5聚合物研究方法_第五章热解分析
- 格式:ppt
- 大小:1.85 MB
- 文档页数:56
五大材料热性能分析方法(TG,TMA,DSC,DMA,DETA)以下为正文:热分析简介热分析的本质是温度分析。
热分析技术是在程序温度(指等速升温、等速降温、恒温或步级升温等)控制下测量物质的物理性质随温度变化,用于研究物质在某一特定温度时所发生的热学、力学、声学、光学、电学、磁学等物理参数的变化,即P = f(T)。
按一定规律设计温度变化,即程序控制温度:T = (t),故其性质既是温度的函数也是时间的函数:P =f (T, t)。
材料热分析意义在表征材料的热性能、物理性能、机械性能以及稳定性等方面有着广泛的应用,对于材料的研究开发和生产中的质量控制都具有很重要的实际意义。
热分析简史回顾常用热分析方法解读根据国际热分析协会(ICTA)的归纳和分类,目前的热分析方法共分为九类十七种,常用的热分析方法包括热重分析法(TG)、差示扫描量热法(DSC)、静态热机械分析法(TMA)、动态热机械分析(DMTA)、动态介电分析(DETA)等,它们分别是测量物质重量、热量、尺寸、模量和柔量、介电常数等参数对温度的函数。
(1)热重分析(TG)热重法(TG)是在程序温度控制下测量试样的质量随温度或时间变化的一种技术。
应用范围:(1)主要研究材料在惰性气体中、空气中、氧气中的热稳定性、热分解作用和氧化降解等化学变化;(2)研究涉及质量变化的所有物理过程,如测定水分、挥发物和残渣、吸附、吸收和解吸、气化速度和气化热、升华速度和升华热、有填料的聚合物或共混物的组成等。
原理详解:样品重量分数w对温度T或时间t作图得热重曲线(TG 曲线):w = f (T or t),因多为线性升温,T与t只差一个常数。
TG曲线对温度或时间的一阶导数dw/dT 或 dw/dt 称微分热重曲线(DTG曲线)。
图2中,B点Ti处的累积重量变化达到热天平检测下限,称为反应起始温度;C点Tf处已检测不出重量的变化,称为反应终了温度;Ti或Tf亦可用外推法确定,分为G点H点;亦可取失重达到某一预定值(5%、10%等)时的温度作为Ti。
聚合物热分析法介绍热分析是在程序控温下,测量物质的物理性质与温度的关系的一类技术。
热分析方法种类繁多,但对高分子应用最广的是差热分析(DTA)、差示量热扫描法(DSC)、热重分析(TG或TGA)、热机械分析(TMA)和动态机械分析(DMA或DMTA)等少数几种。
科标分析以成熟的分析技术为理论依据,创建“光-色-热-质-元-化”联用的检测技术,在微量模块化方法学模拟技术中对产品的成分进行全方位的解析,科标分析聚合物分析测试服务,根据样品实际情况,制定专项检测方案,提供精准权威的检测数据。
DSC和DTA的谱图类似,但DSC有更好的分辨率、重复性和准确性,更适合于高分子的分析,特别是定量分析。
图11-6是聚对苯二甲酸乙二醇酯的典型DSC谱图。
图11-6聚对苯二甲酸乙二醇酯的DSC曲线根据DSC谱图上峰的位置和大小,可以研究高聚物的化学反应或物理转变。
化学反应包括聚合、固化、交联、氧化和分解等,物理转变包括结晶/熔融和液晶转变等相变,玻璃化转变等,结晶、氧化有放热峰,熔融有吸热峰,分解有时放热有时吸热,玻璃化转变在DSC曲线上表现为基线偏移(因比热容发生突变),出现一个台阶。
式中:为比热容,为样品质量,为热流速率(纵坐标),为升温速率。
DSC定量的依据是峰面积A与热效应的大小成正比,即=因而通过峰面积的测定可以计算结晶度及研究结晶动力学。
=/式中:为样品的熔融热,为100%结晶样品的熔融热。
=1-=式中:为时刻的结晶度;为时刻的结晶峰面积;A为结晶完成后结晶峰总面积;为结晶速率常数;为Arrami指数。
TGA法记录高分子材料的重量随温度的变化主要用于研究聚合物的热稳定性,常用热分解温度来评价。
TGA也用于高分子材料的组成分析。
TMA法记录试样在一定负荷下形变随温度的变化,得温度-形变曲线。
DMA法测量高分子材料在振动负荷下动态模量和阻尼与温度的关系,主要用于研究高分子的玻璃化转变及次级松弛,可以记录温度谱,也可以记录频率谱。
聚合物材料的热力学分析及应用研究随着现代化进程的不断提升,高科技材料的应用越来越广泛。
而聚合物材料,作为其中一种不可或缺的材料,日益受到人们的关注。
聚合物材料的热力学分析是一项非常重要的工作,不仅有助于深入了解聚合物材料的性能特点,更可以为聚合物材料的应用提供基础性理论知识,下面我们就来详细的探讨一下聚合物材料的热力学分析及应用研究。
一、聚合物的热力学特性热力学是描述物理、化学系统的宏观状态及其相互转换关系的一种基本理论。
对于聚合物材料,其热力学特性的分析对于研究其性能有着至关重要的作用。
热力学的基本参数包括热力学函数(自由能、熵、焓等)和平衡常数,而聚合物材料的热力学特性通常由下列几方面来评估:1.热分析热分析是利用热学的基本理论来研究物质热学特性的方法,包括热重分析、热扫描电镜、差式扫描量热法、微量热法等。
这些方法可以用来研究聚合物材料的热分解、膨胀行为、晶体化特性等。
2.热力学模拟热力学模拟是一种从热力学的角度来考虑材料的模拟方法,它可以利用计算机模拟分子运动,进而研究聚合物系统的能量、自由能、热容量等热力学性质以及相互作用。
目前,热力学模拟已经成为聚合物材料研究中的重要工具之一。
二、聚合物的热化学性能聚合物材料的热化学性能涉及热力学、动力学、热力学平衡等多方面的问题。
其中,最重要的是反应热和活化能的研究。
聚合物的反应热是指在聚合过程中放出的能量,也是聚合反应热力学性质的重要指标。
而活化能则是指聚合物分子在反应中去除必须的能量,使反应进行的能力,也是聚合物材料研究重要的参数。
此外,在聚合物材料的应用过程中,还需要考虑其破坏温度、热稳定性等,因此,热力学分析也有助于理解材料的失效机理。
三、聚合物材料的应用研究聚合物材料的应用范围非常广泛,包括塑料、橡胶、纤维等。
在应用过程中,聚合物材料的热力学性能是至关重要的。
例如,在聚合物增韧剂的应用研究中,要考虑其施加热量对于聚合物的影响;在聚酯纤维的制备中,要考虑其热稳定性等等。
热动力学分析聚合物体系聚合物是由多个小分子单体化合物通过化学作用连接而成的大分子化合物。
聚合物体系是由多种不同聚合物构成的宏观体系。
在聚合物材料科学中,热力学是研究聚合物热性质的重要分支。
由于聚合物体系的复杂性和多样性,热动力学分析在聚合物体系研究中是必不可少的。
1. 热力学基础热力学是研究能量转化和热现象的物理科学,其中主要涉及热能、温度和熵等基本量。
在聚合物体系中,热力学可以用来描述聚合物分子的热运动以及相互作用。
例如,通过测量聚合物体系的热容、焓和熵,可以确定聚合物体系的相变点和热力学稳定性。
2. 热力学分析热力学分析是一种从聚合物热学方面对聚合物体系进行研究的方法。
通过测量聚合物体系的热量、温度和压力等参数,可以得出一系列热力学参数,如焓、熵和自由能。
这些参数可以用来评估聚合物体系的热力学本质、稳定性和相转换行为。
3. 热力学参数的测量热力学参数的测量可以通过多种实验方法进行。
例如,热重分析可以用来测量聚合物体系的热稳定性和热分解动力学。
差示扫描量热法可以用来测量聚合物体系的焓、熵和热容等参数。
等温量热法可以用来研究聚合物体系的相转换行为。
4. 聚合物体系的热力学稳定性聚合物体系的热力学稳定性是指聚合物体系在一定温度和压力条件下保持相对稳定的能力。
热力学稳定性可以通过测量聚合物体系的热容和焓等热力学参数来评估。
聚合物体系的热力学稳定性不仅受到化学组成和分子结构的影响,还受到外部条件(如温度、压力、湿度等)的影响。
5. 聚合物体系的相转换行为聚合物体系的相转换行为是指在一定温度和压力条件下,聚合物体系中不同相之间发生转换的行为。
聚合物体系的相转换行为可以通过测量聚合物体系的焓和熵等参数来评估。
聚合物体系的相转换行为受到许多因素的影响,如聚合物分子之间的相互作用、外部条件等。
总之,热动力学分析是研究聚合物体系热性质的重要方法,它可以帮助科学家深入了解聚合物体系的热力学本质、稳定性和相转换行为。