材料力学I-第4章_弯曲应力_课后答案
- 格式:pdf
- 大小:3.23 MB
- 文档页数:38
简明材料力学第二版课后答案1. 第一章。
1.1 选择题。
1. A。
2. B。
3. C。
4. D。
5. A。
1.2 填空题。
1. 应力。
2. 变形。
3. 弹性模量。
4. 泊松比。
5. 线弹性。
1.3 简答题。
1. 什么是应力?应力是单位面积上的内力。
2. 什么是应变?应变是材料单位长度上的变形量。
3. 弹性模量的意义是什么?弹性模量是材料在弹性阶段的应力和应变之比,代表了材料的刚度。
4. 什么是泊松比?泊松比是材料在拉伸时横向收缩的比例。
5. 什么是线弹性?线弹性是指材料在应力小于屈服强度时,应力和应变成正比。
2. 第二章。
2.1 选择题。
1. C。
2. A。
3. D。
4. B。
5. C。
2.2 填空题。
1. 弹性极限。
2. 屈服强度。
3. 断裂强度。
4. 韧性。
5. 脆性。
2.3 简答题。
1. 什么是弹性极限?弹性极限是材料在拉伸时,超过该极限会发生塑性变形。
2. 什么是屈服强度?屈服强度是材料在拉伸时开始发生塑性变形的应力值。
3. 断裂强度和韧性有何区别?断裂强度是材料在拉伸时发生断裂的最大应力值,而韧性是材料吸收能量的能力。
4. 什么是脆性?脆性是指材料在受力时发生突然断裂的性质。
3. 第三章。
3.1 计算题。
1. 根据公式σ=F/A,计算出应力值。
2. 利用杨氏模量公式计算材料的弹性模量。
3. 根据泊松比公式计算材料的泊松比值。
3.2 简答题。
1. 什么是拉伸?拉伸是指材料在受力时发生长度增加的现象。
2. 什么是压缩?压缩是指材料在受力时发生长度减小的现象。
3. 什么是剪切?剪切是指材料在受力时发生形状变化但体积不变的现象。
4. 第四章。
4.1 计算题。
1. 根据应变-位移曲线计算出材料的弹性模量。
2. 根据拉伸试验数据计算出材料的屈服强度。
3. 利用断裂强度公式计算出材料的断裂强度值。
4.2 简答题。
1. 什么是应力-应变曲线?应力-应变曲线是材料在受力时应力和应变之间的关系曲线。
2. 什么是屈服点?屈服点是应力-应变曲线上的一个特殊点,表示材料开始发生塑性变形的位置。
东北农业大学网络教育学院材料力学网上作业题(2015更新版)绪论一、名词解释1.强度2. 刚度3. 稳定性4. 变形5. 杆件6.板或壳7.块体二、简答题1.构件有哪些分类?2. 材料力学的研究对象是什么?3. 材料力学的任务是什么?4. 可变形固体有哪些基本假设?5. 杆件变形有哪些基本形式?6. 杆件的几何基本特征?7.载荷的分类?8. 设计构件时首先应考虑什么问题?设计过程中存在哪些矛盾?第一章轴向拉伸和压缩一、名词解释1.内力2. 轴力3.应力4.应变5.正应力6.切应力7.伸长率8.断面收缩率9. 许用应力 10.轴向拉伸 11.冷作硬化二、简答题1.杆件轴向拉伸或压缩时,外力特点是什么?2.杆件轴向拉伸或压缩时,变形特点是什么?3. 截面法求解杆件内力时,有哪些步骤?4.内力与应力有什么区别?5.极限应力与许用应力有什么区别?6.变形与应变有什么区别?7.什么是名义屈服应力?8.低碳钢和铸铁在轴向拉伸时,有什么样的力学特性?9.强度计算时,一般有哪学步骤?10.什么是胡克定律?11.表示材料的强度指标有哪些?12.表示材料的刚度指标有哪些?13.什么是泊松比?14. 表示材料的塑性指标有哪些?15.拉压杆横截面正应力公式适用范围是什么?16.直杆轴向拉伸或压缩变形时,在推导横截面正应力公式时,进行什么假设?三、计算题1. 试用截面法求下列各杆指定截面的轴力。
2. 试用截面法求下列各杆指定截面的轴力。
3. 试用截面法求下列各杆指定截面的轴力。
4. 试用截面法求下列各杆指定截面的轴力。
5. 试用截面法求下列各杆指定截面的轴力。
6. 试用截面法求下列各杆指定截面的轴力。
7 高炉装料器中的大钟拉杆如图a所示,拉杆下端以连接楔与大钟连接,连接处拉杆的横截面如图b所示;拉杆上端螺纹的小径d = 175 mm。
已知作用于拉杆上的静拉力F=850 kN,试计算大钟拉杆横截面上的最大静应力。
8 一桅杆起重机如图所示,起重杆AB为一钢管,其外径D = 20 mm,内径d≈18 mm;钢绳CB的横截面面积为10 mm2。
第一章绪论一、是非判断题材料力学的研究方法与理论力学的研究方法完全相同。
( × ) 内力只作用在杆件截面的形心处。
( × )杆件某截面上的内力是该截面上应力的代数和。
( × )确定截面内力的截面法,适用于不论等截面或变截面、直杆或曲杆、基本变形或组合变形、横截面或任意截面的普遍情况。
( ∨ )根据各向同性假设,可认为材料的弹性常数在各方向都相同。
( ∨ )根据均匀性假设,可认为构件的弹性常数在各点处都相同。
( ∨ )同一截面上正应力σ与切应力τ必相互垂直。
( ∨ )同一截面上各点的正应力σ必定大小相等,方向相同。
( × )同一截面上各点的切应力τ必相互平行。
( × )应变分为正应变ε和切应变γ。
( ∨ )应变为无量纲量。
( ∨ )若物体各部分均无变形,则物体内各点的应变均为零。
( ∨ )若物体内各点的应变均为零,则物体无位移。
( × )平衡状态弹性体的任意部分的内力都与外力保持平衡。
( ∨ )题图所示结构中,AD杆发生的变形为弯曲与压缩的组合变形。
( ∨ )题图所示结构中,AB杆将发生弯曲与压缩的组合变形。
( × )B题图题图二、填空题材料力学主要研究 受力后发生的,以及由此产生的 。
拉伸或压缩的受力特征是 ,变形特征是 。
剪切的受力特征是 ,变形特征是。
扭转的受力特征是 ,变形特征是 。
弯曲的受力特征是 ,变形特征是 。
组合受力与变形是指 。
构件的承载能力包括 , 和 三个方面。
所谓 ,是指材料或构件抵抗破坏的能力。
所谓 ,是指构件抵抗变形的能力。
所谓 ,是指材料或构件保持其原有平衡形式的能力。
根据固体材料的性能作如下三个基本假设 , , 。
认为固体在其整个几何空间内无间隙地充满了组成该物体的物质,这样的假设称为 。
根据这一假设构件的 、 和 就可以用坐标的连续函数来表示。
填题图所示结构中,杆1发生 变形, 杆2发生 变形,杆3发生 变形。
Microsoft Corporation材料力学课后答案[键入文档副标题]lenovo[选取日期]第二章轴向拉伸和压缩2-12-22-32-42-52-62-72-82-9下页2-1试求图示各杆1-1和2-2横截面上的轴力,并作轴力图。
(a)解:;;(b)解:;;(c)解:;。
(d)解:。
返回2-2 试求图示等直杆横截面1-1,2-2和3-3上的轴力,并作轴力图。
若横截面面积,试求各横截面上的应力。
解:返回2-3试求图示阶梯状直杆横截面1-1,2-2和3-3上的轴力,并作轴力图。
若横截面面积,,,并求各横截面上的应力。
解:返回2-4 图示一混合屋架结构的计算简图。
屋架的上弦用钢筋混凝土制成。
下面的拉杆和中间竖向撑杆用角钢构成,其截面均为两个75mm×8mm的等边角钢。
已知屋面承受集度为的竖直均布荷载。
试求拉杆AE和EG横截面上的应力。
解:=1)求内力取I-I分离体得(拉)取节点E为分离体,故(拉)2)求应力75×8等边角钢的面积A=11.5 cm2(拉)(拉)2-5(2-6)图示拉杆承受轴向拉力,杆的横截面面积。
如以表示斜截面与横截面的夹角,试求当,30,45,60,90时各斜截面上的正应力和切应力,并用图表示其方向。
解:2-6(2-8) 一木桩柱受力如图所示。
柱的横截面为边长200mm的正方形,材料可认为符合胡克定律,其弹性模量E=10 GPa。
如不计柱的自重,试求:(1)作轴力图;(2)各段柱横截面上的应力;(3)各段柱的纵向线应变;(4)柱的总变形。
解:(压)(压)。
第四章弯曲应力判断图弯矩的值等于梁截面一侧所有外力的代数和。
()负弯矩说明该截面弯矩值很小,在设计时可以忽略不计。
()简支梁上向下的集中力对任意横截面均产生负弯矩。
()横截面两侧所有外力对该截面形心力矩的代数和就是该截面的弯矩值。
()梁的任一横截面上的弯矩在数值上等于该截面任一侧所有外力对该截面形心的力矩代数和。
()在计算指定截面的剪力时,左段梁向下的荷载产生负剪力。
()在计算指定截面的剪力时,右段梁向下的荷载产生正剪力。
()梁纯弯曲时中性轴一定通过截面的形心。
()简支梁上受一集中力偶作用,当集中力偶在不改变转向的条件下,在梁上任意移动时,弯矩图发生变化,剪力图不发生变化。
()图示梁弯矩图的B点是二次抛物线的顶点。
()图示梁段上集中力偶作用点两侧的弯矩直线一定平行。
()(M图)下列三种斜梁A截面的剪力均相同。
()l/2l/2l/2l/2l/2l/2下列三种斜梁B截面的剪力均相同。
()l/2l/2l/2l/2l/2l/2下列三种斜梁C截面的弯矩均相同。
()l/2l/2l/2l/2l/2l/2梁弯曲时的内力有剪力和弯矩,剪力的方向总是和横截面相切,而弯矩的作用面总是垂直于横截面。
()一端(或两端)向支座外伸出的简支梁叫做外伸梁。
()##√悬臂梁的一端固定,另一端为自由端。
()##√弯矩的作用面与梁的横截面垂直,它们的大小及正负由截面一侧的外力确定。
()##√弯曲时剪力对细长梁的强度影响很小,所以在一般工程计算中可忽略。
()##√图示,外伸梁BC段受力F作用而发生弯曲变形,AB段无外力而不产生弯曲变形()##×由于弯矩是垂直于横截面的内力的合力偶矩,所以弯矩必然在横截面上形成正应力。
()##√抗弯截面系数是反映梁横截面抵抗弯曲变形的一个几何量,它的大小与梁的材料有关。
()##×无论梁的截面形状如何,只要截面面积相等,则抗弯截面系数就相等。
()##×梁弯曲变形时,弯矩最大的截面一定是危险截面。
材料力学性能-课后答案-(时海芳-任鑫)第一章1.解释下列名词①滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。
②弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。
③循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。
④包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。
⑤塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。
⑥韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。
脆性:指金属材料受力时没有发生塑性变形而直接断裂的能力⑦加工硬化:金属材料在再结晶温度以下塑性变形时,由于晶粒发生滑移, 出现位错的缠结,使晶粒拉长、破碎和纤维化,使金属的强度和硬度升高,塑性和韧性降低的现象。
⑧解理断裂:解理断裂是在正应力作用产生的一种穿晶断裂,即断裂面沿一定的晶面(即解理面)分离。
2.解释下列力学性能指标的意义弹性模量);(2)ζ p(规定非比例伸长应力)、ζ e(弹性极限)、ζ s(屈服强度)、ζ 0.2(屈服强度);(3)ζ b(抗拉强度);(4)n(加工硬化指数); (5)δ (断后伸长率)、ψ (断面收缩率)4.常用的标准试样有5 倍和10倍,其延伸率分别用δ 5 和δ 10 表示,说明为什么δ 5>δ 10。
答:对于韧性金属材料,它的塑性变形量大于均匀塑性变形量,所以对于它的式样的比例,尺寸越短,它的断后伸长率越大。
5.某汽车弹簧,在未装满时已变形到最大位置,卸载后可完全恢复到原来状态;另一汽车弹簧,使用一段时间后,发现弹簧弓形越来越小,即产生了塑性变形,而且塑性变形量越来越大。
试分析这两种故障的本质及改变措施。
答:(1)未装满载时已变形到最大位置:弹簧弹性极限不够导致弹性比功小;(2)使用一段时间后,发现弹簧弓形越来越小,即产生了塑性变形,这是构件材料的弹性比功不足引起的故障,可以通过热处理或合金化提高材料的弹性极限(或屈服极限),或者更换屈服强度更高的材料。
第三张(1)静应力:静应力:人小和方向不随转移而产生变化或变化较缓慢的应力,其作用下零件可能产生静断裂或过大的塑性变形,即应按静强度进行计算。
⑵变应力:犬小和方向均可能随时间转移产生变化者,它可以是由变载荷引起的,也可能因静载荷产生(如电动机重量给梁带来的弯曲应力)变应力作用的零件主要发生疲劳失效。
(3)工作应力:用计算载荷按材料力学基本公式求得作用在零件剖面上的内力Qp, CT c, O-,r, G等。
F(4)计算应力:根据零件危险断面的复杂应力状态,按适当的强度理论确定的,有相当破坏作用的应力。
(5)极限应力:根据材料性质及应力种类用试件试验得到的机械性能失效时应力极限值,常分为用光滑试件进行试验得到的材料极限应力及用零件试验得到的零件的极限应力。
(6)许用应力:设计零件时,按相应强度准则、计算应力允许达到的最大值[6 = % /[S] >刁.“。
(7)计算安全系数:零件(材料)的极限应力与计算应力的比值S ca=(y^l(y ca,以衡量安全程度。
(8)安全系数许用值:根据零件重要程度及计算方法精确度给岀设计零件安全程度的许用范围[S],力求S“>[S]。
第五章(1)图5-12所示为一个托架的边板用6个饺制孔用螺栓与相邻机架联接。
托架受一大小为60WN的载荷乍用,该载荷与边板螺栓组的对称轴线)少相平行,距离为250mm. 试确定螺栓组中受力最人的螺栓。
解:如答图2所示,将载荷向螺栓组形心O简化,得横向力F. = 60kN答图2图5-12扭矩 T = 6X 104 X 250 = 15X 106 N ・mm=125/cos 30c = 144.3imiGin = 125tan30° =0・兀云故尸心=T /max /[3^ax + 3 x (O.5r max )2 卜 T/(3r_ + 3 z_/4)= 47/(15心 J= 4xl5x 10 6/(15 x 144.3)= 27720 N F 与合成:F ; = F max srn30c = F max /2=13860 NF ; =^00530° =24006^故螺栓3受力最大为F 3max = JC+(Ff=J13860,+(24006 +10000 )' = 36772 N(2)图5-13所示为一个托架的边板用6个较制孔用螺栓与相邻机架联接。
习题8-4图材料力学_第二版_范钦珊_第4章习题答案第4章 弹性杆件横截面上的切应力分析4 — 1扭转切应力公式()M x /I p 的应用范围有以下几种,试判断哪一种是正确的。
(A) 等截面圆轴,弹性范围内加载; (B) 等截面圆轴; (C )等截面圆轴与椭圆轴;(D )等截面圆轴与椭圆轴,弹性范围内加载。
正确答案是_A _。
解:()M x . I p 在推导时利用了等截面圆轴受扭后,其横截面保持平面的假设,同时推导过程中 还应用了剪切胡克定律,要求在线弹性范围加载。
4 — 2两根长度相等、直径不等的圆轴受扭后,轴表面上母线转过相同的角度。
设直径大的轴和直径 小的轴的横截面上的最大切应力分别为 ^ax 和2max ,切变模量分别为 G l 和G 2。
试判断下列结论的正确性。
(A) 1 max > 2 max ;(B)1 maxV 2max ;(C) 若 G l >G 2,则有 1 max >2 max ;(D)若 G 1 > G 2,则有 1maxV2 max 。
正确答案是_c _。
解:因两圆轴等长,轴表面上母线转过相同角度,指切应变相同,即12 由剪切胡克定律 G知G 1 G 2时, 1 max2 max4 — 3承受相同扭矩且长度相等的直径为d 1的实心圆轴与内、外径分别为 d 2、D 2( d 2/D 2)的空心圆轴,二者横截面上的最大切应力相等。
关于二者重之比(W 1/W 2)有如下结论,试判断哪一种是正确(1 )代入(2),得W (1 工 W 124 — 4由两种不同材料组成的圆轴, 里层和外 层材料的切变模量分别为 G 1和G 2,且G 1 = 2 G 2o(A ) (14)32 ; (B ) (1 4)32(12);(C ) (1 424)(1 2);(D ) (1 4)2 3/(1 2) 正确答案是D 0解: 由 1 max2 max 得16M x16M x.3n d 1n d 22(14)即d 1 1(14)3D 2wA d 12W A 2 D ;(1 2 )(1) (2)1A'习题4-7图圆轴尺寸如图所示。