB=60°,则∠DFE= 60°或120° .【分析】分两种情况:①如图1所示:由HL Rt△BCG≌Rt△EFH,得出∠DFE=∠ACB=60°;②如图2所示:同①得:Rt△BCG≌Rt△EFH,得出∠EFH=∠ACB=60°,求出∠DFE=120°;即可得出结论.【解答】解:分两种情况:①如图1所示:∵BG、EH分别为△ABC与△DEF的高,∴∠BGC=∠EHF=90°,在Rt△BCG和Rt△EFH中,,∴Rt△BCG≌Rt△EFH(HL),∴∠DFE=∠ACB=60°;②如图2所示:同①得:Rt△BCG≌Rt△EFH,∴∠EFH=∠ACB=60°,∴∠DFE=180°﹣60°=120°;故答案为:60°或120°.【点评】本题考查了直角三角形全等的判定与性质;证明三角形全等是解决问题的关键,注意分类讨论.三、解答题23.(8分)如图,把大小为4×4的正方形方格图形分别分割成两个全等图形,例如图①,请在下图中,沿着虚线画出四种不同的分法,把4×4的正方形分割成两个全等图形.【分析】利用正方形的对称轴和中心结合正方形的面积即可解决问题.【解答】解:如图所示:【点评】本题一方面考查了学生的动手操作能力,另一方面考查了学生的空间想象能力,重视知识的发生过程,让学生体验学习的过程.24.(5分)如图,△ABO≌△CDO,点B在CD上,AO∥CD,∠BOD=30°,求∠A的度数.【分析】根据全等三角形对应边相等可得OB=OD,全等三角形对应角相等可得∠ABO=∠D,再根据等边对等角求出∠OBD=∠D,然后求出∠ABC,再根据两直线平行,内错角相等解答即可.【解答】解:∵△ABO≌△CDO,∴OB=OD,∠ABO=∠D,∴∠OBD=∠D=(180°﹣∠BOD)=×(180°﹣30)=75°,∴∠ABC=180°﹣75°×2=30°,∵AO∥BC,∴∠A=∠ABC=30°.【点评】本题考查了全等三角形的性质,等边对等角的性质,平行线的性质,熟记性质并准确识图是解题的关键.25.(5分)如图,AB∥ED,点F、C在AD上,AB=DE,AF=DC,试说明BC=EF.【分析】首先根据平行线的性质证明∠BAC=∠EDF,在△ABC和△DEF中利用SAS即可证明△ABC≌△DEF,然后根据全等三角形的对应边相等即可证得.【解答】证明:∵AB∥ED,∴∠BAC=∠EDF,∵AF=DC,∴AC=DF,∴在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),∴BC=EF.【点评】本题考查了三角形的全等的判定与性质,证明线段相等常用的方法就是证明三角形全等.26.(8分)如图,在△ABC中,点E在BC上,点D在AE上,∠ABD=∠ACD,∠BDE=∠CDE.试说明BE=CE.【分析】要证BE=CE,要先证明△ABD和△ACD全等,得到BD=CD,再证明△BDE和△CDE全等即可.【解答】证明:∵∠ADB=180°﹣∠BDE,∠ADC=180°﹣∠CDE,∴∠ADB=∠ADC.在△ADB和△ADC中,,∴△ADB≌△ADC.∴BD=CD∵在△DBE和△DCE中,,∴△DBE≌△DCE.∴BE=CE.【点评】本题主要考查了全等三角形的判定与性质,证明简单的线段相等,可以通过全等三角形来证明.27.(8分)如图1、图2,AC⊥BC,AD⊥DE,BE⊥DE,垂足分别为C、D、E,C、D、E三点共线,AC=BC.(1)在图1中,若AD=2,BE=5,则DE的长为多少?请说明理由.(2)在图2中,若AD=5,BE=2,则DE= 3 .【分析】①根据ASA可证明△ADC≌△BEC得出AD=CE,BE=CD则能求出DE=CD+CE.②根据ASA可证明△ADC≌△BEC得出AD=CE,BE=CD则能求出DE=CE﹣CD.【解答】解:①在△ADC与△BEC中,AC=BC,∠D=∠E=90°,∠ACD=∠CBE=90°﹣∠BCE,∴△ADC≌△BEC,∴AD=CE=2,BE=CD=5,∴DE=CD+CE=7;②在△ACD与△BEC中AC=BC,∠ADC=∠BEC=90°,∠DAC=∠BCE∴△ADC≌△BEC∴AD=CE=5,CD=BE=2.∴DE=CE﹣CD=3.【点评】本题考查了全等三角形的判定和性质;做题的关键是找出全等的两个直角三角形,得出对应边相等,剩下的就是线段加减的问题了.28.(10分)如图,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF.(1)求证:AD平分∠BAC;(2)直接写出AB+AC与AE之间的等量关系.【分析】(1)根据相“HL”定理得出△BDE≌△CDF,故可得出DE=DF,所以AD平分∠BAC;(2)由(1)中△BDE≌△CDE可知BE=CF,AD平分∠BAC,故可得出△AED≌△AFD,所以AE=AF,故AB+AC=AE﹣BE+AF+CF=AE+AE=2AE.【解答】(1)证明:∵DE⊥AB于E,DF⊥AC于F,∴∠E=∠DFC=90°,∴△BDE与△CDF均为直角三角形,∵∴△BDE≌△CDF(HL).∴DE=DF,∵DE⊥AB于E,DF⊥AC于F,∴AD平分∠BAC;(2)AB+AC=2AE.证明:∵BE=CF,AD平分∠BAC,∴∠EAD=∠CAD,∵∠E=∠AFD=90°,∴∠ADE=∠ADF.在△AED与△AFD中,∵,∴△AED≌△AFD(ASA).∴AE=AF.∴AB+AC=AE﹣BE+AF+CF=AE+AE=2AE.【点评】本题考查的是角平分线的性质及全等三角形的判定与性质,熟知角平分线的性质及其逆定理是解答此题的关键.。
课题:全等三角形和图形变换(图形的变换)课型:复习课(第一课时)教学目标:1、通过学生对数学问题的解答体验图形变换,理解全等变换:平移、旋转和轴对称;2、通过学生对教师提供的数学题的解答,使学生掌握三角形全等的证明;3、学生在活动、总结中感悟、理解全等与图形变换的关系。
教学重点:掌握三角形全等与图形的变换教学难点:三角形全等与图形的变换二者的关系教学方法:“做做议议结结”----自主合作探究教学法教学过程活动的前言(1)三角形全等的判定方法?(2)初二年级学习的图形有哪些变换?第一篇:在简易中看到真理的永恒教学要点:(1)让四位同学上黑板解答下列三个问题;(2)解答完后,请同学们讨论这些问题有哪些相同点。
(3)小组内分工解答,每人解两个题.1、如图示,BPD∠==,,=PA∠APCPCPDPB求证:△APB≌△CPD第1题图2.如图,等腰直角△ACB中,AC=CB.点D在BC上,E为AC延长线上的一点,且CE=CD,延长AD交BE于点F.(1)求证:AD=BE3,如图示,分别以△ABC的边AB、AC为一边做两个等边△ABE和△ACF求证:BF=CE第3题图4.(用新观点解释老问题)如图示,分别以△ABC的边AB、AC为一边做两个正方形ABEF和正方形ACDG .(1)求证:BG=CF(2)试判断BG与CF(的位置关系,并说明理由。
第二篇:用新理念重温经典知识5、回忆下列数学知识,并画出证明图形,用图形变换的观点,总结它们的共同点.(1)等腰三角形的性质; (2)角平分线的性质; (4)线段的垂直平分线的性质.6、(一碟小菜):如图,在△ACB中,∠C=90°,AD平分∠ACB,AD=5,AC=4,则D点到AB 的距离是.(郑州09预测卷)7、(考考智力):如图,点P是∠AOB的角平分线上一点.过点P作PC∥OA交OB于点C.若∠AOB=60°,OC=4,则P到的OA距离PD等于.8、(测测智商):如图,AD是等腰Rt ABC的底角的角平分线,作DE⊥AB于点E,若AC=2,则BDE的周长为().A. 2B. 4C. 22D. 22第三篇:过关与检测9、如图,在四边形ABCD中,BD是∠ABC的角平分线,若∠A+∠C=180. 求证:DA=DC第6题图第7题图第8题图第9题图第四篇:课后大练兵10、动手操作:在矩形纸片ABCD 中,AB =3,AD =5.如图所示,折叠纸片,使点A 落在BC 边上的A ’处,折痕为PQ ,当点A ’在BC 边上移动时,折痕的端点P 、Q 也随之移动.若限定 点P 、Q 分别在AB 、AD 边上移动,则点A ’在BC 边上可移动的最大距离为 .11、(09年河南省中考)(9分)如图所示,∠BAC =∠ABD ,AC =BD ,点O 是AD 、BC 的交点,点E 是AB 的中点.试判断OE 和AB 的位置关系,并给出证明.12.(09年河南省中考)(10分)如图,在Rt△ABC 中,∠ACB =90°,∠B =60°,BC =2.点0是AC 的中点,过点0的直线l 从与AC 重合的位置开始,绕点0作逆时针旋转,交AB 边于点D .过点C 作CE ∥AB 交直线l 于点E ,设直线l 的旋转角为α.(1)①当α=_____度时,四边形EDBC 是等腰梯形,此时AD 的长为_________; ②当α=______度时,四边形EDBC 是直角梯形,此时AD 的长为_______;(2)当α=90°时,判断四边形EDBC 是否为菱形,并说明理由.13.本次中心质量检测第22题.第10题 第11题图第11题图课题:全等三角形和图形变换(图形变换)课型:复习课(第二课时)教学目标:1、通过学生对数学问题的解答体验图形变换:平移、旋转和轴对称;2、通过学生对教师提供的数学题的解答,使学生掌握旋转和轴对称在中招试题解答中的方法;教学重点:图形变换在解决问题时方法教学难点:如何实行图形变换教学方法:“做做议议结结”----自主合作探究教学法教学过程活动的前言(1)我们学习的图形有哪些变换?这些变换要素有哪些?(2)图形变换的过程中,图形保持着哪些不变的性质。
全等三角形的常见类型全等三角形是初中平面几何的一个重要内容,也是中考必考的内容之一。
识别两个三角形全等一般有边角边(SAS)、角边角(ASA)、角角边(AAS)、边边边(SSS)四种方法。
全等三角形的题目很多,但不外乎以下四种类型:一、轴对称型全等三角形 把一个图形沿着某一条直线折叠过来,如果它能够与另一个图形重合,那么这两个图形关于这条直线对称。
把△ABC沿直线L翻折后,能与△A”B”C”重合,则称它们是轴对称型全等三角形。
下图是常见的轴对称型全等三角形,其对称轴L是对称点所连线段的垂直平分线。
识别轴对称三角形全等要注意题中的一些隐含条件,例如有些具有公共边(如图(1)中的AC,图(4)中的AA”),有些具有公共角或对顶角(如图(2)中的∠BAC=∠B”AC”,图(3)中的∠ACB=∠A”CB”)。
例1.如下图,在∠A的两边截取AB=AC,又截取AD=AE,连CD、BE交于F。
试说明:AF平分∠A。
二、平移型全等三角形 把△ABC沿着某一条直线L平行移动,所得△A”B”C”与△ABC称为平移型全等三角形。
有时这条直线就是△ABC的某一条边所在直线。
下图是常见的平移型全等三角形。
图(1)中AB∥A”B”,AB=A”B”,AC∥A”C”,AC=A”C”。
图(2)中AB∥A”B”,AB=A”B”,AC∥A”C”,AC=A”C”,BC∥B”C”,BC=B”C”。
例2. 如下图,△ABC中,∠A=90°,AD⊥BC于D点,∠C的平分线CE交AB、AD于E、F,过F作FG∥BC交AB于G点。
试说明:AE=BG。
三、旋转型全等三角形 将△ABC绕顶点A旋转角后,到达△AB”C”的位置,则称△ABC和△AB”C”为旋转型全等三角形。
如下图所示,这些是常见的旋转型全等三角形。
识别旋转型全等三角形时,要注意图(1)(2)(3)中以点A、B、B”和点A、C、C”为顶点的三角形都是顶角为的等腰三角形,∠BAC和∠B”AC”隐含着一个等量减(加)等量的条件,通常用边角边(SAS)来识别两个三角形全等。
第二讲:全等三角形与轴对称模型一:手拉手模型特点:由两个等顶角的等腰三角形所组成,并且顶角的顶点为公共顶点结论:(1)△ABD ≌△AEC (2)∠α+∠BOC =180°(3)OA 平分∠BOC例1.如图在直线ABC 的同一侧作两个等边三角形ABD ∆与BCE ∆,连结AE 与CD ,求证:(1)DBC ABE ∆≅∆(2)DC AE =(3)AE 与DC 之间的夹角为︒60(4)DFB AGB ∆≅∆(5)CFB EGB ∆≅∆(6)BH 平分AHC ∠(7)ACGF //变式精练1:两个等腰三角形ABD ∆与BCE ∆,其中BD AB =,,EB CB =α=∠=∠CBE ABD ,连结AE 与CD ,问:(1)DBC ABE ∆≅∆是否成立?(2)AE 是否与CD 相等?(3)AE 与CD 之间的夹角为多少度?(4)HB 是否平分AHC ∠?变式精练2:如图,两个正方形ABCD 与DEFG ,连结CE AG ,,二者相交于点H 问:(1)CDE ADG ∆≅∆是否成立?(2)AG 是否与CE 相等?(3)AG 与CE 之间的夹角为多少度?(4)HD 是否平分AHE ∠?模型二:对角互补模型(1)全等型——90°条件:①90AOB DCE ∠=∠=︒②OC 平分∠AOB结论:①CD CE =;②2OD OE OC +=;③212OCD OCE ODCE S S S OC ∆∆=+=四边形辅助线之一:作垂直,证明CDM CEN∆∆≌辅助线之二:过点C 作CF ⊥OC ,证明ODC FEC∆∆≌结论:①CD CE =;②2OE OD OC -=;③212OCE OCD S S OC ∆∆-=条件:①90AOB DCE ∠=∠=︒②CD CE=结论:①OC 平分∠AOB ;②2OD OE OC +=;③212OCD OCE ODCE S S S ∆∆=+=四边形(2)全等型——120°条件:①2120AOB DCE∠=∠=︒②OC平分∠AOB结论:①CD CE=;②OD OE OC+=;③234OCD OCEODCES S S OC∆∆=+=四边形模仿(全等型——90°)辅助线之一完成证明辅助线之二:在OB上取一点F,使OF=OC,证明△OCF为等边三角形(3)全等型——任意角α条件:①2,1802AOB DCEαα∠=∠=︒-②CD CE=结论:OC平分∠AOB例:四边形ABCD被对角线BD分为等腰直角三角形ABD和直角三角形CBD,其中A∠和C∠都是直角,另一条对角线AC的长度为2,求四边形ABCD的面积.DCBA变式精练1:已知MAN∠.∠,AC平分MAN(1)在图1中,若MAN∠=∠=︒,求证:AB AD AC+=;=︒,90ABC ADC∠120(2)在图2中,若MAN∠+∠=︒,则⑴中的结论是否仍然成立?ABC ADC∠120=︒,180若成立,请给出证明;若不成立,请说明理由;变式精练2:已知:如图所示,Rt△ABC中,AB=AC,90∠=°,O为BC的中点,BAC⑴写出点O到△ABC的三个顶点A、B、C的距离的关系(不要求证明)⑵如果点M、N分别在线段AC、AB上移动,且在移动中保持AN=CM.试判断△OMN的形状,并证明你的结论.⑶如果点M、N分别在线段CA、AB的延长线上移动,且在移动中保持AN=CM,试判断⑵中结论是否依然成立,如果是请给出证明.模型三:角含半角模型(1)角含半角模型90°-1条件:①正方形ABCD ②45EAF ∠=︒结论:①EF DF BE =+;②CEF ∆的周长为正方形ABCD 周长的一半;也可以这样:条件:①正方形ABCD ②EF DF BE =+结论:①45EAF ∠=︒;口诀:角含半角要旋转(2)角含半角模型90°-2条件:①正方形ABCD ②45EAF ∠=︒结论:①EF DF BE =-;辅助线:(2)角含半角模型90°-3条件:①等腰直角三角形ABC ②45DAE ∠=︒结论:①222BD CE DE +=;(勾股定理知识)辅助线:将△ACE 绕点A 顺时针旋转90°得到△ABF ,并连接DF .若DAE ∠旋转到△ABC 外部时,结论222BD CE DE +=仍然成立。
课题全等三角形及三角形全等的条件1、掌握全等三角形对应边相等、对应角相等的性质,并能进行简单的推理计算。
教学目的2、理解并掌握三角形全等的判定定理,能准确找到判定定理的条件,并熟练运用。
教学内容一、课前检测1.如图(1),△ABC中,AB=AC,AD平分∠BAC,则__________≌__________.2.斜边和一锐角对应相等的两直角三角形全等的根据是__________,底边和腰相等的两个等腰三角形全等的根据是__________.3.已知△ABC≌△DEF,△DEF的周长为32 cm,DE=9 cm,EF=12 cm则AB=____________,BC=____________,AC=____________.图(1)图(2)图(3)4.如图(2),AC=BD,要使△ABC≌△DCB还需知道的一个条件是__________5.如图(3),若∠1=∠2,∠C=∠D,则△ADB≌__________,理由______________________.6.不能确定两个三角形全等的条件是()A.三边对应相等B.两边及其夹角相等C.两角和任一边对应相等D.三个角对应相等7·△ABC和△DEF中,AB=DE,∠A=∠D,若△ABC≌△DEF还需要()A.∠B=∠E B.∠C=∠F C.AC=DF D.前三种情况都可以8·在△ABC和△A′B′C′中①AB=A′B′②BC=B′C′③AC=A′C′④∠A=∠A′⑤∠B=∠B′⑥∠C=∠C′,则下列哪组条件不能保证△ABC≌△A′B′C′()A.具备①②④B.具备①②⑤C.具备①⑤⑥D.具备①②③参考答案:1.△ADB△ADC2.ASA(或AAS)SSS3.9 cm 12 cm 11 cm 4.∠ACB=∠DBC或AB=CD 5.△ACB AA S 6·D 7·D 8·A二、知识梳理知识要点:要点1:全等三角形的概念及其性质(1)全等三角形的定义:能够完全重合的两个三角形叫做全等三角形。
第1章全等三角形1、全等图形:能完全重合的图形叫做全等图形.◆全等变换:通过平移、旋转、翻折这几种方式图形的形状、大小不发生改变,换而言之,就是三种变换前后的图形是全等的,所以我们也把这三种变换叫做全等变换.2、全等三角形:两个能完全重合的三角形叫做全等三角形.理解:①全等三角形形状与大小完全相等,与位置无关;②一个三角形经过平移、翻折、旋转后得到的三角形,与原三角形仍然全等;③三角形全等不因位置发生变化而改变。
3、全等三角形的性质◆全等三角形的对应边相等,对应角相等.(注意写法:字母一一对应)理解:①长边对长边,短边对短边;最大角对最大角,最小角对最小角;②对应角的对边为对应边,对应边对的角为对应角.延伸:①全等三角形的周长相等、面积相等.②全等三角形的对应边上的对应中线、角平分线、高线分别相等.4、全等三角形的判定方法理解:三角形全等的判定条件中必须是三个元素,并且一定有一组对应边相等...........5、全等三角形的判定的基本思路◆已知两边:①找第三边(SSS);②找夹角(SAS);③找是否有直角(HL).◆已知一边一角:若边为角的对边:找任一角(AAS).若边就是角的一条边:①找这条边上的另一角(ASA);②找这条边上的对角(AAS);②找该角的另一边(SAS).◆已知两角:①找两角的夹边(ASA);②找任意一边(AAS).6、全等三角形的判定的基本模型◆平移型:平行线,重叠线段◆翻折型:公共边,公共角,对顶角◆旋转型:对顶角,重叠角和重叠线段◆一线三等角型:◆手拉手型:◆半角全等型:7、全等三角形的判定常用辅助线◆直接连线构造全等三角形:◆倍长中线构造全等三角形:中线是三角形中的重要线段之一,在利用中线解决几何问题时,常常采用“倍长中线”的方法添加辅助线.所谓倍长中线,就是将三角形的中线延长一倍,以便构造全等三角形,从而运用全等三角形的有关知识来解决问题的方法.◆截长补短构造全等三角形:(1)“截长法”,即在长线段上取一段,使之等于其中一条短线段,然后证明剩下的线段等于另一条短线段.(2)“补短法”,即延长短线段,使延长部分等于另一条短线段,再证明延长后的线段等于长线段;或延长短线段,使延长后的线段等于长线段,再证明延长部分等于另一条短线段.8、尺规作图①用尺规作角平分线②过直线外一点作已知直线的垂线③过直线上一点作已知直线的垂线第2章轴对称图形1、轴对称:把一个图形沿着某一条直线翻折,如果它能够与另一个图形重合,那么称这两个图形关于这条直线对称,也称这两个图形成轴对称,这条直线叫做对称轴.◆轴对称的性质:①成轴对称的两个图形全等;②成轴对称的两个图形中,对应点的连线被对称轴垂直平分.拓展:成轴对称的两个图形的任何对应部分也成轴对称.2、轴对称图形:把一个图形沿着某一条直线折叠,如果直线两旁的部分能够互相重合,那么这个图形叫轴对称图形,这条直线叫对称轴.◆轴对称图形与轴对称的区别与联系:3、线段的垂直平分线的概念:垂直并且平分......一条线段的直线,叫做这条直线的垂直平分线.◆线段的垂直平分线必须满足两个条件:①经过线段的中点;②垂直于这条线段.注意:线段的垂直平分线是一条直线,而不是一条线段,且只有一条.●4、线段:线段是轴对称图形,有2条对称轴,分别是线段所在直线和线段的垂直平分线.◆线段的垂直平分线性质定理:线段的垂直平分线上的点到线段两端的距离相等.拓展:三角形三边的垂直平分线交于一点,这一点到三角形三个顶点的距离相等.◆线段的垂直平分线判定定理:到线段两端距离相等的点在线段的垂直平分线上.5、角:角是轴对称图形,有1条对称轴,角平分线所在的直线.....是它的对称轴.◆角平分线性质定理:角平分线上的点到角两边的距离相等.拓展:三角形三个内角的平分线交于一点,这一点到三角形三条边的距离相等.◆角平分线判定定理:角的内部到角两边距离相等的点在角的平分线上.6、等腰三角形:等腰三角形是轴对称图形,顶角平分线(也可以说是底边上的中线或底边上的高)所在的直线是它的对称轴.◆等腰三角形性质定理:①等腰三角形的两个底角相等(简称“等边对等角”);②等腰三角形的顶角平分线与底边上的中线,底边上的高互相重合(简称“三线合一”).◆等腰三角形判定定理:有两个角相等的三角形是等腰三角形(简称“等角对等边”).◆直角三角形性质定理:直角三角形斜边上的中线等于斜边的一半.注意:该定理需满足两个条件:1.直角三角形;2.斜边上的中线.7、等边三角形:三边相等的三角形叫做等边三角形或正三角形.8、等边三角形:等边三角形是轴对称图形,角平分线(也可以说是三边上的中线或三边上的高)所在的直线是它的对称轴◆等边三角形性质定理:等边三角形的每个内角都等于60°.拓展:等边三角形每条边都能运用三线合一这性质.◆等边三角形判定定理:①三个角都相等的三角形是等边三角形.②有一个角是60°的等腰三角形是等边三角形.尺规作图:●●1、画已知图形的对称图形(“三步法”):一找——找已知图形的关键点;二画——根据对称点的位置关系画出各关键点的对称点;三连——按照已知图形的形状连接各对称点,得到所要求作的图形.●●2、用尺规作线段的垂直平分线●●3、已知底边及底边上的高作等腰三角形。
初三中考第⼀轮复习全等三⾓形(⼀对⼀教案)学科教师辅导讲义学员编号:年级:课时数:学员姓名:辅导科⽬:学科教师:授课类型T全等三⾓形判定 C 全等三⾓形的判定特点T 中考题型分析授课⽇期及时段教学内容⼀、同步知识梳理1.判定和性质⼀般三⾓形直⾓三⾓形判定边⾓边(SAS)、⾓边⾓(ASA)⾓⾓边(AAS)、边边边(SSS)具备⼀般三⾓形的判定⽅法斜边和⼀条直⾓边对应相等(HL)性质对应边相等,对应⾓相等对应中线相等,对应⾼相等,对应⾓平分线相等注:①判定两个三⾓形全等必须有⼀组边对应相等;②全等三⾓形⾯积相等.2.证题的思路:)找任意⼀边()找两⾓的夹边(已知两⾓)找夹已知边的另⼀⾓()找已知边的对⾓(找已知⾓的另⼀边(边为⾓的邻边)任意⾓(若边为⾓的对边,则找已知⼀边⼀⾓)找第三边()找直⾓()找夹⾓(已知两边AASASAASAAASSASAASSSSHLSAS⼆、同步题型分析题型1:边边边(SSS)的证明(.★.)例..1.:.已知:如图1,AD=BC.AC=BD.试证明:∠CAD=∠DBC.图1提⽰:证明△ABD≌△BAC,得到∠BAD=∠ABC,∠DBA=∠CAB,通过∠BAD—∠CAB=∠ABC—∠DBA,证明∠CAD=∠DBC。
题型2:边⾓边(SAS)的证明(.★.)例..1.:.已知:如图2,AB=AC,BE=CD.求证:∠B=∠C.图2提⽰:由....AB=AC,BE=CD,得到AD=AE,证明△ABD≌△ACE,得到∠B=∠C(.★.)例..2.:.已知:如图3,AB=AD,AC=AE,∠1=∠2.求证:BC=DE.图3提⽰:由....∠1=∠2,得到∠BAC=∠DAE,证明△BAC≌△DAE,得到BC=DE(.★★..3.:.如图4,将两个⼀⼤、⼀⼩的等腰直⾓三⾓尺拼接(A、B、D三点共线,AB=CB,EB=DB,..)例∠ABC=∠EBD=90°),连接AE、CD,试确定AE与CD的位置与数量关系,并证明你的结论.图4提⽰:延长..AB=CB,EB=DB,∠ABE=∠CBD=90°,证明△ABE≌△CBD,得到..F.,由.....AE..交.CD..于点AE=CD,∠EAB=∠DCB,再由∠CDB+∠DCB=90o,得到∠CEF+∠ECF=90°,证明AE⊥CD 题型3:⾓边⾓(ASA)、⾓⾓边(AAS)的证明(.★.)例..1.:.已知:如图5,AB ⊥AE ,AD ⊥AC ,∠E =∠B ,DE =CB .求证:AD =AC .图5提⽰:由....AB ⊥AE ,AD ⊥AC ,得到∠CAB =∠DAE ,根据∠E =∠B ,DE =CB ,证明△C AB≌△DAE ,得到AD =AC(.★★..)例..2.:.已知:如图6,在△MPN 中,H 是⾼MQ 和NR 的交点,且MQ =NQ .求证:HN =PM .图6提⽰:由....MQ 和NR 是△MPN 的⾼,得到∠MQP =∠NRP =90°,继⽽得到∠PMQ =∠PNR ,结合MQ =NQ ,证明△PMQ ≌△HNQ ,得到HN =PM(.★★..)例..3.:.阅读下题及⼀位同学的解答过程:如图7,AB 和CD 相交于点O ,且OA =OB ,∠A =∠C .那么△AOD 与△COB 全等吗?若全等,试写出证明过程;若不全等,请说明理由.答:△AOD ≌△COB .证明:在△AOD 和△COB 中,∠=∠=∠=∠),(),(),(对顶⾓相等已知已知COB AOD OB OA C A∴△AOD ≌△COB (ASA ).图7问:这位同学的回答及证明过程正确吗?为什么?提⽰:⼀定要找准对应边和对应⾓题型4、斜边和⼀条直⾓边对应相等(HL )(.★★..).已知:如图7,AC =BD ,AD ⊥AC ,BC ⊥BD .求证:AD =BC ;图7提.⽰:连接....DC ..,即可证明.....△ADC ≌△BCD三、课堂达标检测(★)检测题1:如图(1),点P 是AB 上任意⼀点,ABC ABD ∠=∠,还应补充⼀个条件,才能推出APC APD △≌△.从下列条件中补充⼀个条件,不⼀定能....推出APC APD △≌△的是()A .BC BD =B .AC AD = C .ACB ADB ∠=∠D .CAB DAB ∠=∠答案:B(★)检测题2:如图2,已知AD AB =,DAC BAE ∠=∠,要使 ABC △≌ADE △,可补充的条件是(写出⼀个即可).答案:AE=AC(★★)检测题3:如图,在△ABE 中,AB =AE,AD =AC,∠BAD =∠EAC, BC 、DE 交于点O.求证:(1) △ABC ≌△AED ; (2) OB =OE .图(3)CADP B图(1)A CEBD(2)BDA⼀、专题精讲(★★)题型⼀:全等三⾓形证明等量例1:2010四川宜宾,13(3),5分)如图,分别过点C、B作△ABC的BC边上的中线AD及其延长线的垂线,垂⾜分别为E、F.求证:BF=CE.提⽰:证明△CED≌△BFD题型⼆:全等三⾓形证明位置关系(★★)例2:如图所⽰,已知,AD为△ABC的⾼,E为AC上⼀点,BE交AD于F ,且有BF=AC,FD=CD.求证:BE⊥AC提⽰:证明△BDF≌△ADC题型三、构造全等证明结论(★★)例3:如图,已知E是正⽅形ABCD的边CD 的中点,点F在BC上,且∠DAE=∠FAE.求证:AF=AD+CFABDCEF提⽰:证明△DBA ≌△ECA(★★★)检测题2:△DAC, △EBC 均是等边三⾓形,AE,BD 分别与CD,CE 交于点M,N,求证:(1)AE=BD (2)CM=CN (3) △CMN 为等边三⾓形(4)MN ∥BC提⽰:(1)证明△ACE ≌△DCB (2)△ACM ≌△DCN 或△EMC ≌△BNC(★★★)检测题3:如图甲,在△ABC 中,∠ACB 为锐⾓.点D 为射线BC 上⼀动点,连接AD ,以AD 为⼀边且在AD 的右侧作正⽅形ADEF .解答下列问题:(1)如果AB=AC ,∠BAC=90o.①当点D 在线段BC 上时(与点B 不重合),如图⼄,线段CF 、BD 之间的位置关系为,数量关系为.②当点D 在线段BC 的延长线上时,如图丙,①中的结论是否仍然成⽴,为什么?D AMEAFFEAFA(2)如果AB≠AC,∠BAC≠90o,点D在线段BC上运动.试探究:当△ABC满⾜⼀个什么条件时,CF⊥BC(点C、F重合除外)?画出相应图形,并说明理由.(画图不写作法)提⽰:证明△ABD≌△ACF即可三、学法提炼1、专题特点:主要是了解全等三⾓形的运⽤特点,全等三⾓形的构造⽅法2、解题⽅法:主要是从全等三⾓形的四⼤条件⼊⼿(公共边、公共⾓、重合边、重合⾓),运⽤已知条件,达到全等证明3、注意事项:在条件运⽤中,⼀定要清楚条件所适⽤的判定,不能张冠李戴。
初二数学上学期期末考试复习建议(几何部分)一. 考试范围第十一章 三角形 第十二章 全等三角形 第十三章 轴对称 二. 复习目的1. 通过复习使学生对已学过的数学知识系统化, 条理化. 更有利于学生掌握基础知识和基本方法, 为进一步学习数学打下良好的基础.2. 逐步培养学生识图能力, 逻辑思维和推理论证的能力, 作图能力, 分析问题和解决问题的能力, 提高学生的数学素质.3. 使学生初步会运用数形结合、转化与化归、分类讨论等数学思想方法.三. 总体复习建议1. 重视基础: 对每一章的知识点进行总结, 使学生掌握所有重要的定义、公式、性质和判定; 掌握每章必须掌握的基本方法(包括解题规范) , 且“每一步推理都要有根据”; 关注教材中数学应用(包括尺规作图) 的实例及其数学原理.2. 优选例题习题, 使学生熟悉一些基本题型, 掌握常用辅助线的添加. 证明书写格式要规范, 思路清楚.3. 适当的综合题的训练.4. 关注新旧教材的对比与变化.5. 充分利用区里的教育资源.第十二章 全等三角形 第十三章 轴对称 一、通过框架图进行知识梳理轴对称等腰三角形 等边三角形画轴对称图形画轴对称图形的对称轴 关于坐标轴对称的点的坐标的关系 生活中的轴对称二、基本尺规作图: 作法及原理作一条线段等于已知线段;作一个角等于已知角;作已知角的平分线;作已知线段的垂直平分线(作已知线段的中点) ;三、适当总结证明方法:(1) 证明线段相等的方法①利用线段中点. ②利用数量相等.③证明两条线段所在的两个三角形全等④利用角平分线的性质证明角平分线上的点到角两边的距离相等⑤等腰三角形顶角平分线、底边上的高线平分底边⑥线段垂直平分线上的点到线段两端点的距离相等(2) 证明角相等的方法:①利用数量相等. ②利用平行线的性质进行证明.③利用角平分线证明. ④证明两个角所在的两个三角形全等⑤同角(或等角) 的余角(或补角) 相等⑥等腰三角形底边上的高线或底边中线平分顶角⑦等式性质⑧等边对等角(3) 证明两条线段的位置关系(平行、垂直) 的方法.(4) 常添加的辅助线:截长补短倍长中线角分线双垂直角分线翻折平行线+角分线: 等腰三角形角分线+垂直: 补全等腰三角形四、从图形变换的角度来复习全等同时复习几何的平移、轴对称两种变换, 归纳定义及性质, 渗透旋转变换的思想全等三角形的常见图形平移型:A'AB C C'B'轴对称型:旋转型:补充习题(一) 全等的性质和判定1. 如图, 正方形ABCD 的边长为4, 将一个足够大的直角三角板的直角顶点放于点A 处, 该三角板的两条直角边与CD 交于点F , 与CB 延长线交于点E . 四边形AECF 的面积是( ) . A A. 16 B. 12 C. 8 D. 42. 已知: 如图, AC 、BD 相交于点O , ∠A = ∠D , 请你再补充一个条件, 使△AOB ≌△DOC , 你补充的条件是____________.CA A' BABCB'C' ABCC' B'AB CC' B'B (C' )C (B' ) AA'ABB'C'CABB'C' C A'AA'B (C' )C (B' )A A'BB' C C' AA'B' BCC' ABB'C'C A'ABCDO3. 在△ABC 与△A'B'C' 中, 已知∠A = ∠A', CD 和C'D' 分别为∠ACB 和∠A'C'B' 的平分线, 再从以下三个条件: ①∠B = ∠B', ②AC = A'C', ③CD = C'D' 中任取两个为题设, 另一个为结论, 则可以构成 ( ) 个正确的命题.A . 1B . 2C . 3D . 4 4. 根据下列已知条件, 不能唯一确定......△ABC 的大小和形状的是( ) . B A. AB =3, BC =4, AC =5 B. AB =4, BC =3, ∠A =30º C. ∠A =60º, ∠B =45º, AB =4D. ∠C =90º, AB =6, AC = 55. 如图, 已知△ABC , 则甲、乙、丙三个三角形中和△ABC 全等的是( ) . Dbaca cc aa丙72︒50︒乙50︒甲50︒CBA50︒72︒58︒A. 只有乙B. 只有丙C. 甲和乙D. 乙和丙6. 已知: 如图, CB = DE , ∠B = ∠E , ∠BAE = ∠CAD . 求证: ∠ACD = ∠ADC .7. 如图, 锐角△ABC 中, D , E 分别是AB , AC 边上的点, △ADC ≌△ADC ′, △AEB ≌△AE B′, 且C ′D ∥EB ′∥BC , 记BE , CD 交于点F , 若BAC x ∠=︒, 则∠BFC 的大小是__________°. (用含x 的式子表示) (1802x -)E ABCDF E DB'C'ABC第6题图第7题图(二) 轴对称图形和垂直平分线1. 在下列各图中, 对称轴最多的图形有________条对称轴.2. (1) 点P (3, − 5) 关于x 轴的对称点坐标为( ) D A. (−3, −5) B. (5, 3) C. (−3, 5) D. (3, 5)(2) 如图, 数轴上A B ,两点表示的数分别为1-和3, 点B 关于点A 的对称点为C , 则点C 所表示的数为( ) A A. 23-- B. 13--C. 23-+D. 13+(3) 如图, 在正方形网格纸上有三个点A , B , C , 现要在图中网格范围内再找格点D , 使得A , B , C , D 四点组成的凸四边形是轴对称图形, 在图中标出所有满足条件的点D 的位置. (两个解)3. 如图, 在Rt △ABC 中, ∠ACB = 90°, ∠A = 15°, AB 的垂直平分线与 AC 交于点D , 与AB 交于点E , 连结BD . 若AD =12cm, 则BC 的长为 cm.4. 如图, 已知△ABC 中, ∠BAC = 120°, 分别作AC , AB 边的垂直平分线PM , PN 交于点P , 分别交BC 于点E 和点F . 则以下各说法中: ①∠P = 60°, ②∠EAF = 60°, ③点P 到点B 和点C 的距离相等, ④PE = PF , 正确的说法是______________. (填序号) ①②③FEPMN CAB第3题图第4题图5. 已知∠AOB =45°, 点P 在∠AOB 的内部, P 1与P 关于OB 对称, P 2与P 关于OA 对称, 则P 1、P 2与O 三点构成的三角形是( ) D A. 直角三角形 B. 等腰三角形 C. 等边三角形 D. 等腰直角三角形(三) 等腰三角形的性质和判定1. 等腰直角三角形的底边长为5, 则它的面积是( ). D A. 50B. 25C. 12.5D. 6.252. 已知: 如图3, △ABC 中, 给出下列四个命题: ① 若AB =AC , AD ⊥BC , 则∠1=∠2; ②若AB =AC , ∠1=∠2, 则BD =DC ; ③若AB =AC , BD =DC , 则AD ⊥BC ;④若AB =AC , AD ⊥BC , BE ⊥AC , 则∠1=∠3; 其中, 真命题的个数是( ). D A. 1个 B. 2个 C. 3个 D. 4个A O B3. 如图, 在△ABC 中, D 是BC 边上一点, 且AB = AD = DC , ∠BAD = 40°, 则∠C 为( ) . B A. 25° B. 35°C. 40°D. 50°4. 如图, 在△ABC 中, AB = AC , ∠BAC = 30°. 点D 为△ABC 内一点, 且DB = DC , ∠DCB = 30°. 点E 为BD 延长线上一点, 且AE = AB .(1) 求∠ADE 的度数;(2) 若点M 在DE 上, 且DM = DA , 求证: ME = DC .5. 已知: 如图, △ABC 中, 点,D E 分别在,AB AC 边上, F 是CD 中点, 连BF 交AC 于点E , 180ABE CEB ∠+∠=︒, 比较线段BD 与CE 的大小, 并证明你的结论.(提示, 注意AE = AB ; 过D 作AC 的平行线交BE 于点G )(四) 等边三角形(30° 角直角三角形)1. 下列条件中, 不能..得到等边三角形的是( ) . B A. 有两个内角是60°的三角形 B. 有两边相等且是轴对称图形的三角形 C. 三边都相等的三角形D. 有一个角是60°且是轴对称图形的三角形2. 如图, △ABC 中, AB =AC , ∠BAC =120°, DE 垂直平分AC . 根据以上条件, 可知∠B =______, ∠BAD =_______, BD : DC =_______. (30, 90, 2: 1)3. 如图, 在纸片△ABC 中, AC = 6, ∠A = 30º, ∠C = 90º, 将∠A 沿DE 折叠, 使点A 与点B 重合, 则折痕DE 的长为_____. (2)4. 如图所示△ABC 中, AB = AC , AG 平分∠BAC ; ∠FBC = ∠BFG = 60︒, 若FG = 3, FB = 7, 求BC 的长. (答案10. 提示: 延长AG 、FG 与BC 相交)ABCDABCDEADMC(五) 最值问题1. 如图, P 、Q 为ABC 边上的两个定点. 在BC 边上求作一点M , 使PM +MQ 最短2. 已知: 如图, 牧马营地在M 处, 每天牧马人要赶着马群到草地吃草, 再到河边饮水, 最后回到营地M . 请在图上画出最短的放牧路线..M河草地第1题图第2题图3. 如图, 四边形EFGH 是一长方形的台球桌面, 现在黑、白两球分别位于A 、B 两点的位置上. 试问怎样撞击黑球A , 才能使黑球A 先碰到球台边EF , 反弹一次后再击中白球B ?4. 如图, MN 是正方形ABCD 的一条对称轴, 点P 是直线MN 上的一个动点, 当PC +PD 最小时, ∠PCD = _________°. (45)DAMNBCP5. 已知两点M (4, 2) , N (1, 1) , 点P 是x 轴上一动点, 若使PM +PN 最短, 则点P 的坐标应为___________. (2, 0)6. 平面直角坐标系xOy 中, 已知点A (0, 4) , 直线x = 3, 一个动点P 自OA 的中点M 出发, 先到达x 轴上的某点(设为点E ) , 再到达直线x = 6上某点(设为点F ) 最后运动到点A , 求使点P 运动的路径中最短的点E 、F 的坐标. E (4, 0) , F (6, 1)几何专题复习 (一) 分类讨论1. ① 等腰三角形的一个角是110︒, 求其另两角? ② 等腰三角形的一个角是80︒, 求其另两角?③ 等腰三角形两内角之比为2: 1, 求其三个内角的大小? 2. ① 等腰三角形的两边长为5cm 、6cm, 求其周长? ② 等腰三角形的两边长为10cm 、21cm, 求其周长?3. ① 等腰三角形一腰上的中线将周长分为12cm 和21cm 两部分, 求其底边长? ② 等腰三角形一腰上的中线将周长分为24cm 和27cm 两部分, 求其底边长?4. 等腰三角形一腰上的高与另一腰的夹角为30°, 则其顶角为_______.(按高的位置分类)5. 等腰三角形一边上的高等于底边的一半, 则其顶角为___________.6. 等腰三角形一腰上的高等于腰的一半, 则其顶角为___________.7. 等腰三角形一边上的高等于这边的一半, 则其顶角为___________.8. △ABC 中, AB = AC, AB 的中垂线EF 与AC 所在直线相交所成锐角为40︒, 则∠B = _____. (按一腰中垂线与另一腰的交点所在位置分类)9. 已知: ()()ABC x C B A ∆-轴上一点且为、,4,00,2为等腰三角形 , 问满足条件的C 点有几个? 4个10. 在正方形ABCD 所在平面上找一点P, 使△PAD 、△PAB 、△PBC 、△PCD 均为等腰三角形, 这样的P 点有几个? 9个11. 平面内有一点D 到△ABC 三个顶点的距离DA = DB = DC , 若∠DAB = 30°, ∠DAC = 40°, 则∠BDC 的大小是_________°. (20或140)(二) 几何作图1. 如图, 某地区要在区域S 内建一个超市M , 按照要求, 超市M 到两个新建的居民小区A , B 的距离相等, 到两条公路OC , OD 的距离也相等. 这个超市应该建在何处? (本题要求: 尺规作图, 不写作法, 保留作图痕迹)SD2. 尺规作图作AOB 的平分线方法如下: 以O 为圆心, 任意长为半径画弧交OA 、OB 于C 、D , 再分别以点C 、D 为圆心, 以大于12CD 长为半径画弧, 两弧交于点P , 则作射线OP 即为所求. 由作法得OCP ODP △≌△的根据是( ) . DA. SASB. ASAC. AASD. SSS3. 如图, 用圆规以直角顶点O 为圆心, 以适当半径画一条弧 交两直角边于A 、B 两点, 若再以A 为圆心, 以OA 为半径画弧, 与弧AB 交于点C , 则∠AOC 等于 __________ °4. 小明同学在学习了全等三角形的相关知识后发现, 只用两把完全相同的长方形直尺就可以作出一个锐角的平分线. 如图: 一把直尺压住射线OB , 另一把直尺压住射线OA 并且与第一把直尺交于点P , 小明说: “射线OP 就是∠BOA 的角平分线. ”你认为小明的想法正确吗? 请说明理由.5. 阅读下列材料:木工张师傅在加工制作家具的时候, 用下面的方法在木板上画直角:如图1, 他首先在需要加工的位置画一条线段AB , 接着分别以点A 、点B 为圆心, 以大于12AB 的适当长为半径画弧, 两弧相交于点C , 再以C 为圆心, 以同样长为半径画弧交AC 的延长线于点D (点D 需落在木板上) , 连接DB . 则∠ABD 就是直角. 木工张师傅把上面的这种作直角的方法叫做“三弧法.图2EF ACBD 图1OAB解决下列问题:(1) 利用图1就∠ABD是直角作出合理解释(要求: 先写出已知、求证, 再进行证明);(2) 图2表示的一块残缺的圆形木板, 请你用“三弧法”, 在木板上...画出一个以EF为一条直角边的直角三角形EFG(要求: 尺规作图, 不写作法, 保留作图痕迹) .(三) 操作问题第1题图①图②第2题图1. 如图①, 一张四边形纸片ABCD, ∠A=50︒, ∠C=150︒. 若将其按照图②所示方式折叠后, 恰好MD'∥AB, ND'∥BC, 则∠D的度数为( ). CA. 70°B. 75°C. 80°D. 85°2. 如图所示, 把一个三角形纸片ABC顶角向内折叠3次之后, 3个顶点不重合, 那么图中∠1+ ∠2+∠3+∠4+∠5+∠6的值为( ) CA. 180°B. 270°C. 360°D. 无法确定3. 将一个菱形纸片依次按下图①、②的方式对折, 然后沿图③中的虚线裁剪, 成图④样式. 将纸展开铺平. 所得到的图形是图中的( ) A4. 如图, 等边△ABC的边长为1cm, D、E分别是AB、AC上的点, 将△ADE沿直线DE折叠, 点A落在点A´处, 且点在△ABC外部, 则阴影部分图形的周长为____________cm. (3)5. 如图, 将一张三角形纸片ABC 折叠, 使点A 落在BC 边上, 折痕EF ∥BC , 得到△EFG ; 再继续将纸片沿△BEG 的对称轴EM 折叠, 依照上述做法, 再将△CFG 折叠, 最终得到矩形EMNF , 折叠后的△EMG 和△FNG 的面积分别为1和2, 则△ABC 的面积为( ) A . 6B . 9C . 12D . 186. 将如图1所示的长方形纸片ABCD 沿过点A 的直线折叠, 使点B 落在AD 边上, 折痕为AE (如图2) ; 再继续将纸片沿过点E 的直线折叠, 使点A 落在EC 边上, 折痕为EF (如图3) , 则在图3中, ∠F AE = _______°, ∠AFE = _______°. (45, 67.5)图1 图2 图37.(1) 已知ABC △中, 90A ∠=, 67.5B ∠=, 请画一条直线, 把这个三角形分割成两个等腰三角形. (请你选用下面给出的备用图, 把所有不同的分割方法都画出来. 只需画图, 不必说明理由, 但要在图中标出相等两角的度数)(2) 已知ABC △中, C ∠是其最小的内角, 过顶点B 的一条直线把这个三角形分割成了两个等腰三角形, 请探求ABC ∠与C ∠之间的所有可能的关系.8. 当身边没有量角器时, 怎样得到一些特定度数的角呢? 动手操作有时可以解“燃眉之急”. 如图, 已知矩形ABCD , 我们按如下步骤操作可以得到一个特定的角: (1) 以点A 所在直线为折痕, 折叠纸片, 使点B 落在AD 上, 折痕与BC 交于E ; (2) 将纸片展平后, 再一次折叠纸片, 以E 所在直线为折痕, 使点A 落在BC 上, 折痕EF 交AD 于F . 则∠AFE = _______°. (67.5)A BC 备用图①A BC 备用图②ABC备用图③AC B GFEACBAM GFECB NM G FEACB A BCD ED CB AFD CEA9. 如图(1)所示Rt △ABC 中, ∠A = 90°, 三边a b c >>. 现以△ABC 某一边的垂直平分线为对称轴, 作△ABC 的轴对称图形, 记作一次操作. 例如, 若图(1)中△ABC 以a 边的垂直平分线为对称轴, 作轴对称图形得到图(2)中的△ABC , 记作“a 操作”一次; 图(2)中△ABC 继续以b 边的垂直平分线为对称轴, 作轴对称图形得到图(3)中的△ABC , 记作“b 操作”一次. 现对图(1)中的△ABC 分别按以下顺序连续进行若干次操作, 则最后得到的△ABC 与图(1)中△ABC 重合的是( ) . BA. a 操作 − b 操作 − c 操作B. b 操作 − c 操作 − b 操作 − c 操作C. a 操作 − c 操作 − b 操作 − a 操作D. b 操作 − a 操作 − b 操作 − a 操作c ba a(1)ABC (2) a 操作 (3) b 操作BCAA BCACB四、探究性问题1. 已知: 如图, Rt △ABC 中, AB = AC , ∠BAC = 90°, 直线AE 是经过点A 的任一直线, BD ⊥AE 于D , CE ⊥AE 于E , BD > CE . (1) AD 与CE 的大小关系如何? 请说明理由. (2) 求证: DE =BD -CE .2. 已知: 如图, B 、A 、C 三点共线, 并且Rt △ABD ≌Rt △ECA , M 是DE 的中点. 问题:(1) 判断△ADE 的形状并证明;(2) 判断线段AM 与线段DE 的关系并证明; (3) 判断△MBC 的形状并证明.MCDAEB3.已知: 在△ABC 中, ∠CAB = 2α, 且030α<<, AP 平分∠CAB .(1) 如图1, 若21α=, ∠ABC = 32°, 且AP 交BC 于点P , 试探究线段AB , AC 与PB 之间的数量关系, 并对你的结论加以证明;(2) 如图2, 若∠ABC = 60α-, 点P 在△ABC 的内部, 且使∠CBP = 30°, 求∠APC 的度数(用含α的代数式表示) .五、关于旋转的问题、动点问题1. 已知: 如图, △AOB 和△COD 都是等边三角形, 作直线AC 、直线BD 交于E . 求证: (1) AC =BD ; (2) ∠AEB =60°.2. 已知: 如图, 等边三角形ABC 中, AB = 2, 点P 是AB 边上的一动点(点P 可以与点A 重合, 但不与点B 重合) , 过点P 作PE ⊥BC , 垂足为E , 过点E 作EF ⊥AC , 垂足为F , 过点F 作FQ ⊥AB , 垂足为Q . 设BP = x , AQ = y . (1) 请用x 的代数式表示y (直接写出) ; (2) 当BP 的长等于多少时, 点P 与点Q 重合; (128x y =+; 43) 3. 已知: 如图, △ABC 中, ∠A =90°, AB =AC . D 是斜边BC 的中点; E 、F 分别在线段AB 、AC 上, 且∠EDF =90°.(1) 求证: △DEF 为等腰直角三角形.(2) 如果E 点运动到AB 的反向..延长线...上, F 在直线..CA 上且仍保持∠EDF =90°, 那么△DEF 还仍然是等腰直角三角形吗? 请画图(右图) 并直接写出....你的结论. 图1ABCP图2AC PBACB P EFQC4. 如图所示, 长方形ABCD 中, AB = 4, BC 点E 是折线段A —D —C 上的一个动点(点E 与点A 不重合) , 点P 是点A 关于BE 的对称点. 在点E 运动的过程中, 能使△PCB 为等腰三角形.....的点E 的位置共有( ) . CA. 2个B. 3个C. 4个D. 5个5. 如图ABC △中, 10AB AC ==厘米, 8BC =厘米, 点D 为AB 中点. (1) 如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动, 同时, 点Q 在线段CA 上由C 点向A 点运动.①若点Q 的运动速度与点P 的运动速度相等, 经过1秒后, BPD △与CQP △是否全等, 请说明理由;②若点Q 的运动速度与点P 的运动速度不相等, 当点Q 的运动速度为多少时, 能够使BPD △与CQP △全等?(2) 若点Q 以②中的运动速度从点C 出发, 点P 以原来的运动速度从点B 同时出发, 都逆时针沿ABC △三边运动, 求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇? ( (1) ①SAS 全等; ②415厘米/秒. (2) 经过803秒点P 与点Q 第一次在边AB 上相遇. )六、综合应用1. 在平面直角坐标系中, 直线l 过点M (3,0), 且平行于y 轴.如果△ABC 三个顶点的坐标分别是A (-2,0), B (-1,0),C (-1,2), △ABC 关于y 轴的对称图形是△A 1B 1C 1, △A 1B 1C 1关于直线l 的对称图形是△A 2B 2C 2, 在右面的坐标系中画出△A 2B 2C 2,并写出它的三个顶点的坐标.AB CDEPB2. 已知: 如图, 在△ABC 中, AB = AC , ∠BAC = α, 且60° < α < 120°. P 为△ABC 内部一点, 且PC = AC , ∠PCA = 120° − α.(1) 用含α的代数式表示∠APC , 得∠APC = ________; (2) 求证: ∠BAP = ∠PCB ; (3) 求∠PBC 的度数.3. 在△ABC 中, AD 是△ABC 的角平分线.(1) 如图1, 过C 作CE ∥AD 交BA 延长线于点E , 若F 为CE 的中点, 连结AF , 求证: AF ⊥AD ;(2) 如图2, M 为BC 的中点, 过M 作MN ∥AD 交AC 于点N , 若AB = 4, AC = 7, 求NC 的长.4.在ABC △中, BA BC BAC =∠=α,, M 是AC 的中点, P 是线段BM 上的动点, 将线段PA 绕点P 顺时针旋转2α得到线段PQ .(1) 若α=60︒且点P 与点M 重合(如图1) , 线段CQ 的延长线交射线BM 于点D , 请补全图形, 并写出CDB ∠的度数;(2) 在图2中, 点P 不与点B M ,重合, 线段CQ 的延长线与射线BM 交于点D , 猜想CDB ∠的大小(用含α的代数式表示) , 并加以证明.图1 图2BCPA5. 在Rt△ABC中, ∠ACB = 90°, ∠A = 30°, BD是△ABC的角平分线, DE⊥AB于点E.(1) 如图1, 连接EC, 求证: △EBC是等边三角形;(2) 点M是线段CD上的一点(不与点C, D重合) , 以BM为一边, 在BM的下方作∠BMG = 60°, MG交DE延长线于点G. 请你在图2中画出完整图形, 并直接写出MD, DG与AD之间的数量关系;(3) 如图3,点N是线段AD上的一点, 以BN为一边, 在BN的下方作∠BNG= 60°, NG交DE延长线于点G. 试探究ND, DG与AD数量之间的关系, 并说明理由.。
师:老师这里有两个三角形,我们从直观上来看这两个三角形,觉得是怎么样的? 生:回答师:那两个三角形相等,都要具备哪些条件呢? 生:回答师:我们刚刚已经猜测了好几种条件,那么我们一起来看一看有哪些比较合适。
一、认识三角形1、定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
“三角形”可以用符号“Δ”表示。
2、三角形内角和定理: 三角形的三个内角和等于180度。
3、三角形外角的定义: 三角形一边与另一边的延长线组成的角,叫做三角形的外角。
三角形的外角性质:(1)三角形的外角和为360°。
(2)三角形的一个外角等于和它不相邻的两个内角的和。
(3)三角形的一个外角大于和它不相邻的任何一个内角。
4、三角形三边关系定理:三角形两边之和大于第三边.三角形的两边差小于第三边。
5、 等腰三角形:有两边相等的三角形叫做等腰三角形、等边三角形:三边都相等的三角形叫做等边三角形,也叫正三角形。
等腰直角三角形:两条直角边相等的直角三角形叫做等腰直角三角形。
6、三角形的中线:在三角形中,连接一个顶点与它对边中点的线段,叫做这个三角形的中线。
三角形的三条中线交于一点。
这个点是三角形的重心。
全等三角形及图形轴对称7、三角形的角平分线:在三角形中,一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫三角形的角平分线。
三角形的三条角平分线交于一点。
8、三角形的高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段,叫做三角形的高线,简称三角形的高。
三角形三条高所在直线交于一点。
9、锐角三角形的三条高都在三角形的内部,并且交于同一点。
直角三角形有一条高在三角形内部,其余两条高是它的两条直角边,三条高交于直角顶点。
钝角三角形的三条高不相交,有一条高在三角形内部,其余两条高在三角形外部,三条高所在直线交于一点。
10、三角形的面积等于底边长与高线乘积的一半,即S△=1/2×底×高。
11、三角形具有稳定性二、图形的全等1、全等图形:能够完全重合的两个图形称为全等图形。
全等图形的形状和大都相同。
2、全等三角形:能够完全重合的两个三角形称为全等三角形。
记作:△ABC≌△A1B1C1要把表示对应顶点的字母写在对应的位置上。
3、全能三角形的对应顶点、对应边、对应角对应顶点:互相重合的顶点叫对应顶点。
点A和点A1,点B和点B1,点C和点C1,对应边:互相重合的边叫对应边。
AB和A1B1,AC和A1C1,BC和B1C1对应角:互相重合的角叫对应角。
∠A和∠A1,∠B和∠B1,∠C和∠C1全等三角形的对应边相等,对应角相等。
三、探索三角形全等的条件(1)三边对应相等的两个三角形全等,简写为“边边边”或“SSS”(2)两角和它们的夹边对应相等的两个三角形全等,简写成“角边角”或“ASA”(3)两角和其中一角的对边对应相等的两个三角形全等,简写成“角角边”或“AAS”(4)两边和它们的夹角对应相等的两个三角形全等,简写成“边角边”或“SAS”(5)斜边和一条直角边分别相等的两个直角三角形全等(HL)四、利用三角形全等测距离(1)利用三角形全等测距离的目的:变不可测距离为可测距离。
(2)依据:全等三角形的性质。
(3)方法:①延长法构造全等三角形;②垂直法构造全等三角形。
(4)数学思想:树立用三角形全等构建数学模型解决实际问题的思想。
五、轴对称现象(1)轴对称图形:如果一个图形沿某条直线对折后,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形。
这条直线叫这个图形的对称轴。
①对称轴是一条直线,不是射线,不是线段。
②一个轴对称图形的对称轴可以有一条,多条,甚至无数条。
(2)轴对称:对于两个图形,如果沿一条直线对折后,它们能完全重合,那么称这两个图形成轴对称,这条直线叫做这两个图形的对称轴。
一、轴对称的性质(1)对应点所连的线段被对称轴垂直平分。
(2)轴对称图形对应线段相等,对应角相等。
二、简单的轴对称图形(1)(2)角是轴对称图形,对称轴是角平分线所在的直线;运用角平分线性质可以说明两条线段相等。
角平分线性质:角平分线上的点到角两边的距离相等。
(3)垂直平分线性质:垂直平分线上的一点点到线段两边的距离相等。
全等三角形对应角相等,对应角相等【典题导入】【亮点题】例1:已知图中的两个三角形全等,则∠α的度数是()A.72°B.60°C.58°D.50°解:∵图中的两个三角形全等解析:a与a,c与c分别是对应边,那么它们的夹角就是对应角∴∠α=50°考点1故选:D.【方法提炼】根据字母找好对应边和对应角【小试牛刀】如图,Rt△ABC沿直角边BC所在直线向右平移到Rt△DEF,则下列结论中,错误的是()A.BE=EC B.BC=EF C.AC=DF D.△ABC≌△DEF全等三角形的性质【典题导入】【亮点题】例2:如图,Rt△ABC≌Rt△DBF,∠ACB=∠DFB=90°,∠D=28°,求∠GBF的度数.解:∵Rt△ABC≌Rt△DBF,∠ACB=∠DFB=90°,∴BC=BF,BD=BA,∴CD=AF,在△DGC和△AGF中,,∴△DGC≌△AGF,∴GC=GF,又∠ACB=∠DFB=90°,∴∠CBG=∠FBG,考点2∴∠GBF=(90°﹣28°)÷2=31°.【方法提炼】留空,引导学生自己思考总结【小试牛刀】如图,已知△ABC≌△DEB,点E在AB上,DE与AC相交于点F,(1)当DE=8,BC=5时,线段AE的长为;(2)已知∠D=35°,∠C=60°,①求∠DBC的度数;②求∠AFD的度数.考点3全等三角形的判定【典题导入】【亮点题】△ABC和△DAE中,∠BAC=∠DAE,AB=AE,AC=AD,连接BD,CE,求证:△ABD ≌△AEC.证明:∵∠BAC=∠DAE,∴∠BAC﹣∠BAE=∠DAE﹣∠BAE,即∠BAD=∠CAE,在△ABD和△AEC中,,∴△ABD≌△AEC(SAS).【方法提炼】留空,引导学生自己思考总结【小试牛刀】如图,已知AB=CD,∠B=∠C,AC和BD相交于点O,E是AD的中点,连接OE.(1)求证:△AOB≌△DOC;(2)求∠AEO的度数.考点4利用全等测距离【典题导入】【亮点题】小强为了测量一幢高楼高AB,在旗杆CD与楼之间选定一点P.测得旗杆顶C视线PC与地面夹角∠DPC=36°,测楼顶A视线PA与地面夹角∠APB=54°,量得P到楼底距离PB与旗杆高度相等,等于10米,量得旗杆与楼之间距离为DB=36米,小强计算出了楼高,楼高AB是多少米?解:∵∠CPD=36°,∠APB=54°,∠CDP=∠ABP=90°,∴∠DCP=∠APB=54°,在△CPD和△PAB中∵,∴△CPD≌△PAB(ASA),∴DP=AB,∵DB=36,PB=10,∴AB=36﹣10=26(m),答:楼高AB是26米.【方法提炼】留空,引导学生自己思考总结【小试牛刀】某段河流的两岸是平行的,数学兴趣小组在老师带领下不用涉水过河就测得河的宽度,他们是这样做的:①在河流的一条岸边B点,选对岸正对的一棵树A;②沿河岸直走20m有一树C,继续前行20m到达D处;③从D处沿河岸垂直的方向行走,当到达A树正好被C树遮挡住的E处停止行走;④测得DE的长为5米.求:(1)河的宽度是多少米?(2)请你证明他们做法的正确性.考点5简单的轴对称图形【典题导入】【亮点题】如图,在△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于点E,点F在AC上,BE=FC.求证:BD=DF.证明:∵AD平分∠BAC,DE⊥AB,∠C=90°,∴DC=DE,在△DCF和△DEB中,,∴△DCF≌△DEB,(SAS),∴BD=DF.【方法提炼】留空,引导学生自己思考总结要灵活运用垂直平分线,角平分线,等腰三角形,等边三角形的各个性质【小试牛刀】如图,已知△ABC是等边三角形,D为边AC的中点,AE⊥EC,BD=EC,(1)说明△BCD与△CAE全等的理由;(2)请判断△ADE的形状,并说明理由.1.如图,EB交AC于M,交FC于D,AB交FC于N,∠E=∠F=90°,∠B=∠C,AE=AF,给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.其中正确的结论有()A.4个B.3个C.2个D.1个2.下列说法中,错误的有()①周长相等的两个三角形全等;②周长相等的两个等边三角形全等;③有三个角对应相等的两个三角形全等;④有三边对应相等的两个三角形全等.A.1个B.2个C.3个D.4个3.如图,工人师傅做了一个长方形窗框ABCD,E、F、G、H分别是四条边上的中点,为了使它稳固,需要在窗框上钉一根木条,这根木条不应钉在()A.A、C两点之间B.E、G两点之间C.B、F两点之间D.G、H两点之间4.如图是两个全等三角形,图中的字母表示三角形的边长,则∠1的度数是()A.76°B.62°C.42°D.76°、62°或42°都可以5.如图,已知CD⊥AB于点D,BE⊥AC于点E,CD、BE交于点O,且AO平分∠BAC,则图中的全等三角形共有()A.1对B.2对C.3对D.4对6.如图,OA=OC,OB=OD且OA⊥OB,OC⊥OD,下列结论:①△AOD≌△COB;②CD=AB;③∠CDA=∠ABC;其中正确的结论是()A.①②B.①②③C.①③D.②③7.如图:已知点E在△ABC的外部,点D在BC边上,DE交AC于F,若∠1=∠2=∠3,AC=AE,则有()A.△ABD≌△AFD B.△AFE≌△ADC C.△AEF≌△DFC D.△ABC≌△ADE 8.如图,在Rt△ACD和Rt△BEC中,若AD=BE,DC=EC,则不正确的结论是()A.Rt△ACD和Rt△BCE全等B.OA=OBC.E是AC的中点D.AE=BD9.如图,△ABC≌△BAD,则下列结论正确的是()A.AD=DC B.AC=BD C.∠A=∠B D.∠D=∠C 10.下列条件,不能使两个三角形全等的是()A.两边一角对应相等B.两角一边对应相等C.直角边和一个锐角对应相等D.三边对应相等11.要使四边形木架(用四根木条钉成)不变形,至少要再钉上的木条的根数为()A.一条B.两条C.三条D.四条12.下列叙述中:①任意一个三角形的三条高至少有一条在此三角形内部;②以a,b,c为边(a,b,c都大于0,且a+b>c)可以构成一个三角形;③一个三角形内角之比为3:2:1,此三角形为直角三角形;④有两个角和一条边对应相等的两个三角形全等;正确的有()个.A.1B.2C.3D.413.如图,△ABC的顶点A、B、C都在小正方形的顶点上,在格点F、G、H、I 中选出一个点与点D、点E构成的三角形与△ABC全等,则符合条件的点共有()A.1个B.2个C.3个D.4个14.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短二.填空题(共18小题)15.如图所示,在△ABC中,∠B=∠C=50°,BD=CF,BE=CD,则∠EDF的度数是.16.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=.17.如图是5×5的正方形网格,△ABC的顶点都在小正方形的顶点上,像△ABC 这样的三角形叫格点三角形.画与△ABC有一条公共边且全等的格点三角形,这样的格点三角形最多可以画出个.18.△ABC中,AB=7,AC=3,则BC边的中线AD的取值范围是.19.如图,BC∥EF,AC∥DF,添加一个条件,使得△ABC≌△DEF.20.如图,在△ABC中,AB=AC,BE、CF是中线,则由可得△AFC≌△AEB.21.如图,已知AB=AD,∠BAE=∠DAC,要使△ABC≌△ADE,若以“SAS”为依据,补充的条件是.22.撑上支撑后的自行车能稳稳地停在地上,是因为三角形具有性.23.如图,∠C=∠D,∠CAB=∠DBA,AD交BC于O,请写出图中所有相等的线段.24.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是.25.如图,∠1=∠2,∠3=∠4,则图中全等三角形有对.(1)三边对应相等的两个三角形全等,简写为“边边边”或“SSS”(2)两角和它们的夹边对应相等的两个三角形全等,简写成“角边角”或“ASA”(3)两角和其中一角的对边对应相等的两个三角形全等,简写成“角角边”或“AAS”(4)两边和它们的夹角对应相等的两个三角形全等,简写成“边角边”或“SAS”(5)斜边和一条直角边分别相等的两个直角三角形全等(HL)1、(1)已知,如图①,在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E,求证:DE=BD+CE.(2)如图②,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意钝角,请问结论DE=BD+CE是否成立?若成立,请你给出证明:若不成立,请说明理由.2.如图,在△ABC中,∠ACB=90°,AC=BC,延长AB至点D,使DB=AB,连接CD,以CD为直角边作等腰三角形CDE,其中∠DCE=90°,连接BE.(1)求证:△ACD≌△BCE;(2)若AB=3cm,则BE=cm.(3)BE与AD有何位置关系?请说明理由.3.如图,点B在线段AD上,BC∥DE,AB=ED,BC=DB.求证:∠A=∠E.4.如图,在△ABC中,∠B=∠C,D、E、F分别在AB、BC、AC上,且BD=CE,∠DEF=∠B,问:DE和EF是否相等?并说明理由.5.已知:如图AD为△ABC的高,E为AC上一点,BE交AD于F,且有BF=AC,FD=CD,求证:BE⊥AC.6.如图,点E在△ABC外部,点D在BC边上,DE交AC于点F,若∠1=∠2=∠3,AC=AE,求证:AB=AD.答案部分(学生版删除)典题探究1、解:∵RRt△ABC沿直角边BC所在直线向右平移到Rt△DEF ∴Rt△ABC≌Rt△DEF∴BC=EF,AC=DF所以只有选项A是错误的,故选A.2、解:(1)∵△ABC≌△DEB,DE=8,BC=5,∴AB=DE=8,BE=BC=5,∴AE=AB﹣BE=8﹣5=3,故答案为:3;(2)①∵△ABC≌△DEB∴∠A=∠D=35°,∠DBE=∠C=60°,∵∠A+∠ABC+∠C=180°,∴∠ABC=180°﹣∠A﹣∠C=85°,∴∠DBC=∠ABC﹣∠DBE=85°﹣60°=25°;②∵∠AEF是△DBE的外角,∴∠AEF=∠D+∠DBE=35°+60°=95°,∵∠AFD是△AEF的外角,∴∠AFD=∠A+∠AEF=35°+95°=130°.3、(1)证明:在△AOB和△DOC中∵∴△AOB≌△DOC(AAS)(2)解:∵△AOB≌△DOC,∴AO=DO∵E是AD的中点∴OE⊥AD∴∠AEO=90°4、(1)解:河的宽度是5m;(2)证明:由作法知,BC=DC,∠ABC=∠EDC=90°,在Rt△ABC和Rt△EDC中,,∴Rt△ABC≌Rt△EDC(ASA),∴AB=ED,即他们的做法是正确的.5、解:(1)∵△ABC是等边三角形∴AB=BC=AC,∠ACB=60°又∵D为AC中点∴BD⊥AC,AD=CD又∵AE⊥EC∴∠BDC=∠AEC=90°又∵BD=CE∴Rt△BDC≌Rt△CEA(HL);(2)∵Rt△BDC≌Rt△CEA∴∠EAC=∠ACB=60°,AE=CD又∵D为边AC的中点,∴AD=CD,∴AD=AE∴△ADE是等边三角形.演练方阵1.如图,EB交AC于M,交FC于D,AB交FC于N,∠E=∠F=90°,∠B=∠C,AE=AF,给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.其中正确的结论有()A.4个B.3个C.2个D.1个【解答】解:∵∠E=∠F=90°,∠B=∠C,AE=AF∴△ABE≌△ACF∴BE=CF∠BAE=∠CAF∠BAE﹣∠BAC=∠CAF﹣∠BAC∴∠1=∠2△ABE≌△ACF∴∠B=∠C,AB=AC又∠BAC=∠CAB△ACN≌△ABM.④CD=DN不能证明成立,3个结论对.故选:B.2.下列说法中,错误的有()①周长相等的两个三角形全等;②周长相等的两个等边三角形全等;③有三个角对应相等的两个三角形全等;④有三边对应相等的两个三角形全等.A.1个B.2个C.3个D.4个【解答】解:∵如果一个三角形的边长为3,4,3,另一个三角形的边长为4,4,2,两三角形周长相等,但是两三角形不全等,∴①正确;∵两等边三角形的边长都相等,周长也相等,∴两三角形的三边长相等,∴根据SSS定理能推出这两个三角形全等,∴②错误;∵根据两三角形的三角相等不能推出两三角形全等(如老师用的三角板和学生用的三角板),∴③正确;∵两三角形的三边对应相等,根据SSS能推出两三角形全等,∴④错误;即有①③两个,故选:B.3.如图,工人师傅做了一个长方形窗框ABCD,E、F、G、H分别是四条边上的中点,为了使它稳固,需要在窗框上钉一根木条,这根木条不应钉在()A.A、C两点之间B.E、G两点之间C.B、F两点之间D.G、H两点之间【解答】解:工人师傅做了一个长方形窗框ABCD,工人师傅为了使它稳固,需要在窗框上钉一根木条,这根木条不应钉在E、G两点之间(没有构成三角形),这种做法根据的是三角形的稳定性.故选:B.4.如图是两个全等三角形,图中的字母表示三角形的边长,则∠1的度数是()A.76°B.62°C.42°D.76°、62°或42°都可以【解答】解:∵两个三角形全等,∴∠1=62°,故选:B.5.如图,已知CD⊥AB于点D,BE⊥AC于点E,CD、BE交于点O,且AO平分∠BAC,则图中的全等三角形共有()A.1对B.2对C.3对D.4对【解答】解:∵CD⊥AB,BE⊥AC,AO平分∠BAC∴∠ADO=∠AEO=90°,∠DAO=∠EAO∵AO=AO∴△ADO≌△AEO;(AAS)∴OD=OE,AD=AE∵∠DOB=∠EOC,∠ODB=∠OEC=90°∴△BOD≌△COE;(ASA)∴BD=CE,OB=OC,∠B=∠C∵AE=AD,∠DAC=∠CAB,∠ADC=∠AEB=90°∴△ADC≌△AEB;(ASA)∵AD=AE,BD=CE∴AB=AC∵OB=OC,AO=AO∴△ABO≌△ACO.(SSS)所以共有四对全等三角形.故选:D.6.如图,OA=OC,OB=OD且OA⊥OB,OC⊥OD,下列结论:①△AOD≌△COB;②CD=AB;③∠CDA=∠ABC;其中正确的结论是()A.①②B.①②③C.①③D.②③【解答】解:∵OA⊥OB,OC⊥OD,∴∠AOB=∠COD=90°.∴∠AOB+∠AOC=∠COD+∠AOC,即∠COB=∠AOD.在△AOB和△COD中,,∴△AOB≌△COD(SAS),∴AB=CD,∠ABO=∠CDO.在△AOD和△COB中,∴△AOD≌△COB(SAS)∴∠CBO=∠ADO,∴∠ABO﹣∠CBO=∠CDO﹣∠ADO,即∠ABC=∠CDA.综上所述,①②③都是正确的.故选:B.7.如图:已知点E在△ABC的外部,点D在BC边上,DE交AC于F,若∠1=∠2=∠3,AC=AE,则有()A.△ABD≌△AFD B.△AFE≌△ADC C.△AEF≌△DFC D.△ABC≌△ADE 【解答】解:设AC与DE相交于点F,∵∠1=∠2=∠3,∴∠1+∠DAC=∠2+∠DAC,即∠BAC=∠DAE,∵∠E=180°﹣∠2﹣∠AFE,∠C=180°﹣∠3﹣∠DFC,∠DFC=∠AFE(对顶角相等),∴∠E=∠C,∵AC=AE,∴△ABC≌△ADE.故选:D.8.如图,在Rt△ACD和Rt△BEC中,若AD=BE,DC=EC,则不正确的结论是()A.Rt△ACD和Rt△BCE全等B.OA=OBC.E是AC的中点D.AE=BD【解答】解:A、∵∠C=∠C=90°,∴△ACD和△BCE是直角三角形,在Rt△ACD和Rt△BCE中∵,∴Rt△ACD≌Rt△BCE(HL),正确;B、∵Rt△ACD≌Rt△BCE,∴∠B=∠A,CB=CA,∵CD=CE,∴AE=BD,在△AOE和△BOD中∵,∴△AOE≌△BOD(AAS),∴AO=OB,正确,不符合题意;AE=BD,CE=CD,不能推出AE=CE,错误,符合题意;D、∵Rt△ACD≌Rt△BCE,∴∠B=∠A,CB=CA,∵CD=CE,∴AE=BD,正确,不符合题意.故选:C.9.如图,△ABC≌△BAD,则下列结论正确的是()A.AD=DC B.AC=BD C.∠A=∠B D.∠D=∠C【解答】解:∵△ABC≌△BAD,∴AD=BC,AC=BD,∠BAC=∠ABD,∠ADB=∠BCA,故选:B.10.下列条件,不能使两个三角形全等的是()A.两边一角对应相等B.两角一边对应相等C.直角边和一个锐角对应相等D.三边对应相等【解答】解:A、“边边角”不能证明两个三角形全等,故本选项错误.B、两角一边对应相等能证明三角形全等.故本选项正确.C、直角边和一个锐角对应相等能证明三角形全等.故本选项正确.D、三边对应相等能证明三角形全等.故本选项正确.故选:A.11.要使四边形木架(用四根木条钉成)不变形,至少要再钉上的木条的根数为()A.一条B.两条C.三条D.四条【解答】解:根据三角形的稳定性可得,至少要再钉上1根木条,故选:A.12.下列叙述中:①任意一个三角形的三条高至少有一条在此三角形内部;②以a,b,c为边(a,b,c都大于0,且a+b>c)可以构成一个三角形;③一个三角形内角之比为3:2:1,此三角形为直角三角形;④有两个角和一条边对应相等的两个三角形全等;正确的有()个.A.1B.2C.3D.4【解答】解:∵锐角三角形的三条高都在三角形的内部,直角三角形有一条高在三角形的内部,两条在三角形的两边上,钝角三角形的一条高在三角形的内部,两条高在三角形的外部,∴①正确;∵当a=2,b=c=1时,满足a+b>c,但是边长为1、1、2不能组成三角形,∴②错误;∵设三角形的三角为3x°,2x°,x°,∴由三角形的内角和定理得:3x+2x+x=180,∴x=30,3x=90,即三角形是直角三角形,∴③正确;∵有两个角和一条边对应相等的两个三角形全等,∴④正确;故选:C.13.如图,△ABC的顶点A、B、C都在小正方形的顶点上,在格点F、G、H、I 中选出一个点与点D、点E构成的三角形与△ABC全等,则符合条件的点共有()A.1个B.2个C.3个D.4个【解答】解:由图形可知AB=,AC=3,BC=,GD=,DE=,GE=3,DI=3,EI=,所以G,I两点与点D、点E构成的三角形与△ABC全等,故选:B.14.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短【解答】解:根据三角形的稳定性可固定窗户.故选:A.二.填空题(共18小题)15.如图所示,在△ABC中,∠B=∠C=50°,BD=CF,BE=CD,则∠EDF的度数是50°.【解答】解:如图,在△BDE与△CFD中,,∴△BDE≌△CFD(SAS),∴∠BDE=∠CFD,∠EDF=180°﹣(∠BDE+∠CDF)=180°﹣(∠CFD+∠CDF)=180°﹣(180°﹣∠C)=50°,∴∠EDF=50°,故答案是:50°.16.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=55°.【解答】解:∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠1=∠EAC,在△BAD和△CAE中,∴△BAD≌△CAE(SAS),∴∠2=∠ABD=30°,∵∠1=25°,∴∠3=∠1+∠ABD=25°+30°=55°,故答案为:55°.17.如图是5×5的正方形网格,△ABC的顶点都在小正方形的顶点上,像△ABC 这样的三角形叫格点三角形.画与△ABC有一条公共边且全等的格点三角形,这样的格点三角形最多可以画出6个.【解答】解:以BC为公共边可画出△BDC,△BEC,△BFC三个三角形和原三角形全等.以AB为公共边可画出三个三角形△ABG,△ABM,△ABH和原三角形全等.所以可画出6个.故答案为:6.18.△ABC中,AB=7,AC=3,则BC边的中线AD的取值范围是2<AD<5.【解答】解:如图,延长AD至E,使DE=AD,∵D是BC的中点,∴BD=CD.在△ADC和△EDB中,,∴△ADC≌△EDB(SAS)∴AC=EB.∵AC=3,∴EB=3.∴7﹣3<AE∠7+3,∴4<2AD<10,∴2<AD<5.故答案为:2<AD<5.19.如图,BC∥EF,AC∥DF,添加一个条件AB=DE或BC=EF或AC=DF或AD=BE (只需添加一个即可),使得△ABC≌△DEF.【解答】解:∵BC∥EF,∴∠ABC=∠E,∵AC∥DF,∴∠A=∠EDF,∵在△ABC和△DEF中,,∴△ABC≌△DEF,同理,BC=EF或AC=DF也可证△ABC≌△DEF.故答案为AB=DE或BC=EF或AC=DF或AD=BE(只需添加一个即可).20.如图,在△ABC中,AB=AC,BE、CF是中线,则由SAS可得△AFC≌△AEB.【解答】解:∵在△ABC中,AB=AC,BE、CF是中线∴AF=BF=AE=EC∵∴△AFC≌△AEB(SAS).因为该判定是两边角且该角为两边的夹角,所以用的是SAS.故填SAS.21.如图,已知AB=AD,∠BAE=∠DAC,要使△ABC≌△ADE,若以“SAS”为依据,补充的条件是AC=AE.【解答】解:补充的条件是:AC=AE.理由如下:∵∠BAE=∠DAC,∴∠BAE+∠EAC=∠DAC+∠EAC,即∠BAC=∠DAE.∵在△ABC与△ADE中,,∴△ABC≌△ADE(SAS).故答案是:AC=AE.22.撑上支撑后的自行车能稳稳地停在地上,是因为三角形具有稳定性.【解答】解:是因为三角形具有稳定性.23.如图,∠C=∠D,∠CAB=∠DBA,AD交BC于O,请写出图中所有相等的线段AC=BD,BC=AD,OA=OB,OC=OD.【解答】解:在△CAB和△DBA中,,∴△CAB≌△DBA(AAS),∴BC=AD,AC=BD,∠CBA=∠DAB,∴OA=OB,OC=OD,∴相等的线段有:AC=BD,BC=AD,OA=OB,OC=OD.故答案为AC=BD,BC=AD,OA=OB,OC=OD.24.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是ASA.【解答】解:如图所示,亮亮书上的三角形被墨迹污染了一部分,这部分是∠ABC,边AB,边BC,而此时亮亮可以量取∠A和∠C度数,AC的长度,利用ASA画一个和书上完全一样的三角形.故答案为:ASA.25.如图,∠1=∠2,∠3=∠4,则图中全等三角形有6对.【解答】解:连接AC,∵∠1=∠2,BD=BD,∠3=∠4,∴△ABD≌△CBD(ASA),∴AB=BC,∵∠1=∠2,BE=BE,∴△ABE≌△CBE,(SAS),∵∠3=∠4,∴△ADF≌△CDF,同理,△AED≌△CED,△ABF≌△CBF,△ABD≌△CBD.△AEF≌△CEF 所以共有6对故答案为:6.优测评33.(1)已知,如图①,在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E,求证:DE=BD+CE.(2)如图②,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意钝角,请问结论DE=BD+CE是否成立?若成立,请你给出证明:若不成立,请说明理由.【解答】证明:(1)∵BD⊥直线m,CE⊥直线m,∴∠BDA=∠CEA=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD,∵在△ADB和△CEA中,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(2)∵∠BDA=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°﹣α,∴∠CAE=∠ABD,∵在△ADB和△CEA中,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE.34.如图,在△ABC中,∠ACB=90°,AC=BC,延长AB至点D,使DB=AB,连接CD,以CD为直角边作等腰三角形CDE,其中∠DCE=90°,连接BE.(1)求证:△ACD≌△BCE;(2)若AB=3cm,则BE=6cm.(3)BE与AD有何位置关系?请说明理由.【解答】(1)证明:∵△ACB和△DCE都是等腰直角三角形,∴CD=CE,CA=CB,∵∠ACB=90°,∠DCE=90°,∴∠ECD+∠DCB=∠DCB+∠ACB,即∠ECB=∠ACD,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS);(2)解:∵△ACD≌△BCE,∴AD=BE,∵DB=AB=3cm,∴BE=2×3cm=6cm;(3)解:BE与AD垂直.理由如下:∵△ACD≌△BCE,∴∠1=∠2,而∠3=∠4,∴∠EBD=∠ECD=90°,∴BE⊥AD.35.如图,点B在线段AD上,BC∥DE,AB=ED,BC=DB.求证:∠A=∠E.【解答】证明:如图,∵BC∥DE,∴∠ABC=∠BDE.在△ABC与△EDB中,,∴△ABC≌△EDB(SAS),∴∠A=∠E.36.如图,在△ABC中,∠B=∠C,D、E、F分别在AB、BC、AC上,且BD=CE,∠DEF=∠B,问:DE和EF是否相等?并说明理由.【解答】解:∵∠B=∠C,∵∠DEF=∠B,∵∠DEC=∠B+∠BDE(三角形的外角定理),∴∠BDE=∠FEC,在△BDE与△CEF中,∵,∴△BDE≌△CEF(ASA),得DE=EF.37.已知:如图AD为△ABC的高,E为AC上一点,BE交AD于F,且有BF=AC,FD=CD,求证:BE⊥AC.【解答】证明:∵BF=AC,FD=CD,AD⊥BC,∴Rt△BDF≌Rt△ADC(HL)∴∠C=∠BFD,∵∠DBF+∠BFD=90°,∴∠C+∠DBF=90°,∵∠C+∠DBF+∠BEC=180°∴∠BEC=90°,即BE⊥AC.38.如图,点E在△ABC外部,点D在BC边上,DE交AC于点F,若∠1=∠2=∠3,AC=AE,求证:AB=AD.【解答】证明:∵∠1=∠2,∴∠1+∠DAF=∠2+∠DAF,即∠BAC=∠DAE,∵∠2=∠3,∠AFE=∠DFC,∴∠E=∠C,在△ABC与△ADE中,,∴△ABC≌△ADE(ASA),∴AB=AD.。