材料力学习题册答案-第5章 弯曲应力
- 格式:doc
- 大小:750.00 KB
- 文档页数:7
5-1构件受力如图5-26所示。
试:(1)确定危险点的位置;(2)用单元体表示危险点的应力状态(即用纵横截面截取危险点的单元体,并画出应力)。
题5-1图解:a) 1) 危险点的位置:每点受力情况相同,均为危险点;2)用单元体表示的危险点的应力状态见下图。
b) 1) 危险点的位置:外力扭矩3T与2T作用面之间的轴段上表面各点;2)应力状态见下图。
c) 1) 危险点:A点,即杆件最左端截面上最上面或最下面的点;2)应力状态见下图。
d) 1)危险点:杆件表面上各点;2)应力状态见下图。
5-2试写出图5-27所示单元体主应力σ1、σ2和σ3的值,并指出属于哪一种应力状态(应力单位为MPa)。
10题5-2图解:a)1σ=50 MPa,2σ=3σ=0,属于单向应力状态AAT (a)(c)(d)364dFlπτ=a) b) c) d)a) b) c)b) 1σ=40 MPa, 2σ=0, 3σ=-30 MPa ,属于二向应力状态 c) 1σ=20 MPa, 2σ=10 MPa, 3σ=-30 MPa ,属于三向应力状态5-3已知一点的应力状态如图5-28所示(应力单位为MPa )。
试用解析法求指定斜截面上的正应力和切应力。
题5-3图解:a) 取水平轴为x 轴,则根据正负号规定可知: x σ=50MPa , y σ=30MPa , x τ=0, α=-30 带入式(5-3),(5-4)得 ατασσσσσα2sin 2cos 22x yx yx --++==45MPaατασστα2cos 2sin 2x yx +-== -8.66MPab) 取水平轴为x 轴,根据正负号规定:x σ= -40MPa , y σ=0 , x τ=20 MPa , α=120带入公式,得:240sin 20240cos 20402040---++-=ασ=7.32MPa x τ= 240cos 20240sin 2040+--=7.32MPac) 取水平轴为x 轴,则x σ= -10MPa , y σ=40MPa , x τ= -30MPa,α=30代入公式得:60sin )30(60cos 2401024010----++-=ασ=28.48MPa x τ= 60cos 3060sin 24010---=-36.65MPa5-4已知一点的应力状态如图5-29所示(应力状态为MPa )。
第五章 弯曲内力与应力 §5—1 工程实例、基本概念一、实例工厂厂房的天车大梁,火车的轮轴,楼房的横梁,阳台的挑梁等。
二、弯曲的概念:受力特点——作用于杆件上的外力都垂直于杆的轴线。
变形特点——杆轴线由直线变为一条平面的曲线。
三、梁的概念:主要产生弯曲变形的杆。
四、平面弯曲的概念:受力特点——作用于杆件上的外力都垂直于杆的轴线,且都在梁的纵向对称平面内(通过或平行形心主轴且过弯曲中心)。
变形特点——杆的轴线在梁的纵向对称面内由直线变为一条平面曲线。
五、弯曲的分类:1、按杆的形状分——直杆的弯曲;曲杆的弯曲。
2、按杆的长短分——细长杆的弯曲;短粗杆的弯曲。
3、按杆的横截面有无对称轴分——有对称轴的弯曲;无对称轴的弯曲。
4、按杆的变形分——平面弯曲;斜弯曲;弹性弯曲;塑性弯曲。
5、按杆的横截面上的应力分——纯弯曲;横力弯曲。
六、梁、荷载及支座的简化(一)、简化的原则:便于计算,且符合实际要求。
(二)、梁的简化:以梁的轴线代替梁本身。
(三)、荷载的简化:1、集中力——荷载作用的范围与整个杆的长度相比非常小时。
2、分布力——荷载作用的范围与整个杆的长度相比不很小时。
3、集中力偶(分布力偶)——作用于杆的纵向对称面内的力偶。
(四)、支座的简化:1、固定端——有三个约束反力。
2、固定铰支座——有二个约束反力。
3、可动铰支座——有一个约束反力。
(五)、梁的三种基本形式:1、悬臂梁:2、简支梁:3、外伸梁:(L 称为梁的跨长) (六)、静定梁与超静定梁静定梁:由静力学方程可求出支反力,如上述三种基本形式的静定梁。
超静定梁:由静力学方程不可求出支反力或不能求出全部支反力。
§5—2 弯曲内力与内力图一、内力的确定(截面法):[举例]已知:如图,F ,a ,l 。
求:距A 端x 处截面上内力。
解:①求外力la l F Y l FaF m F X AYBY A AX)(F, 0 , 00 , 0-=∴==∴==∴=∑∑∑ F AX =0 以后可省略不求 ②求内力xF M m l a l F F F Y AY C AY s ⋅=∴=-==∴=∑∑ , 0)( , 0∴ 弯曲构件内力:剪力和弯矩1. 弯矩:M ;构件受弯时,横截面上存在垂直于截面的内力偶矩。
第一章 绪论一、是非判断题1.1 材料力学的研究方法与理论力学的研究方法完全相同。
( ) 1.2 内力只作用在杆件截面的形心处。
( ) 1.3 杆件某截面上的内力是该截面上应力的代数和。
( ) 1.4 确定截面内力的截面法,适用于不论等截面或变截面、直杆或曲杆、基本变形或组合变形、横截面或任意截面的普遍情况。
( ) 1.5 根据各向同性假设,可认为材料的弹性常数在各方向都相同。
( ) 1.6 根据均匀性假设,可认为构件的弹性常数在各点处都相同。
( ) 1.7 同一截面上正应力ζ与切应力η必相互垂直。
( ) 1.8 同一截面上各点的正应力ζ必定大小相等,方向相同。
( ) 1.9 同一截面上各点的切应力η必相互平行。
( ) 1.10 应变分为正应变ε和切应变γ。
( ) 1.11 应变为无量纲量。
( ) 1.12 若物体各部分均无变形,则物体内各点的应变均为零。
( ) 1.13 若物体内各点的应变均为零,则物体无位移。
( ) 1.14 平衡状态弹性体的任意部分的内力都与外力保持平衡。
( )1.15 题1.15图所示结构中,AD 杆发生的变形为弯曲与压缩的组合变形。
( )1.16 题1.16图所示结构中,AB 杆将发生弯曲与压缩的组合变形。
( )二、填空题1.1 材料力学主要研究 受力后发生的 ,以及由此产生的 。
1.2 拉伸或压缩的受力特征是 ,变形特征是 。
1.3 剪切的受力特征是 ,变形特征是 。
1.4 扭转的受力特征是 ,变形特征是 。
B题1.15图题1.16图1.5 弯曲的受力特征是 ,变形特征是 。
1.6 组合受力与变形是指 。
1.7 构件的承载能力包括 , 和 三个方面。
1.8 所谓 ,是指材料或构件抵抗破坏的能力。
所谓 ,是指构件抵抗变形的能力。
所谓 ,是指材料或构件保持其原有平衡形式的能力。
1.9 根据固体材料的性能作如下三个基本假设 , , 。
第 五 章 弯 曲 应 力
一、是非判断题
1、设某段梁承受正弯矩的作用,则靠近顶面和靠近底面的纵向纤维分别是伸长的和缩短的。
( × )
2、中性轴是梁的横截面与中性层的交线。
梁发生平面弯曲时,其横截面绕中性轴旋转。
( √ )
3、 在非均质材料的等截面梁中,最大正应力max
σ
不一定出现在max
M
的截面上。
( × )
4、等截面梁产生纯弯曲时,变形前后横截面保持为平面,且其形状、大小均保持不变。
( √ )
5、梁产生纯弯曲时,过梁内任一点的任一截面上的剪应力都等于零。
( × )
6、控制梁弯曲强度的主要因素是最大弯矩值。
( × )
7、横力弯曲时,横截面上的最大切应力不一定发生在截面的中性轴上。
( √ )
二、填空题
1、应用公式y I M
z
=
σ时,必须满足的两个条件是 满足平面假设 和 线弹性 。
2、跨度较短的工字形截面梁,在横力弯曲条件下,危险点可能发生在 翼缘外边缘 、 翼缘腹板交接处 和 腹板中心 处。
3、 如图所示的矩形截面悬臂梁,其高为h 、宽为b 、长为l ,则在其中性层的水平剪力
=S F
bh
F
23 。
4、梁的三种截面形状和尺寸如图所示,则其抗弯截面系数分别为
226
1
61bH BH -、 H Bh BH 66132- 和 H
bh BH 66132
- 。
x
三、选择题
1、如图所示,铸铁梁有A,B,C和D四种截面形状可以供选取,根据正应力强度,采用( C )图的截面形状较合理。
2、
如图所示的两铸铁梁,材料相同,承受相同的载荷F。
则当F
增大时,破坏的情况是( C )。
A 同时破坏;
B (a)梁先坏;
C (b)梁先坏
3、为了提高混凝土梁的抗拉强度,可在梁中配置钢筋。
若矩形截面梁的弯矩图如图所示,则梁内钢筋(图中虚线所示)配置最合理的是( D )
A B C D
A B
D
x
四、计算题
1、长为l 的矩形截面梁,在自由端作用一集中力F ,已知m h 18.0=,m b 12.0=,
m y 06.0=,m a 2=,kN F 1=,求C 截面上K 点的正应力。
解:MPa I y M Z C K
1.212
18
.012.006.021013
3=⨯⨯⨯⨯==σ 2、⊥形截面铸铁悬臂梁,尺寸及载荷如图所示。
截面对形心轴z C 的惯性矩4
10181cm I Z =,
cm h 64.91=,kN P 44=,求梁内的最大拉应力和最大压应力。
44kN
44kN
35.2kNm
26.4kNm
A
:C :
解:内力图如上所示,A 截面和C 截面为危险截面,其应力分布如图所示。
A 截面:
MPa I h M Z A A
3.3310
10181106.9102.358
2
31=⨯⨯⨯⨯==--+
σ MPa I h M Z A A
1.5310101811036.1510
2.358
2
32=⨯⨯⨯⨯==---
σ
C 截面:
MPa I h M Z C C
83.3910101811036.15104.268
2
32=⨯⨯⨯⨯==--+
σ
MPa I h M Z C C
0.2510
101811064.9104.268
2
31=⨯⨯⨯⨯==---
σ 所以,最大拉应力:MPa 83.39max =+
σ
最大压应力:MPa 1.53m ax =-
σ
3、图示矩形截面梁。
已知MPa 160][=σ,试确定图示梁的许用载荷][q 。
第四题图
2.5q
1.5q 2q
3.125q
解:内力图如上所示。
[]σσ≤=
Z
I My
max []y
I M Z
σ≤
312
3
6
10
11010122208010160825--⨯⨯⨯⨯⨯≤q m kN q /33≤
故许用载荷[]m kN q /33=
4、图示T 形截面铸铁梁承受载荷作用。
已知铸铁的许用拉应力MPa 40][t =σ,许用压应力
MPa 160][c =σ。
试按正应力强度条件校核梁的强度。
若载荷不变,将横截面由T 形倒置
成⊥形,是否合理?为什么?
解:内力图如上所示,B 截面和E 截面为危险截面,其应力分布如图所示。
B :
E:
解:以截面最下端为z 轴,计算惯性矩。
mm y C 5.15730
20030200100
3020021530200=⋅+⋅⋅⋅+⋅⋅=
()4
5232
3100215.65.573020012
20030155.42302001230200m I I I II I Z -⨯=⋅⋅+⋅++⋅⋅+⋅=+= B 截面:
MPa I y M Z B B
12.24100215.6105.7210205
3
31=⨯⨯⨯⨯==--+
σ
MPa I y M Z B B
39.5210
0215.6105.15710205
3
32=⨯⨯⨯⨯==---
σ E 截面:
MPa I y M Z E E
19.2610
0215.6105.15710105
3
32=⨯⨯⨯⨯==--+
σ MPa I y M Z E E
06.12100215.6105.7210105
3
31=⨯⨯⨯⨯==---
σ
所以,最大拉应力:MPa 19.26max =+
σ
最大压应力:MPa 39.52max =-
σ
如果将T 形截面倒置,则:
[]MPa MPa I y M t Z B B
4039.5210
0215.6105.15710205
3
31=>=⨯⨯⨯⨯==--+
σσ 不满足强度条件,所以不合理。
5、图示工字形截面梁。
已知:m kN q /24=,m kN m o ∙=5.1,截面高mm H 180= 腹板高mm h 110=,腹板厚mm d 7=,截面面积231cm A =,2
1660cm I Z =,
cm S I Z Z 4.15/=,[]MPa 150=σ,[]MPa 130=τ。
试(1)按照梁的弯曲正应力强度校
核梁的强度;(2)按照弯曲剪应力强度校核梁的强度。
,试选择工字钢的型号。
18kN
22kN
16.2kNm
4kN
8kNm
解:内力图如上所示,剪力、弯矩最大截面为危险截面。
[]σσ≤=
Z
W M max
max []
36
3max
25.10110
160102.16cm M W Z =⨯⨯=≥
σ 选用14号工字钢,并用其计算剪应力。
此时,
cm b cm S I Z
Z
5.5,12*==
Z
Z
bI S Q *
max max
=
τ []MPa MPa 1003310
12105.51022233
max
=≤=⨯⨯⨯⨯=--ττ 说明14号工字钢剪应力强调满足强度要求,故选用14号工字钢。