2015新北师大版八年级上册2.1认识无理数同步练习题
- 格式:doc
- 大小:78.50 KB
- 文档页数:4
1认识无理数一.选择题(共10小题)1. 在下列实数中:0,,﹣3.1415,,,0.343343334…无理数有()A. 1个B. 2个C. 3个D. 4个2. 五个数中:﹣,﹣1,0,,,是无理数的有()A. 0个B. 1个C. 2个D. 3个3. 下列各数中,是无理数的()A. πB. 0C.D. ﹣4. 下列各数中,无理数的是()A. B. C. π D.5. 在实数﹣2,,,0.1122,π中,无理数的个数为()A. 0个B. 1个C. 2个D. 3个6. 下列各数中,属于无理数的是()A. πB. 0C.D. ﹣7. 在﹣2,,,3.14,,,这6个数中,无理数共有()A. 4个B. 3个C. 2个D. 1个8. 下列各数是无理数的是()A. B. C. D. 169. 在,-,0,,3.1415,π这6个数中,无理数共有()A. 1个B. 2个C. 3个D. 4个10. 下列说法正确的是()A. 带有根号的数是无理数B. 无限小数是无理数C. 无理数是无限不循环小数D. 无理数是开方开不尽的数二.填空题(共10小题)11. 如图,在5×5的正方形网格中,以AB为边画直角△ABC,使点C在格点上,且另外两条边长均为无理数,满足这样条件的点C共______个.12. 下列各数:,,5.12,﹣,0,,3.1415926,,﹣,2.181181118…(两个8之间1的个数逐次多1).其中是无理数的有__个.13. 若无理数a满足:﹣4<a<﹣1,请写出两个你熟悉的无理数:__.14. 在实数1.732,,-,,中,无理数的个数为__.15. 在,,,0.8888…,3π,0.262662666266662…,六个数中,无理数有__个.16. 下列实数中,0.13,π,﹣,,1.212212221…(两个1之间依次多一个2)中,是无理数的有__ 个.17. 在实数、、中,无理数是__.18. 在,,0,,,0.010010001…,,﹣0.333…,,3.1415,2.010101…(相邻两个1之间有1个0)中,无理数有__个.19. 写出两个无理数,使它们的和为有理数__,__;写出两个无理数,使它们的积为有理数__,__.20. 下列各数:,,,,,0.010*********,,中,是无理数的有__个.三.解答题(共10小题)21. 把下列各数分别填在相应的集合中:﹣,,,0,,,,,3.1422. 在下列4×4各图中,每个小正方形的边长都为1,请在每一个图中分别画出一条线段,且它们的长度均表示不等的无理数.表示:表示:表示:(注:横线上填入对应的无理数)23. 在:,,0,3.14,,﹣,7.151551…(每相邻两个“1”之间依次多一个“5”)中,整数集合{ …},分数集合{ …},无理数集合{ …}.24. 国涛同学家的客厅是面积为28平方米的正方形,那么请你判断一下这个正方形客厅的边长x是不是有理数?如果误差要求小于0.01米,那么边长x的最大取值是多少(精确到0.001)?25. 500多年前,数学各学派的学者都认为世界上的数只有整数和分数,直到有一天,大数学家毕达哥拉斯的一个名叫希帕索斯的学生,在研究1和2的比例中项时(若1:x=x:2,那么x叫1和2的比例中项),他怎么也想不出这个比例中项值.后来,他画了一个边长为1的正方形,设对角线为x,于是由毕达哥拉斯定理x2=12+12=2,他想x代表对角线的长,而x2=2,那么x必定是确定的数,这时他又为自己提出了几个问题:(1)x是整数吗?为什么不是?(2)x可能是分数吗?是,能找出来吗?不是,能说出理由吗?亲爱的同学,你能帮他解答这些问题吗?26. 下列数中:①﹣|﹣3|,②﹣0.3,③﹣,④,⑤,⑥,⑦0,⑧﹣,⑨1.2020020002…(每两个2之间依次多一个0)(请填序号)无理数是,整数是.负分数是.27. 已知长方体的体积是1620,它的长、宽、高的比是5:4:3,问长方体的长、宽、高是无理数吗?为什么?28. 体积为3的正方体的边长可能是整数吗?可能是分数吗?可能是有理数吗?请说明你的理由.29. 有6个实数:﹣32,﹣,,0.313131…,,﹣,请计算这列数中所有无理数的和.30. 判断下列说法是否正确,如果正确请在括号内打“√”,错误请在括号内打“×”,并各举一例说明理由.(1)有理数与无理数的积一定是无理数.(2)若a+1是负数,则a必小于它的倒数..答案一.选择题1. 【答案】B【解析】根据无理数是无限不循环小数,可得答案.,0.343343334…是无理数,故选B.考点:无理数.2.【答案】B【解析】无理数有:,只有1个.故选B.考点:无理数.3. 【答案】A【解析】A选项中,π是无理数,故此选项正确;B选项中,0是有理数,故此选项错误;C选项中,=2,是有理数,故此选项错误;D选项中,是有理数,故此选项错误;故选A.4. 【答案】C【解析】A选项中,是分数,属于有理数,故A错误;B选项中,是有理数,故B错误;C选项中,是无理数,故C正确;D选项中,是有理数,故D错误;故选C.5. 【答案】C【解析】无理数为:,,共有2个.故选C.6. 【答案】A【解析】A选项中,π是无理数,故此选项正确;B选项中,0是有理数,故此选项错误;C选项中,=2,是有理数,故此选项错误;D选项中,是有理数,故此选项错误;故选A.7.【答案】C【解析】无理数有、共两个,故选C.8. 【答案】B【解析】A选项中,是分数,属于有理数,故A错误;B选项中,是无理数,故B正确;C选项中,是有理数,故C错误;D选项中,16是有理数,故D错误;故选B.9.【答案】B【解析】在上述6个数中,,,0,3.1415都属于有理数,属于无理数的是共2个.故选B. 10.【答案】C【解析】A选项中,带有根号的数不一定是无理数,如是有理数,故此选项错误;B选项中,无限小数包括无限循环小数和无限不循环小数,其中只有无限不循环小数才是无理数,而无限循环小数是有理数,故此选项错误;C选项中,无理数是无限不循环小数的说法是正确的;D选项中,开方开不尽的数是无理数,但无理数不一定是开方产生的,无是无理数,但它不是开方产生的数,故选项错误.故选C.二.填空题11.【答案】4【解析】本题需根据直角三角形的定义和图形即可找出所有满足条件的点.根据题意可得以AB为边画直角△ABC,使点C在格点上,满足这样条件的点C共8个.故答案为:8.12.【答案】4【解析】根据:有理数的定义:“分数和整数统称为有理数”及无理数的定义:“无限不循环小数叫做无理数”分析可知:在上述各数中,、、及(每两个8之间1的个数依次多1)是无理数,其余的数都是有理数,即无理数共有4个.点睛:初中阶段所遇到的无理数主要有三种形式:①开方开不尽的数;②无限不循环小数;③含有π的数.13. 【答案】﹣,﹣π【解析】本题答案不唯一,这样的无理数很多,如:.14. 【答案】2【解析】根据:有理数的定义:“分数和整数统称为有理数”及无理数的定义:“无限不循环小数叫做无理数”分析可知:在上述各数中,是无理数,其余的都是有理数,即上述各数中无理数共有2个.15. 【答案】4【解析】根据:有理数的定义:“分数和整数统称为有理数”及无理数的定义:“无限不循环小数叫做无理数”分析可知:在上述各数中,,是无理数,其余的都是有理数,即上述各数中,无理数有4个.16. 【答案】3【解析】根据:有理数的定义:“分数和整数统称为有理数”及无理数的定义:“无限不循环小数叫做无理数”分析可知:在上述各数中,(每两个1之间依次多一个2)是无理数,其余的都是有理数,即上述各数中,无理数有3个.17. 【答案】【解析】无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.根据无理数的三种形式可求出答案.需要注意的就是本题中=2.考点:无理数18. 【答案】4【解析】根据:有理数的定义:“分数和整数统称为有理数”及无理数的定义:“无限不循环小数叫做无理数”分析可知:在上述各数中,是无理数,其余的都是有理数,即上述各数中,无理数有4个.19. 【答案】【解析】(1)两个无理数的和为有理数,这样的无理数很多,如:和;(2)两个无理数的积为有理数,这样的无理数很多,如:和.点睛:(1)两个无理数的和、差、积、商有可能是无理数,也有可能是有理数;(2)本题的两个小问,在解答时,可以先任写出一个无理数和一个不为0的有理数,再通过有理数减去无理数和有理数除以无理数可得对应的另一根无理数.20. 【答案】2【解析】根据:有理数的定义:“分数和整数统称为有理数”及无理数的定义:“无限不循环小数叫做无理数”分析可知:在上述各数中,是无理数,其余的数都是有理数,即上述各数中,无理数有2个.点睛:带根号的数与无理数的区别:带根号的数不一定是无理数,如是有理数中的整数;带有根号且开方开不尽的数就一定是无理数.三.解答题21. 【解析】本题考查的是实数的分类. 先把-化为-2的形式,-化为-2,化为2的形式,再根据实数分无理数及有理数进行解答即可.解:有理数集合: -,-,0,,,3.14 .无理数集合:,-,22. 【解析】连接任意正方形的对角线,根据勾股定理计算出其长度,再由无理数的定义进行解答即可.23.【解析】根据无理数、整数、分数的定义即可作答.24. 【答案】5.291.【解析】(1)根据正方形的面积是边长的平方,可得该正方形的边长为米,化简可知边长不是有理数;(2)把化简并按指定“精确度”取近似值可得答案.解:(1)由题意可得正方形边长为:,这个正方形客厅的边长x不是有理数;(2)由(1)可得这个正方形边长x的最大取值为:.25. 【答案】(1)在1和2之间不存在另外的整数.(2)不是.【解析】(1)根据比例中项的定义,可知x2=2,结合无理数的概念,就能得出x是不是整数的结论.(2)根据分数的定义,任何分数的平方还是分数,即能得出结论.解:(1)不是,∵1<2<4,而x2=2∴1<x2<4,若x>0,1<x<2,∴在1和2之间不存在另外的整数.(2)不是,因为任何分数的平方不可能是整数.考点:本题主要考查无理数和勾股定理点评:解答本题的关键是熟练掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.26. 【答案】无理数是③④⑨,整数是①⑥⑦,负分数是②⑧.【解析】(1)由无理数的定义:“无限不循环小数叫做无理数”可知,上述各数中,无理数是③④⑨;(2)根据有理数定义和有理数的分类可知:上述各数中,整数是①⑥⑦,负分数是②⑧.27.【答案】长、宽、高分别为15,12,9不是无理数.【解析】首先根据题中条件求出长方体的长、空、高的值,然后再根据无理数的定义判断这些值是否是无理数即可.解:该长方体的长、宽、高不是无理数,理由如下:设该长方体的长、宽、高分别为5x,4x,3x.由题意可得:60x3=1620,解得x=3,∴该长方体的长、宽、高分别为15,12,9,∵15,12,9都是整数,属于有理数,不属于无理数,∴该长方体的长、宽、高不是无理数.28.【答案】体积为3的正方形的边长不可能是整数、分数、有理数.【解析】先根据正方体的体积公式求出棱长,即可判断.解:由题意得,正方体的棱长为,不可能是整数,不可能是是分数,不可能是有理数.考点:本题考查的是正方体的体积公式,实数的分类点评:解答本题的关键是熟练掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.29. 【答案】【解析】首先根据“无理数的定义”,找出上述各数中的无理数,再把它们相加即可.解:∵上述各数中:﹣,,﹣是无理数,∴上述各数中,所有无理数的和为:==.30. 【答案】×,√.【解析】(1)“有理数与无理数的积一定是无理数.”这种说法是错误的,如是无理数,0是有理数,但它们的积是0,为有理数,故这种说法错误;(2)“若a+1是负数,则a必小于它的倒数.”这种说法正确.∵a+1是负数,∴a+1<0,即a<﹣1,∴a必小于它的倒数.如:a=-2,-2的倒数是,-2是小于的.。
第二章实数2.1认识无理数专题无理数近似值的确定1. 设面积为3的正方形的边长为x,那么关于x的说法正确的是()A.x是有理数B.x取0和1之间的实数C.x不存在 D.x取1和2之间的实数2.(1)如图1,小明想剪一块面积为25cm2的正方形纸板,你能帮他求出正方形纸板的边长吗?(2)若小明想将两块边长都为3cm的正方形纸板沿对角线剪开,拼成如图2所示的一个大正方形,你能帮他求出这个大正方形的面积吗?它的边长是整数吗?若不是整数,那么请你估计这个边长的值在哪两个整数之间.3.你能估测一下我们教室的长、宽、高各是多少米吗?你能估测或实际测量一下数学课本的长、宽和厚度吗?请你再估算一下我们的教室能放下多少本数学书?这些数学书可供多少所像我们这样的学校的初一年级学生使用呢?请你对每一个问题给出估测的数据,再把估算的过程结果一一写出来.答案:1.D 【解析】 ∵面积为3的正方形的边长为x ,∴x 2=3,而12=1,22=4,∴1<x 2<4,∴1<x <2,故选D. 2.解:(1)边长为5cm.(2)设大正方形的边长为x ,∵大正方形的面积=32+32=18,而42=16,52=25,∴16<x 2<25,∴4<x <5,故正方形的边长不是整数,它的值在4和5之间.3.解:估算的过程:教室的长、宽、高可以用我们的身高估计出来;数学课本的长、宽和厚度可以用我们的手指估计出来,也可以用直尺测量出来;我们用长宽高相乘估计出教室的容积与课本的体积相除算出能放下多少本数学书,就是能供多少名学生使用,再用本班人数乘一年级班数估计本校一年级人数,然后相处就可以估计出这些数学书可供多少所像我们这样的学校的初一年级学生使用了.估测的数据、估算的结果略.2.2平方根专题一 非负数问题1. 若2(2)a +与1+b 互为相反数,则a b -的值为( )A .2B .21+C .21-D .12-2. 设a ,b ,c 都是实数,且满足(2-a )2+2a b c +++|c+8|=0,ax 2+bx+c=0,求式子x 2+2x 的算术平方根.3. 若实数x ,y ,z x 1y -2z -= 14(x+y+z+9),求xyz 的值.专题二 探究题 4. 研究下列算式,你会发现有什么规律?131⨯+=4 =2;241⨯+=9=3;351⨯+=16=4;461⨯+=25=5;…请你找出规律,并用公式表示出来.5.先观察下列等式,再回答下列问题: ①2211112++=1+ 11111-+- =112;②2211123++ =1+ 11221-+=116; ③2211134++=1+ 11331-+=1112. (1)请你根据上面三个等式提供的信息,猜想2211145++的结果,并验证; (2)请你按照上面各等式反映的规律,试写出用含n 的式子表示的等式(n 为正整数).答案:1.D 【解析】 ∵2(2)a +与|b+1|互为相反数,∴2(2)a ++|b+1|=0, ∴2+a =0且b+1=0, ∴a=2,b=﹣1,a b -=12-,故选D.2.解:由题意,得2-a=0,a 2+b+c=0,c+8=0. ∴a=2,c=-8,b=4. ∴2x 2+4x-8=0. ∴x 2+2x=4.∴式子x 2+2x 的算术平方根为2.3.解:将题中等式移项并将等号两边同乘以4得x-4x +y-41y -+z-42z -+9=0,∴(x-4x +4)+(y-1-41y -+4)+(z-2-42z -+4)=0, ∴(x-2)2+(1y --2)2+(2z --2)2=0,∴x-2=0且1y --2=0且2z --2=0, ∴x=21y -=2 2z -=2,∴x=4,y-1=4 ,z-2=4,∴x=4,y=5,z=6.∴xyz=120.4.解:第n 项a n =(2)1n n ++=2(1)n +=n+1,即a n =n+1. 5.解:(1)2211145++=1+ 11441-+=1120. 验证:2211145++=1111625++=25161400400++=441400=1120. (2)22111(1)n n +++=1+111n n -+=1+1(1)n n +(n 为正整数).2.3立方根专题 立方根探究性问题1. (1)填表:a 0.000001 0.001 1 1000 10000003a(2)由上表你发现了什么规律(请你用语言叙述出来);(3)根据发现的规律填空:①已知33=1.442,则33000=_____________;②已知30.000456=0.07696,则3456=_____________.2.观察下列各式:(1)223=223;(2)338=338;(3)4415=4415.探究1:判断上面各式是否成立.(1)________;(2)________;(3)________ .探究2:猜想5524= ________ .探究3:用含有n的式子将规律表示出来,说明n的取值范围,并用数学知识说明你所写式子的正确性.拓展:3227=2327,33326=33326,34463=43463,…根据观察上面各式的结构特点,归纳一个猜想,并验证你的猜想.答案:1.解:(1)直接开立方依次填入:0.01;0.1;1;10;100.(2)从表中发现被开方数小数点向右移动三位,立方根向右移动一位.(3)①14.42 ②7.6962.解:探究1:(1)成立 (2)成立 (3)成立 探究2:5524探究3:21n nn -=21nn n -(n≥2,且n 为整数).理由如下: 21n n n -=321n n n n -+-=221n n n ⨯-=21n n n -. 拓展:331n nn -=331n n n -.理由如下: 331n n n -=4331n n n n -+-=3331n n n ⨯-=331n n n -.2.4估算专题 比较无理数大小1. 设a=1003+997,b=1001+999,c=21001,则a ,b ,c 之间的大小关系是( )A .a >b >cB .a >c >bC .b >a >cD .c >b >a2. 观察下列一组等式,然后解答后面的问题:(2+1)(2-1)=1,(3+2 )(3- 2)=1,(4+3)(4-3)=1,(5+4)(5-4)=1…(1)观察上面的规律,计算下列式子的值. (121++132++143++…+ 120132012+)•( 2013+1).(2)利用上面的规律,试比较1211-与1312-的大小.3. 先填写下表,通过观察后再回答问题.问:(1)被开方数a 的小数点位置移动和它的算术平方根a 的小数点位置移动有无规律? 若有规律,请写出它的移动规律;(2)已知:a =1800,- 3.24 =-1.8,你能求出a 的值吗?(3)试比较a 与a 的大小.答案:1. D 【解析】 ∵a 2=2000+21003997⨯,b 2=2000+21001999⨯,c 2=4004=2000+2×1002,1003×997=1 000 000-9=999 991,1001×999=1 000 000-1=999 999,10022=1 004 004. ∴c >b >a .故选D .2.解:(1)由上面的解题规律可直接写出111n n n n=+-++,则(121++132++143++…+ 120132012+)•( 2013+1) =[(2-1)+ (3- 2)+(4-3)+…+(2013-2012)](2013+1) =( 2013-1) ( 2013+1) =.(2)∵11211-=1211+,11312-=1312+,又1211+<1312+,∴11211-<11312-, ∴1211->1312-.3.解:依次填:0.001,0.01,0.1,1,10,100,1000. (1)有规律,当被开方数的小数点每向左(或向右)移动2位,算术平方根的小数点向左(或向右)移动1位.(2)观察1.8和1800,小数点向右移动了3位,则a 的值为3.24的小数点向右移动6位,即a=3240000; (3)当0<a <1时,a >a ;当a=1或0时,a =a ;当a >1时,a <a .2.6实数专题 实数与数轴1.如图,以数轴的单位长度线段为边作一个正方形,以表示数2的点为圆心,正方形对角线长为半径画弧,交数轴于点A ,则点A 表示的数是( ) A .2 B .22 C .12 D .122.如图所示,直线L 表示地图上的一条直线型公路,其中A 、B 两点分别表示公路上第140公里处及第157公里处.若将直尺放在此地图上,使得刻度15,18的位置分别对准A ,B 两点,则此时刻度0的位置对准地图上公路的第( )公里处 A .17 B .55 C .72 D .853. 一个等腰直角三角形三角板沿着数轴正方向向前滚动,起始位置如图,顶点C 和A 在数轴上的位置表示的实数为-1和1.那么当顶点C 下一次落在数轴上时,所在的位置表示的实数是___________.4. 如图,已知A 、B 、C 三点分别对应数轴上的数a 、b 、c .(1)化简:|a-b|+|c-b|+|c-a|; (2)若a=4x y ,b=-z 2,c=-4mn .且满足x 与y 互为相反数,z 是绝对值最小的负整数,m 、n 互为倒数,试求98a+99b+100c 的值;(3)在(2)的条件下,在数轴上找一点D ,满足D 点表示的整数d 到点A ,C 的距离之和为10,并求出所有这些整数的和.答案:1.B 【解析】由勾股定理得:正方形的对角线为2,设点A表示的数为x,则2-x=2,解得x=2-2.故选B.2.B 【解析】根据题意,数轴上刻度15,18的位置分别对准A,B两点,而AB两点间距离157-140=17(公里),即数轴上的3个刻度对应实际17公里的距离.又有数轴上刻度0与15之间有15个刻度,故刻度0的位置对准地图上公路的位置距A点有15×173=85(公里), 140-85=55,故刻度0的位置对准地图上公路的55公里处.故选B.3.3+22【解析】在直角△ABC中,AC=CB=2,根据勾股定理可以得到AB=22,则当顶点C下一次落在数轴上时,所在的位置表示的实数是4+22-1=3+22.故答案为:3+22.4.解:(1)由数轴可知:a-b>0,c-b<0,c-a<0,所以原式=(a-b)-(c-b)-(c-a)=a-b-c+b-c+a=2a-2c.(2)由题意可知:x+y=0,z=-1,mn=1,所以a=0,b=-(-1)2=-1,c=-4,∴98a+99b+100c=-99-400=-499.(3)满足条件的D点表示的整数为-7、3,它们的和为-4.2.7二次根式专题一 与二次根式有关的规律探究题1.将1、2、3、6按如图所示的方式排列.若规定(m ,n )表示第m 排从左到右第n 个数,则(4,2)与(21,2)表示的两数之积是( )A.1B.2C. 23D.6 2. 观察下列各式及其验证过程:322322=+,验证:228222223333⨯+===. 333388+=,验证:2327333338888⨯+===.(1)按照上述两个等式及其验证过程,猜想1544+的变形结果并进行验证; (2)针对上述各式反映的规律,写出用a (a 为任意自然数,且2a ≥)表示的等式,并给出验证;(3)针对三次根式及n 次根式(n 为任意自然数,且2n ≥),有无上述类似的变形,如果有,写出用a (a 为任意自然数,且2a ≥)表示的等式,并给出验证.3. 阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+22=221)(+,善于思考的小明进行了以下探索:设a+b 2=22)(n m +(其中a 、b 、m 、n 均为正整数),则有a+b 2=m 2+2n 2+2mn 2, ∴a=m 2+2n 2,b=2mn.这样小明就找到了一种把部分a+b 2的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a 、b 、m 、n 均为正整数时,若a +b 3=2)3(n m +,用含m 、n 的式子分别表示a 、b ,得:a = ,b = ;(2)利用所探索的结论,找一组正整数a 、b 、m 、n 填空: + 3 =( + 3)2;(3)若a +43=2)3(n m +,且a 、m 、n 均为正整数,求a 的值.专题二 利用二次根式的性质将代数式化简 4. 化简二次根式22a aa 的结果是( ) A.2a B.2a C. 2a D.2a5.如图,实数a .b 在数轴上的位置, 化简:222)(b a b a -+-.答案:1.D 【解析】 从图示中知道,(4,2)所表示的数是6.∵前20排共有1+2+3+4+…+20=210个数,∴(21,2)表示的是第210+2=212个数.∵这些数字按照1、2、3、6的顺序循环出现,212÷4=53,∴(21,2)表示的数是6.∴(4,2)与(21,2)表示的两数之积是666⨯=.2.解:(1)44441515+=.验证:24644444415151515⨯+===. (2)2211a a a a a a +=--(a 为任意自然数,且2a ≥). 验证:3322221111a a a a a aa aa a a a -++===----. (3)333311-=-+a a a a a a (a 为任意自然数,且2a ≥). 验证:33334433331111aa a aa aa aa a a a -++===----. 11nnn na aa a a a +=--(a 为任意自然数,且2a ≥). 验证:n n n n n n n n n n a a a a a a a a a a a a 111111-=-=-+-=-+++. 3. 解:(1)223n m + 2mn (2)21 12 3 2(3) ∵223n m a +=,4=2mn, ∴mn=2. ∵ m,n 为正整数,∴m=1,n=2或m=2,n=1, ∴a=13或a=7.4.B 【解析】若二次根式有意义,则22a a+-≥0,-a-2≥0,解得a≤-2,∴原式=2a a a=2a .故选B .5.解:由图知,a <0,b >0,∴a ﹣b <0,∴222)(b a b a -+-=|a |﹣|b |+|a ﹣b |=(﹣a )﹣b +(b ﹣a )=﹣2a .。
第一章勾股定理1.1 探索勾股定理※课时达标1.△ABC,∠C=90°,a=9,b=12,则c =_______.2.△ABC,AC=6,BC=8,当AB=________时,∠C=90°.3.等边三角形的边长为6 cm,则它的高为 __________.4.直角三角形两直角边长分别为5 和12,则斜边上的高为__________.5.等腰三角形的顶角为120°,底边上的高为3,则它的周长为__________.6.若直角三角形两直角边之比为3∶4,斜边长为20,则它的面积为__________.7.若一个三角形的三边长分别为3,4, x,则使此三角形是直角三角形的x的值是_________.8.在某山区需要修建一条高速公路,在施工过程中要沿直线AB打通一条隧道,动工前,应先测隧道BC 的长,现测得∠ABD=150°,∠D=60°,BD=32 km,请根据上述数据,求出隧道BC的长(精确到0.1 km).※课后作业★基础巩固1.△ABC中,∠C=90°,若a∶b=3∶4,c=10,则a=__________,b=__________.2.△ABC中∠C=90°,∠A=30°,AB=4,则中线BD=__________.3.如图,将直角△ABC沿AD对折,使点C落在AB上的E处,若AC=6,AB=10,则DB=__________.3cm,c=3 cm,则△ABC中最小的角为______度.4.△ABC中,三边长分别为a=6 cm,b=35.如图,AB⊥BC,且AB=3,BC=2,CD=5,AD=42,则∠ACD=__________,图形ABCD的面积为__________.6.等腰三角形的两边长为 2 和5,则它的面积为__________.7.有一根7 cm木棒,要放在长,宽,高分别为5 cm,4 cm,3 cm的木箱中,__________(填“能”或“不能”)放进去.8.直角三角形有一条直角边为11,另外两条边长是自然数,则周长为__________.9.如图,△ABC 中AD ⊥BC 于D ,AB=3,BD=2,DC=1, 则AC 等于( ).A.6B.6C.5D.4☆能力提升10.直角三角形的斜边比一直角边长2 cm ,另一直角边长为6 cm ,则它的斜边长( ). A.4 cmB.8 cmC.10 cmD.12 cm11.如图,△ABC 中,∠C=90°,AB 垂直平分线交BC 于D 若BC=8,AD=5,则AC 等于 ( ).A.3B.4C.5D.1312.如图,△ABC 中,AB=AC=10,BD ⊥AC 于D ,CD=2,则BC 等于( ).A.210B.6C.8D.513.ABC 中,∠C=90°,∠A=30°,斜边长为2,斜边上的高为( ). A.1 B.3C.23 D.43 14.直角三角形的一条直角边是另一条直角边的31,斜边长为10,它的面积为( ). A.10B.15C.20D.30●中考在线15.在△ABC 中,∠C =90°,若c =10,a ∶ b =3∶4,则直角三角形的面积是= . 16.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边和长为7cm,则正方形A ,B ,C ,D 的面积之和为___________cm 2。
认识无理数1.下列各数中的无理数是( )A .0.7 B.12C .πD .-8 2.面积为6的长方形,长是宽的2倍,则宽为( )A .整数B .分数C .无理数D .不能确定3.下列说法正确的是( )A .有理数是有限小数B .有理数是无限小数C .无理数是无限循环小数D .无限不循环小数是无理数4.已知直角三角形的两直角边长分别是4和5,则这个直角三角形的斜边的长度( )A .在4和5之间B .在5和6之间C .在6和7之间D .在7和8之间5.如图所示,在正方形网格中,每个小正方形的边长都为1,对于网格中的△ABC ,边长为无理数的有( )A .0条B .1条C .2条D .3条6.在37,0,π2,-xx ,65,0.01001这六个数中,无理数有________个. 7.如图所示,Rt△ABC 的三边长分别是a ,b ,c.(1)计算:①若a =1,c =2,则b 2=______;②若a =3,c =5,则b 2==______;③若a =0.6,c =1,则b 2=________.(2)通过(1)中计算出的b 2值,我们知道,b 是整数的有______;b 是分数的有______;b 既不是整数,也不是分数的有______.(填序号)8.已知m 2=5,x ,y 为两个连续的整数,且x <m <y ,则x -y =________.9.下列各数中,哪些是有理数?哪些是无理数?-34,-1.42··,π,3.1416,23,0,42,-1.4242242224…(相邻两个4之间2的个数逐次加1).10、下列各数中,哪些是有理数?哪些是无理数?3.14, -34, ••75.0, 0.1010010001…(相邻两个1之间0的个数逐次加1). 解:有理数: 无理数:11、设面积为5π的圆的半径为a 。
(1)、a 是有理数吗?说说你的理由。
(2)、估计a 的值(精确到十分位,并利用计算器验证你的估计).(3)、如果精确到百分位呢?解:(1)、(2)、(3)、12、下列各数中,哪些是有理数?哪些是无理数?0.4583, •7.3, -π, -71, 18。
《2.1 认识无理数》一、选择题1.下列各数是无理数的是()A.0.37 B.3.14 C.D.02.下列各数中无理数的个数是(),0.1234567891011…(省略的为1),0,2π.A.1个B.2个C.3个D.4个3.下列命题中正确的是()A.有理数是有限小数 B.有理数是有限小数C.有理数是无限循环小数 D.无限不循环小数是无理数二、填空题4.指出下列各数中哪些是有理数?哪些是无理数?3,,3.14,,﹣π,5.6,901,4.121121112…,3.141414….有理数有______,无理数有______.5.如果x2=10,则x是一个______数,x的整数部分是______.6.已知正方形ABCD的面积是16cm2,E,F,G,H分别是正方形四条边的中点,依次连接E,F,G,H得一个正方形,则这个正方形的边长为______cm.(结果保留两个有效数字)7.有六个数:0.123,(﹣1.5)3,3.1416,,﹣2π,0.1020020002…,若其中无理数的个数为x,整数的个数为y,非负数的个数为z,则x+y+z=______.三、解答题8.有四张不透明的卡片2,,π,,除正面的数不同外,其余都相同,将其背面朝上洗匀后,从中随机抽取一张卡片,抽到写有无理数卡片的概率为多少?9.小华家新买了一张边长1.4m的正方形桌子,原有的边长是1m的两块正方形台布都不适用了,但扔掉太可惜,小华想了一个办法,如图,将两块台布拼成一块正方形大台布,请你帮小华计算一下,这块大台布能盖住现在的新桌子吗?10.在棱长为4cm的正方体箱子中,想放入一根细长的玻璃棒,则这根玻璃棒的最大长度可能是多少?(结果保留3位有效数字)11.下图是由16个边长为1的小正方形拼成的,任意连接这些小正方形的若干个顶点,可得到一些线段,试分别画出一条长度是有理数的线段和一条长度是无理数的线段.(要求:所作线段不得与图中已有的线重合)《2.1 认识无理数》参考答案一、选择题1.C;2.A;3.D;二、填空题4.3,,3.14,,5.6,901,3.141414…;-π,4.121121112…;5.无理;±3;6.2.8;7.6;三、解答题8.9.10.11.。
8( 上)2.1认识无理数(含答案)一.选择题:(四个选项中只有一个是正确的,选出正确选项填在题目的括号内)1、在等式 x2=3中,以下说法正确的选项是()A. x可能是整数 B. x可能是分数 C. x可能是有理数D. x不是有理数2.边长为 5 的正方形的对角线长是()A .整数B .分数 C.有理数 D .无理数3.体积为 10的正方体的边长是()A .整数 B.分数 C.无理数 D.有理数4.以下说法正确的是()A .有理数不过有限小数B .无理数是无穷小数C.无穷小数是无理数D.是分数25.以下说法中正确的选项是()A .不循环小数是无理数B .分数不是有理数C.有理数都是有限小数 D . 3.1415926是有理数6.以下说法正确的选项是()A.无穷循环小数是无理数B.无理数都是正数C.有理数总能够用有限小数或无穷循环小数表示 D .无理数只有7.以下说法正确的有()①无穷小数都是无理数;②不循环小数都是无理数;③无理数都是无穷小数;④无理数也有负数;⑤无理数分为正无理数、零、负无理数;A .2个B. 3个C. 4个 D . 5个8.如图,正方形网格中,每小格正方形边长为1,则网格上的△ABC 中,边长为无理数的边数有()A .0 条 B. 1 条 C. 2 条 D .3 条第 8题图第 10题图9.一个正方形的面积是15,预计它的边长大小在()A. 2与 3之间B. 3与 4之间C.4与 5之间 D . 5与 6之间10.如图,每个小正方形的边长都是1,图中 A ,B,C,D 四个点分别为小正方形的极点,以下说法:①△ ACD 的面积是有理数;②四边形 ABCD 的四条边的长度都是无理数;③四边形ABCD 的三条边的长度是无理数,一条边的长度是有理数.此中说法正确的有()A . 0 个 B. 1 个 C. 2 个 D. 3 个二.填空题:(将正确答案填在题目的横线上)11.已知 x2=8,则 x_____分数, _____整数, _____有理数;(填“是”或“不是”)12.面积为 15的正方形的边长 ______有理数,面积为16的正方形的边长 _____有理数;(填“是”或“不是”)13.面积分别是 1,2, 3,4, 5, 6,7, 8, 9的正方形中,边长是有理数的有_____个,边长是无理数的有 _____个;14.如图, Rt△ ABC 的三边分别是 a,b, c;( 1)计算:若a1, c2,则 b2 _______;②若a3, c 5,则b2 _______;1 / 3③若a 0.6, c 1,则b 2_______;( 2)经过( 1)计算出的 b 2 值,能够知道b 是整数的是 _______, b 是分数的是 ______ ;b 是无理数的是 _____;(填序号)15.如图,在 5×5的正方形网格中,以 AB 为边画 Rt△ABC ,使点 C 在格点上,且此外两边长均为无理数,知足这样条件的点C 共有 ______个;三.解答题:(写出必需的说明过程,解答步骤) 16.把以下 各数的序号 填入相应的括号内:1313① 2 ;② ( 2);③ 20%;④ 3.14 ;⑤ 0;⑥ 5;⑦ ;⑧ 5 ;⑨ ···(每两个 1之间的 4 的个数逐次加 1)( 1)正分数会合:{······}; ( 2)负有理数会合:{······}; ( 3)整数会合:{······};( 4)无理数会合:{······};17.设边长为 4 的正方形的对角线长为 x ;( 1) x 是有理数吗?说明原因;( 2)请预计一下 x 在哪两个相邻整数之间? ( 3)预计 x 的值 (结果精准到十分位 );( 4)假如结果精准到百分位呢?18.如图,在 3×3 的方格中,有一暗影正方形,设每一个小方格的边长为1 个单位;( 1)求暗影正方形的面积;( 2)暗影正方形的边长是有理数吗?若不是,它介于哪两个整数之间?19.在所给的网格(每个小正方形的边长都是 1)中,按以下要求画出三角形:( 1)三边长都是有理数;( 2)有两边长是有理数,一边长是无理数; ( 3)三边长都不是有理数;.11.20.无穷循环小数 0.3 可化为分数 3 ,分数 3 即无穷循环小数0.3 ;一般地, 任何一个无穷循环小数都.能够写成分数的形式;下边以 0.5 为例,给出一种化循环小数为分数的方法:图 1图 2 图 3...x 5 9 ;设 x 0.5 ,∴ 10 x 5.5 50.5 ∴ 10x 5 x解得:模仿上述做法达成以下问题:..( 1)把无穷循环小数 0.7 化为分数,即:0.7=_________;. .( 2)把无穷循环小数0.72化为分数;2.1认识无理数 参照答案:2 / 31~10DDCBD CACBC11.不是,不是,不是;12.不是,是;13. 3, 6;14.( 1)① 3;② 16;③ 0.64 ;( 2)②,③,①;15. 4;16.( 1)③④⑥;(2)①⑧;( 3)②⑤;( 4)⑦⑨;17. (1)x 不是有理数;原因:由勾股定理可知x2= 42+ 42= 32∵ 52= 25, 62= 36,∴ x 不行能是整数,且x 在 5 和 6 之间若 x 是最简分数n,则 (n 232,∴ x 也不行能是分数m m ) ,还是一个分数,不等于综上可知: x 既不是整数,也不是分数,因此x 不是有理数(2)x 在 5 和 6 之间;(3)5.7;(4)5.66;18.( 1)S暗影5;( 2)暗影正方形的边长不是有理数,它介于 2 与 3 这两个整数之间;19.答案不独一,正面是此中一种:. 70.79 ;20.( 1)图 1 图 2 72 8 图3 . . . . . . x( 2)设x 0.7 2 ,∴ 100x 72.72 72 0.72 72 x 解得:99 11 ;3 / 3。
第二章 实 数1 认识无理数(第1课时)学习目标1.通过拼图活动,感受客观世界中无理数的存在.(难点)2.能判断三角形的某边长是否为有理数.3.会判断一个数是否为有理数.(重点)自主学习学习任务一 认识无理数的存在1.如图1所示,边长为1的两个正方形M ,N 可以分割成四个全等的等腰直角三角形,它们又可以拼凑成一个更大的正方形ABCD .(还有其他方法,鼓励学生探究)图1(1)大正方形的面积是 .(2)设大正方形的边长是x ,则x 2= ,x 在 和 之间(填整数). 结论:a 既 整数,也 分数,即a 有理数. 学习任务二 判断一个数是否为有理数 思考:如图2,(1)以直角三角形的斜边为边的正方形的面积是 . (2)设该正方形的边长为b ,b 满足 . (3)b 是有理数吗?图2合作探究例1 在△ABC 中,AB =AC ,AD 是底边上的高,如图3,若AC =10,BC =8. (1)求以AD 的长为边长的正方形的面积; (2)判断AD 是否为有理数,并说明理由.例2你会在如图4所示的正方形网格中画出面积为10的正方形吗?试一试.图4当堂达标1.在直角三角形中两条直角边长分别为2和3,则斜边的长()A.是有理数B.不是有理数C.不确定D.为42.下列面积的正方形,边长不是有理数的是()A.16B.25C.8D.43.如图5,在5×5的正方形网格中,以AB为边画直角三角形ABC,使点C在格点上,且另外两条边长均不是有理数,满足这样条件的点C4.在如图6(1)长度是有理数的线段l1;(2)长度不是有理数的线段l2.课后提升Array在如图7所示的正方形网格中画出四个三角形.(1)三边长都是有理数.(2)只有两边长是有理数.(3)只有一边长是有理数.(4)三边长都不是有理数.反思感悟我的收获:我的易错点:参考答案当堂达标1.B2.C3.解:如图8,共4个.4.解:如图9(答案不唯一).课后提升解:如图10(答案不唯一).。
认识无理数一、选择题(共28小题)1.在下列实数中,无理数是()A.2 B.3.14 C.D.2.四个数﹣1,0,,中为无理数的是()A.﹣1 B.0 C.D.3.下列实数是无理数的是()A.﹣1 B.0 C.D.4.实数π,,0,﹣1中,无理数是()A.πB.C.0 D.﹣15.在下列实数中,无理数是()A.0 B.C.D.66.下列实数属于无理数的是()A.0 B.πC.D.﹣7.下列选项中,属于无理数的是()A.2 B.πC.D.﹣28.下列各数中是无理数的是()A.B.﹣2 C.0 D.9.下列实数是无理数的是()A.﹣1 B.0 C.πD.10.下列实数是无理数的是()A.B.1 C.0 D.﹣111.下列实数是无理数的是()A.﹣2 B.C.D.12.下列实数中,是无理数的为()A.﹣1 B.﹣ C.13.实数(相邻两个1之间依次多一个0),其中无理数是()个.A.1 B.2 C.3 D.414.下列四个实数中,是无理数的为()A.0 B.﹣3 C.D.15.下列各数中,3.14159,,0.131131113…(相邻两个3之间1的个数逐次加1个),﹣π,,,无理数的个数有()A.1个B.2个C.3个D.4个16.下列实数中,属于无理数的是()A.﹣3 B.3.14 C.D.17.下列实数中,是无理数的为()A.B.C.0 D.﹣318.在实数0,π,,,中,无理数的个数有()A.1个B.2个C.3个D.4个19.下列各数中,属于无理数的是()A.B.﹣2 C.0 D.20.下列各数是无理数的是()A.B.C.πD.﹣121.下列实数中,为无理数的是()A.0.2 B.C.D.﹣522.下列4个数:、、π、()0,其中无理数是()A.B.C.πD.()023.实数tan45°,,0,﹣π,,﹣,sin60°,0.3131131113…(相邻两个3之间依次多一个1),其中无理数的个数是()A.4 B.2 C.1 D.324.下列四个实数中,无理数是()A.2 B.C.0 D.﹣125.下列实数中是无理数的是()A.B.2﹣2C.5.D.sin45°26.下列实数中,无理数是()A.﹣1 B.C.5 D.27.下列实数是无理数的是()A.5 B.0 C.D.28.下列各数:,π,,cos60°,0,,其中无理数的个数是()A.1个B.2个C.3个D.4个二、填空题(共2小题)29.实数中的无理数是______.30.请你写出一个无理数______.答案一、选择题(共28小题)1.D;2.D;3.D;4.A;5.C;6.B;7.B;8.A;9.C;10.A;11.D;12.C;13.B;14.C;15.B;16.D;17.A;18.B;19.A;20.C;21.C;22.C;23.D;24.B;25.D;26.D;27.D;28.B;二、填空题(共2小题)29.;30.π;。
八年级数学上册第二章实数2.1认识无理数同步检测题1.如图为边长为1的正方形组成的网格图,A,B两点在格点上,设AB的长为x,则x2=____,此时x____整数,分数,所以x____有理数.2.下列各数中,是有理数的是( )A.面积为3的正方形的边长B.体积为8的正方体的棱长C.两直角边分别为2和3的直角三角形的斜边长D.长为3,宽为2的长方形的对角线长3.边长为2的正方形的对角线长是( )A.整数B.分数C.有理数D.无理数4.如图,图中是16个边长为1的小正方形拼成的大正方形,连接CA,CB,CD,CE四条线段,其中长度既不是整数也不是分数的有____条.5. 已知Rt△ABC中,两直角边长分别为a=2,b=3,斜边长为c.(1)c满足是什么关系式?(2)c是整数吗?(3)c是一个什么数?6. 与-2π最接近的两个整数是( )A.-3和-4B.-4和-5C.-5和-6D.-6和-77.一个正方形的面积是15,估计它的边长大小在( )A .2与3之间B .3与4之间C .4与5之间D .5与6之间8.已知Rt △ABC 中,∠C =90°,AC =1,BC =3,则AB 的取值范围是( )A .3.0<AB<3.1B .3.1<AB<3.2C .3.2<AB<3.3D .3.3<AB<3.49.若a 2=11(a>0),则a 是一个____数,精确到个位约是____.10.写出一个比4小的正无理数: .11.下列数是无理数的是( )A .-1B .0C .π D. 1312.下列各数:π2,0,0.23,227,0.303 003 0003…(每两个3之间增加1个0)中,无理数的个数为( ) A .2个 B .3个 C .4个 D .5个13.下列说法中,正确的个数为( )①无限小数都是无理数;②不循环小数都是无理数;③无理数都是无限小数;④无理数也有负数;⑤无理数分为正无理数、零、负无理数.A .1个B .2个C .3个D .4个14.如图,分别以Rt △ABC 的边为一边向外作正方形,已知AB =2,BC =1.(1)求图中以AC 为一边的正方形的面积;(2)AC 的长是不是无理数?若是无理数,请求出它的整数部分?15.下列各数:3.141 59,4.21,π,227,1.010 010 001…中,无理数有( ) A .1个 B .2个 C .3个 D .4个16.下列各数:①面积是2的正方形的边长;②面积是9的正方形的边长;③两直角边分别为6和8的直角三角形的斜边长;④长为3,宽为2的长方形的对角线的长.其中是无理数的是( )A .①②B .②③C .①④D .③④19.如图,每个小正方形的边长都是1,图中A ,B ,C ,D 四个点分别为小正方形的顶点,下列说法:①△ACD 的面积是有理数;②四边形ABCD 的四条边的长度都是无理数;③四边形ABCD 的三条边的长度是无理数,一条边的长度是有理数.其中说法正确的有( )A .0个B .1个C .2个D .3个20.如图,在正方形网格中,每个小正方形边长都为1,则网格上△ABC 中,边长为无理数的边长有( )A .0个B .1个C .2个D .3个21.如图是面积分别为1,2,3,4,5,6,7,8,9的正方形,其中边长是有理数的正方形有____个,边长是无理数的正方形有____个.22.把下列各数填入相应的集合里:0.236,0.37.,-π2,-112,18,-0.021021021...,0.34034003400034...,3.7842 023. 如图所示,等腰三角形ABC 的腰长为3,底边BC 的长为4,高AD 为h ,则h 是整数吗?是有理数吗?24.设边长为4的正方形的对角线长为x.(1)x 是有理数吗?说说你的理由;(3) 请你估计一下x 在哪两个相邻整数之间?(3) 估计x 的值(结果精确到十分位);(4) 如果结果精确到百分位呢?答案:1. 5 不是 也不是 不是2. A3. B4. 35. 解:(1)c 2=a 2+b 2=13(2) 不是整数(3)c 是无理数6. D7. B8. B9. 无理 310. π,1.201001…11. C12. A13. B14. 解:(1)5(2)AC 的长是无理数,它的整数部分为215. B16. C17. B18. B19. C20 C21. 3 622. 正数集合:{0.236,0.37·,18,0.34034003400034…, }3.7842……;负数集合:⎩⎨⎧⎭⎬⎫-π2,-112,-0.021021021……; 有理数集合:⎩⎨⎧⎭⎬⎫0.236,0.37·,18,-112,-0.021021021…,0…; 无理数集合:⎩⎨⎧⎭⎬⎫-π2,0.34034003400034…,3.7842…… 23. 解:AB ,BD ,AD 可组成Rt △ABD ,由勾股定理,得h 2=AB 2-BD 2,即h 2=5.所以h 不是整数,也不是分数,从而不是有理数24. 解:(1)x 不是有理数.理由:由勾股定理可知x 2=42+42=32,首先x 不可能是整数(因为52=25,62=36,所以x 在5和6之间),其次x 也不可能是分数(因为若x 是最简分数n m ,则(n m)2,仍是一个分数,不等于32),综上可知:x既不是整数,也不是分数,所以x不是有理数(2) x在5和6之间(3)5.7(4)5.66。
《2.1 认识无理数》一、选择题1.下列数中是无理数的是A. B. C. D.2.在,,,中,无理数是A. B. C. D.3.下列各数:,,,,,,其中无理数有A. 1个B. 2个C. 3个D. 4个4.给出四个数,,,,其中是无理数的是A. 0B.C.D.5.下列实数中,无理数是A. B. C. D.6.在下列各数:,,,,,,相邻两个1之间有1个,小数部分由相继的正整数组成中,是无理数的有A. 3个B. 4个C. 5个D. 6个7.在实数0、、、中,无理数的个数为A. 0B. 1C. 2D. 38.下列说法中,正确的是A. 无理数包括正无理数,0和负无理数B. 无理数是用根号形式表示的数C. 无理数的和一定是无理数D. 无理数是无限不循环小数9.已知函数,,它们在数轴上的位置对应点,如图,下列说法错误的是A. A、B之间的整数有三个B.C. D. A、B之间最小的无理数是10.上课时,李老师在黑板上写了一个实数,学生,,,争先恐后地说出了这个数的一些特征:学生A:在数轴上表示这个数的点在原点的左边;学生B:它是一个无理数;学生C:它的绝对值小于2;学生D:它的平方大于1.老师表扬了,,,四个学生,因为他们都说对了,现在,请你猜猜看,老师在黑板上写下的这个数可能是下列四个数中哪一个?A. B. C. D.二、填空题11.请你写出一个大于4小于5的无理数______.12.写出一个大于而小于3的无理数______ .13.在,,,,,,,,中,其中:无理数有______ .14.在实数,,,,中,无理数的个数为______ .15.如图,在的正方形网格中,以AB为边画直角,使点C在格点上,且另外两条边长均为无理数,满足这样条件的点C共______ 个三、解答题16.已知实数:,,请用学过的运算对其进行计算,使其结果分别是负有理数;无理数要求:每种结果都只要写出一个;每个数和每种运算都只出现一次;先写出式子后计算结果17.已知实数x、y满足关系式.求x、y的值;判断是无理数还是无理数?并说明理由.。
认识无理数【教材训练】 5分钟1.无理数的概念无限不循环小数称为无理数,如π是无限不循环小数,故它是无理数;0.4656656665…(相邻的两个5之间6的个数逐次加1)是无限不循环小数,也是无理数;a2=3中,a是无限不循环小数,故a也是无理数.2.无理数与有理数的区别(1)无理数是无限不循环小数,有理数是有限小数或无限循环小数.(2)任何一个有理数都可以化成分数的形式,而无理数则不能.3.估算法在探索x2=a(a≥0)中x的值时,先估计x的整数部分,看它在哪两个连续整数之间,较小数即为其整数部分.其次,确定x的十分位上的数,同样寻找它在哪两个连续整数之间.按照上述方法依次确定x的百分位、千分位……的值,从而确定x的值.4.判断训练(打“√”或“×”)(1)无限小数包括无限循环小数与无限不循环小数. (√)(2)面积为5cm2的正方形边长b是一个有理数. (×)(3)边长为4的正方形的对角线的长度一定是无理数. (√)(4)无理数一定是无限不循环小数. (√)【课堂达标】 20分钟训练点一:有理数和无理数的概念及辨析1.(2分)下列说法正确的是( )A.有理数都是有限小数B.-π是无理数C.不循环小数是无理数D.有理数是整数,无理数是分数【解析】选B.根据有理数和无理数的概念可知,-π是无理数.2.(2分)下列各数中:-3,,π,,0.536,2. 4&,1.52552555255552…(相邻两个2之间5的个数逐次加1),无理数有( )A.2个B.3个C.4个D.5个【解析】选B.所有分数、整数、无限循环小数都是有理数,π是无理数,所以无理数有π,和1.52552555255552…(相邻两个2之间5的个数逐次加1),共3个.3.(2分)面积为6的长方形,长是宽的2倍,则宽为( )A.小数B.分数C.无理数D.不能确定【解析】选C.设宽为x,则长为2x.即有2x2=6,x2=3.而没有任何有理数的平方等于3.所以x 为无理数.4.(6分)把下列各数填在相应的括号里.0,3,2.75,-6,,1.,,-1.010010001.自然数{ …};有理数{ …};整数{ …};分数{ …};无理数{ …}.【解析】由自然数、有理数、整数、分数和无理数的概念知自然数{0,3,…};有理数{0,3,2.75,-6,1.,,-1.010010001,…};整数{0,3,-6,…};分数{2.75,1.,,-1.010010001,…};无理数{,…}.训练点二:估计无理数的近似值1.(2分)正数m满足m2=39,则m的整数部分为( )A.6B.7C.8D.9【解析】选A.因为62<m2<72,所以6<m<7.故m的整数部分为6.2.(2分)已知Rt△ABC中,∠C=90°,AC=1,BC=3,则AB的取值范围是( )A.3.0<AB<3.1B.3.1<AB<3.2C.3.2<AB<3.3D.3.3<AB<3.4【解析】选B.在Rt△ABC中,由勾股定理得AB2=AC2+BC2=12+32=10.因为32<10<42,所以3<AB<4.而3.12=9.61,3.22=10.24.所以3.1<AB<3.2.3.(6分)面积为7的正方形的边长为x.请你回答下列问题:(1)x的整数部分是多少?(2)把x的值精确到十分位时是多少?精确到百分位呢?(3)x是有理数吗?并说明理由.【解析】设正方形的面积为S,则S=x2=7.当2<x<3时,4<S<9;当2.6<x<2.7时,6.76<S<7.29;当2.64<x<2.65时,6.9696<S<7.0225;当2.645<x<2.646时,6.996025<S<7.001316.则(1)x的整数部分是2.(2)把x的值精确到十分位时,x≈2.6.精确到百分位时,x≈2.65.(3)x不是有理数.理由是:由计算可知,x是无限不循环小数.4.(8分)如图,在棱长为4cm的正方体箱子中,想放入一根细长的玻璃棒,则这根玻璃棒的最大长度可能是多少?你能估算出来吗?(结果保留3位有效数字)【解析】因为BC2=BD2+CD2=42+42=32,所以AC2=AB2+BC2=42+32=48.而6.932≈48.025,6.922≈47.886,所以6.92<AC<6.93.设能放进的玻璃棒的最大长度为l,则l2不能超过48,所以l≈6.92(cm).答:能放进的玻璃棒的最大长度约为6.92cm.【课后作业】 30分钟一、选择题(每小题4分,共12分)1.下列说法正确的有( )①有理数与无理数的差都是有理数;②无限小数都是无理数;③无理数都是无限小数;④0既不是无理数,也不是有理数;⑤6.010060006是无理数.A.1个B.2个C.3个D.4个【解析】选A.有理数与无理数的差都是无理数,故①错误;无限不循环小数是无理数,所以无理数都是无限小数,故②错误,③正确;0是有理数,故④错误;6.010060006是有限小数,所以是有理数,故⑤错误.2.一个正方形的面积是15,估计它的边长大小在( )A.2与3之间B.3与4之间C.4与5之间D.5与6之间【解析】选B.设正方形的边长为x,则有x2=15,因为9<15<16,所以3<x<4.3.如图所示的正方形网格中,每个小正方形的边长为1,则网格上的三角形ABC中,边长为无理数的边数是( )A.0B.1C.2D.3【解析】选C.因为AB2=52+12=26,BC2=32+22=13,AC2=42+32=25,所以AB和BC的长为无理数.二、填空题(每小题4分,共12分)4.写出一个比4小的正无理数__________.【解析】此题答案不唯一,如3.030030003…(每两个3之间的0依次增加1个)等.答案:3.030030003…(每两个3之间的0依次增加1个)(答案不唯一)5.有六个数:0.1427,(-0.5)3,3.1416,,-2π,0.1020020002…(相邻两个2之间0的个数逐次加1),其中是无理数的有________;若无理数的个数为x,整数的个数为y,非负数的个数为z,那么x+y+z等于________.【解析】(-0.5)3=-0.125,所给的数中无理数有-2π,0.1020020002…(相邻两个2之间0的个数逐次加1),共有2个,所以x=2,没有整数,所以y=0,非负数有0.1427,3.1416,,0.1020020002…(相邻两个2之间0的个数逐次加1),共有4个,所以z=4.所以x+y+z=2+0+4=6.答案:-2π,0.1020020002…(相邻两个2之间0的个数逐次加1) 66.如图,正方形面积(阴影部分)为______,正方形边长是______(精确到个位).【解析】设三角形斜边长为c,则c2=42+52=41,故正方形面积(阴影部分)为41.又6.42=40.96,6.52=42.25,所以6.42<c2<6.52,即6.4<c<6.5,故c≈6.答案:41 6三、解答题(共26分)7.(8分)如图,在△ABC中,AB=AC,AD是底边上的高,若AC=6cm,AD=5cm,求BD的值(精确到0.01cm).【解析】因为AB=AC,AD是底边上的高,AC=6cm,所以AB=6cm,△ABD是直角三角形.在Rt△ABD 中,BD2=AB2-AD2=62-52=11.利用计算器可得3.3162=10.995856,3.3172=11.002489,而10.995856<11<11.002489,所以BD≈3.32cm.8.(8分)如图是由边长为1的小正方形拼成的.(1)把图中各阴影部分分别剪拼成大正方形,这些大正方形的面积一样大吗?(2)这些大正方形的边长是有理数吗?说明理由.(3)试画出同样的网络,并在上面画出甲阴影部分剪拼成的“大正方形”.【解析】(1)不一样大.甲、乙、丙中阴影剪拼成的正方形的面积依次为5,6,7.(2)这些大正方形的边长都不是有理数.设大正方形的边长为x,当x2=5时,x不是整数;因为分数的平方为分数,所以x不是分数.所以x既不是整数,也不是分数,即x不是有理数.同理,当x2=6,x2=7时,x均不是有理数.综上所述,这些正方形的边长都不是有理数.(3)如图:9.(10分)(能力拔高题)乔迁新居,小明家买了一张边长是1.3m的正方形新桌子,原有的边长是1米的两块台布都不适用了,丢掉又太可惜了.如图,小明的姥姥按下列方法,将两张台布拼成一块正方形大台布,你帮小明的姥姥算一算,这块大台布能盖住现在的新桌子吗?【解析】设大台布边长为xm,则x2=2.又1.32=1.69<2,即x2>1.32,故x>1.3,即大台布的边长大于新桌子的边长,所以大台布能盖住现在的新桌子.。
2.1 认识无理数 同步测试题(满分100分;时间:90分钟)一、 选择题 (本题共计 8 小题 ,每题 3 分 ,共计24分 , )1. 下列实数中,是无理数的是( )A.0B.−3C.13D.√3 2. 在实数√3,π,−37,3.5,√163,0,3.02002,√8中,无理数共有( )A.4个B.5个C.6个D.7个3. 下列各数中,3.14,√273,0.737737773⋯(相邻两个3之间7的个数逐次加1),−π,√25,−17,无理数的个数有( )A.1个B.2个C.3个D.4个4. 在−√83,√3,117,0.6˙,π,3.10这些数中,无理数的个数是( )A.1个B.2个C.3个D.4个5. 下列实数中无理数是( )A.−2B.227C.√2D.0.3˙6. 下列实数中,是无理数的为( )A.√4B.227C.πD.√−837. 下列实数中,属于无理数的是( )A.兀B.0C.√9D.—2 8. 下列实数中,不是无理数的是( )A.√2B.πC.√33D.−2二、 填空题 (本题共计 10 小题 ,每题 3 分 ,共计30分 , )9. 已知数据:13,√3,0.19,π,−2.其中无理数有________个.10. 请写出一个大于3小于4的无理数,你写的这个数是________.11. 下列各数3.1415926,√9,1.212212221…,17,2−π,−2020,√43中,无理数的个数有________个.12. 在311,2π,−212,0,0.454454445⋯,√193中,无理数有________个.13. 在−8, π3,√7,227 ,0中,是无理数的有________个.14. 两个不相等的无理数,它们的乘积为有理数,这两个数可以是________.15. 在−2,π4,√2,−223,3.14中,是无理数的有________个.16. 在实数①13,②√5,③3.14,④√4,⑤π中,是无理数的有________;(填写序号)17. 有4张背面完全相同的卡片,卡片的正面分别写有1,27,√16,√3这四个实数,把四张卡片背面朝上洗匀,从中随机抽取一张,卡片正面的实数恰好是无理数的概率是________.18. 如图,在边长为1的正方形网格中,从点A 出发,连结AB 、AC 、AD 、AE 、AF ,其中B 、C 、D 、E 、F 都是网格上的点,在以上五条线段中,长度是无理数的线段有________.三、 解答题 (本题共计 5 小题 ,共计46分 , )19. 计算:|x|=23,|y|=12且x <0<y ,求6÷(x −y).20. 将下列各数填入相应的集合内.−7,0.32,13,0,√8,√12,√1253,π,0.1010010001⋯ ①有理数集合{ };②无理数集合{};③负实数集合{}.21. 如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图1中,画一个三角形,使它的三边长都是有理数;(2)在图2中,画一个以BC为斜边的直角三角形,使它们的三边长都是无理数且都不相等;(3)在图3中,画一个正方形,使它的面积是10.22. 如图,A,B,C,D四张卡片上分别写有−2,√3,5,π四个实数,从中任取两张卡片.7(1)请用适当的方法列举出所有可能的结果(用字母A,B,C,D表示);(2)求取到的两张卡片上的两个数都是无理数的概率.23. 如图,半径为1个单位的圆片上有一点Q与数轴上的原点重合.(1)把圆片沿数轴向左滚动1周,点Q到达数轴上点A的位置,点A表示的数是________数(填有理或无理),这个数是________.(2)把圆片沿数轴按同一方向滚动2周,点Q到达数轴上的点B的位置,点B表示的数________.(3)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下: +2,−1,+3,−6,−1①第几次滚动后,Q 点距离原点最近?第几次滚动后,Q 点距离原点最远?②当圆片结束运动时,Q 点运动的路程共有多少?此时点Q 所表示的数是多少?1、最困难的事就是认识自己。
北师版八年级数学上册2.1认识无理数同步训练卷一、选择题(共10小题,3*10=30)1.下列实数中的无理数是( )A .0.7 B.12 C .π D .-82.已知在△ABC 中,∠C =90°,AC =4,BC =5,那么斜边AB 的长是( )A .整数B .分数C .有理数D .非有理数3.以下各正方形的边长不是有理数的是( )A .面积为25的正方形B .面积为16的正方形C .面积为8的正方形D .面积为1.44的正方形4.下列说法错误的是( )A .无限不循环小数是无理数B .有理数总可以用有限小数或无限循环小数表示C .无限小数都是无理数D .无限小数不都是无理数5.下列各式中的x 不是有理数的是( )A .5x 2=45B .3x -6=0C .x 2=8D .-x =-26. 估计面积为7的正方形的边长为(结果精确到0.1)( )A .2.5B .2.6C .2.7D .2.87. 下列各数:π2,0,0.2,227,0.303 003 000 3…(每个3后增加1个0)中,无理数的个数有() A .2个 B .3个 C .4个 D .5个8.下列各数中,是有理数的是( )A .面积为3的正方形的边长B .体积为8的正方体的棱长C.两直角边分别为1和2的直角三角形的斜边长D.长为3,宽为2的长方形的对角线长9.已知在Rt△ABC中,∠C=90°,AC=1,BC=3,则AB的取值范围是()A.3.0<AB<3.1 B.3.1<AB<3.2C.3.2<AB<3.3 D.3.3<AB<3.410.下列说法中,正确的是( )①无限小数都是无理数;②不循环小数都是无理数;③无理数都是无限小数;④无理数也有负数;⑤无理数分为正无理数、零、负无理数.A.①②B.③④C.①②③④D.③④⑤二.填空题(共8小题,3*8=24)11.把两个边长均为1的正方形纸片重新剪拼成一个大的正方形,则大正方形的面积____有理数,其边长__________有理数.(填“是”或“不是”)12. 一个高为2 m,宽为2 m的大门,对角线的长在两个相邻的整数之间,这两个整数是________和________.13.半径是2的圆的周长的值是一个__________ 数14.如图,在6×6的网格(小正方形的边长为1)中有一个三角形ABC,则三角形ABC的周长是_________.(精确到0.001)15.如图,A,B,C,D是数轴上的四个点,其中最适合表示无理数π的点是__________.16.小明家新购买了一张边长是1.3 m的正方形桌子,原有的边长是1 m的两块台布都不适用了,丢掉又太可惜了.小明的姥姥按下列方法(如图),将两块台布拼成一块正方形大台布,你帮小明的姥姥算一算,这块大台布________(填“能”或“不能”)盖住现在的新桌子(不考虑损耗)17.下列各数:①面积是2的正方形的边长;②面积是9的正方形的边长;③两直角边分别为6和8的直角三角形的斜边长;④长为3,宽为2的长方形的对角线的长.其中是无理数的是__________ (填序号)18. 如图是面积分别为1,2,3,4,5,6,7,8,9的正方形,其中边长是有理数的正方形有____个,边长是无理数的正方形有____个.三.解答题(共7小题, 46分)19.(6分) 下列各数中,哪些是有理数?哪些是无理数?-559180,3.9,-234.101 010 10…(相邻两个1之间有1个0),0.123 456 789 101 112 13…(小数部分由相继的正整数组成).20.(6分) 面积为12的正方形的边长是x ,x 是有理数吗?说说你的理由.21.(6分) 我国国旗旗面为长方形,长和宽之比为3∶2,国旗通用尺寸:长为240 cm ,宽为160 cm ,问这样的国旗对角线长是整数吗?是分数吗?是有理数吗?22.(6分) 将下列各数填入相应的集合内:-2,0,0.3,5219,1-π,2.161 161 116 111 1…(每个6后增加1个1),(-2018)0.(1)自然数集合:{ };(2)无理数集合:{ };(3)整数集合:{ }.23.(6分)一养鱼专业户欲将面积为288 m2的长方形鱼塘改为等面积的边长为l m的正方形.(1)l满足什么条件?l是有理数吗?请说明理由;(2)求l的值.(精确到0.1)24.(8分)八年级(3)班的两位同学在打羽毛球,一不小心羽毛球落在离地面约3 m的树上,其中一位同学赶快搬来一架长为4 m的梯子,架在树干上,梯子底端离树干1 m远,另一位同学爬上梯子去拿羽毛球.假设这位同学的身高与臂长忽略不计,问:这位同学能拿到羽毛球吗?25.(8分) 观察图形(如图),回答问题:(1)x,y,z,w哪些是有理数,哪些是无理数?x2,y2,z2,w2的值分别是什么?(2)根据你发现的斜边长度的表示规律,求出第n次作出的三角形的斜边长度的平方.参考答案1-5CDCCC 6-10BABBB11. 是,不是12. 2,313. 无理14. 8.60615. 点D16. 能17. ①④18. 3,619. 解:有理数有-559180,3.9,-234.101 010 10…(相邻两个1之间有1个0), 无理数有0.123 456 789 101 112 13…(小数部分由相继的正整数组成).20. 解:x 不是有理数.理由如下:由题意,得x 2=12.因为找不到平方等于12的有理数,所以x 不是有理数.21. 解:设国旗的对角线为x cm ,则x 2=2402+1602=28×52×13,所以x 不是整数,也不是分数,从而不是有理数22. 解:(1)自然数集合:{0,(-2018)0… };(2)无理数集合:{ 1-π,2.161 161 116 111 1…(每个6后增加1个1)… };(3)整数集合:{-2,0,(-2018)0… }.23. 解:(1)由题意得l 2=288.∵162=256<288,172=289>288,∴16<l<17,∴l 不是整数.若l 是分数,则平方应为分数,∴l 不是分数,∴l 不是有理数(2)∵16.972=287.9809<288,16.982=288.3204>288,∴16.97<l<16.98,∴l ≈17.024. 解:如图,AC ⊥BC ,AB =4 m ,BC =1 m.在Rt△ACB中,由勾股定理得AC2+BC2=AB2,所以AC2=42-12=15.因为AC>0,所以利用夹逼法可得AC≈3.9 m.又因为3.9 m>3 m,所以这位同学能拿到羽毛球.25. 解:(1)因为图中的三角形均是直角三角形,所以由勾股定理,得x2=12+12=2,y2=2+12=3,z2=3+12=4=22,w2=4+12=5.所以z是有理数,x,y,w是无理数.(2)根据以上规律可知,第n次作出的三角形的斜边长度的平方是n+1.。
北师大版八年级数学上册:2.1《认识无理数》说课稿一. 教材分析《认识无理数》是北师大版八年级数学上册第2.1节的内容。
本节内容是在学生已经掌握了有理数的概念和实数的概念的基础上进行的,是学生对实数系统的一次重要扩展。
无理数是实数的一个子集,它不能表示为两个整数的比例,其小数部分是无限不循环的。
这个概念的引入,不仅丰富了学生的数的概念,也为后续的三角函数、微积分等数学分支的学习打下了基础。
二. 学情分析八年级的学生已经具备了一定的数学基础,对实数和有理数有一定的了解。
但是,对于无理数的概念和性质,他们可能是初次接触,理解起来可能会有一定的困难。
因此,在教学过程中,我将会注意通过生活中的实例和具体的数学问题,引导学生理解和接受无理数的概念。
三. 说教学目标1.知识与技能:使学生理解无理数的概念,掌握无理数的性质,能够识别和估算无理数。
2.过程与方法:通过观察、实验、推理等方法,让学生体验发现和探究的过程,培养学生的数学思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的耐心和细心,使学生体验到数学的乐趣。
四. 说教学重难点1.教学重点:无理数的概念和性质。
2.教学难点:无理数的理解和应用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法和小组合作学习法。
2.教学手段:利用多媒体课件、实物模型和数学软件辅助教学。
六. 说教学过程1.导入:通过一个生活中的实例,如测量物体长度时遇到无法精确测量的情况,引出无理数的概念。
2.新课讲解:讲解无理数的概念,通过具体的例子和数学性质,使学生理解和掌握无理数。
3.案例分析:分析一些实际问题,让学生运用无理数的概念和性质解决问题。
4.小组讨论:让学生分组讨论,探索无理数的性质,分享自己的发现。
5.总结提升:对无理数的概念和性质进行总结,引导学生思考无理数在实际生活中的应用。
6.课后作业:布置一些有关无理数的练习题,巩固所学知识。
七. 说板书设计板书设计包括无理数的概念、无理数的性质和无理数的应用等方面的内容。
2.1 认识无理数※课时达标1.在下列数:2, 1.44,∏, 3.14, -9, 2+3, 31……中,无理数有 _____________.有理数有_____________.2.判断正误:(1)有理数包括整数、分数和零.( )(2)无理数都是开方开不尽的数.( )(3)不带根号的数都是有理数.( )(4)带根号的数都是无理数.( )(5)无理数都是无限小数.( )(6)无限小数都是无理数.( )3.已知一直角三角形的两直角边长分别为1,2,斜边长为x.(1)根据一直角三角形,写出关于x 的方程,并说明x 是有理数吗?为什么?(2)估计x 的值(结果精确到十分位), 并用计算器验证你的估计.(3)如果结果精确到百分位呢?4.面积分别为1,2,3,4,5,6,7,8,9的正方形边长是有理数的正方形有________个,边长是无理数的正方形有________个.★基础巩固1.下列各数中:-1,23,3.14,-π,3,0,2,27, 25……(相邻两个2之间0的个数逐次加1).其中,是有理数的是_____________,是无理数的是_______________.在上面的有理数中,分数有____________,整数有______________.2.x 2=8,则x______分数,______整数,______有理数.(填“是”或“不是”)3.面积为3的正方形的边长______有理数;面积为4的正方形的边长______有理数.(填“是”或“不是”)4.一个高为2米,宽为1米的大门,对角线大约是______米(精确到0.01).5.下列数中是无理数的是( ).••32 B.2π C .0 D .722 6.下列说法中正确的是( ).7.下列语句正确的是( ).B.无理数分正无理数、零、负无理数8.在直角△ABC 中,∠C=90°,AC=23,BC=2,则AB 为().9.面积为6的长方形,长是宽的2倍,则宽为( ).10.下列说法中,正确的是( ).A.数轴上的点表示的都是有理数B.无理数不能比较大小C.无理数没有倒数及相反数●中考在线11.在()02-,38,0,9……,2π…,5, 3.1415,…(相邻两个1之间有1个0)中,无理数有( ).12.下列说法正确的是( ).A.有理数只是有限小数C.无限小数是无理数D.3π是无理数13.下列说法错误的是 ( ).C.正数、负数统称有理数14.15.下列各数中,不是无理数的是( ). A.7 B.0.5π…16.下列说法正确的是( ).A.有理数只是有限小数C.无限小数是无理数17.在实数:3.14159,…,,π,中,无理数的( ).18.下列实数中,无理数是( ).A.﹣B.πC.D.|﹣2| 19.下列实数中是无理数的是( ).A.4B. 83C. 0πD. 220.边长为4的正方形的对角线的长是( ). A.整数 B.分数21.已知下列结论:①在数轴上只能表示无理数2;②任何一个无理数都能用数轴上的点表示;③实数与数轴上的点一一对应;④有理数有无限个,无理数有有限个.其中正确的结论是( ).A.①②B.②③C.③④D.②③④。
认识无理数一、选择题(共28小题)1.在下列实数中,无理数是()A.2 B.3.14 C. D.2.四个数﹣1,0,,中为无理数的是()A.﹣1 B.0 C.D.3.下列实数是无理数的是()A.﹣1 B.0 C.D.4.实数π,,0,﹣1中,无理数是()A.πB.C.0 D.﹣15.在下列实数中,无理数是()A.0 B.C.D.66.下列实数属于无理数的是()A.0 B.πC.D.﹣7.下列选项中,属于无理数的是()A.2 B.πC.D.﹣28.下列各数中是无理数的是()A.B.﹣2 C.0 D.9.下列实数是无理数的是()A.﹣1 B.0 C.πD.10.下列实数是无理数的是()A.B.1 C.0 D.﹣111.下列实数是无理数的是()A.﹣2 B.C.D.12.下列实数中,是无理数的为()A.﹣1 B.﹣C.D.3.1413.实数(相邻两个1之间依次多一个0),其中无理数是()个.A.1 B.2 C.3 D.414.下列四个实数中,是无理数的为()A.0 B.﹣3 C.D.15.下列各数中,3.14159,,0.131131113…(相邻两个3之间1的个数逐次加1个),﹣π,,,无理数的个数有()A.1个B.2个C.3个D.4个16.下列实数中,属于无理数的是()A.﹣3 B.3.14 C.D.17.下列实数中,是无理数的为()A.B.C.0 D.﹣318.在实数0,π,,,中,无理数的个数有()A.1个B.2个C.3个D.4个19.下列各数中,属于无理数的是()A.B.﹣2 C.0 D.20.下列各数是无理数的是()A.B. C.πD.﹣121.下列实数中,为无理数的是()A.0.2 B.C.D.﹣522.下列4个数:、、π、()0,其中无理数是()A.B.C.πD.()023.实数tan45°,,0,﹣π,,﹣,sin60°,0.3131131113…(相邻两个3之间依次多一个1),其中无理数的个数是()A.4 B.2 C.1 D.324.下列四个实数中,无理数是()A.2 B.C.0 D.﹣125.下列实数中是无理数的是()A.B.2﹣2C.5.D.sin45°26.下列实数中,无理数是()A.﹣1 B.C.5 D.27.下列实数是无理数的是()A.5 B.0 C.D.28.下列各数:,π,,cos60°,0,,其中无理数的个数是()A.1个B.2个C.3个D.4个二、填空题(共2小题)29.实数中的无理数是______.30.请你写出一个无理数______.答案一、选择题(共28小题)1.D;2.D;3.D;4.A;5.C;6.B;7.B;8.A;9.C;10.A;11.D;12.C;13.B ;14.C;15.B;16.D;17.A;18.B;19.A;20.C;21.C;22.C;23.D;24.B;25.D;26.D;27.D;28.B;二、填空题(共2小题)29.;30.π;。
北师大新版八年级上学期《2.1 认识无理数》同步练习卷一.选择题(共10小题)1.下列一组数:﹣8,2.6,0,﹣π,﹣,0.202002…(每两个2中逐次增加一个0)中,无理数有()A.0个B.1个C.2个D.3个2.下列数是无理数的是()A.B.0C.D.﹣0.23.一组数据:,3.131131113…(相两个3之间依次多一个1),﹣π,,其中是无理数的个数有()A.1个B.2个C.3个D.4个4.在数﹣,0,,0.101001000…,中,无理数有()A.1个B.2个C.3个D.4个5.为了证明数轴上的点可以表示无理数,老师给学生设计了如下材料:如图,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上一点由原点(记为点0)到达点A,点A对应的数是多少?从图中可以看出OA的长是这个圆的周长π,所以点A对应的数是π,这样,无理数π可以用数轴上的点表示出来,上述材料体现的数学思想是()A.方程思想B.从特殊到一般C.数形结合思想D.分类思想6.下列说法中①无限小数都是无理数②无理数都是无限小数③﹣2是4的平方根④带根号的数都是无理数.其中正确的说法有()A.3个B.2个C.1个D.0个7.在,π,7.7070070007…,这四个数中,无理数的个数为()A.4个B.3个C.2个D.1个8.下列各数:3.14,﹣2,0.131131113,0,﹣π,,0.,其中无理数有()A.1个B.2个C.3个D.4个9.下列各数是无理数的是()A.﹣5B.C.4.121121112D.10.下列说法:①带根号的数是无理数;②不含根号的数一定是有理数;③无理数是开方开不尽的数;④无限小数是无理数;⑤π是无理数,其中正确的有()A.4个B.3个C.2个D.1个二.填空题(共15小题)11.在数﹣1,0,,π,0.2020020002…,0.中,是无理数的是.12.两个无理数,它们的和为1,这两个无理数可以是(只要写出两个就行)13.在0,,π﹣1,0.121121112…(每两个2之间依次多一个1),0.33333…这5个数中,无理数有个.14.有六个数:0.123,(﹣1.5)3,3.1416,,﹣2π,0.1020020002,若其中无理数的个数为x,正数的个数为y,则x+y=.15.写出一个比0大的无理数:.16.写出两个无理数,使得它们的和为有理数,则这两个无理数可以为①;②.17.写出一个同时符合下列条件的数:.(1)它是一个无理数;(2)在数轴上表示它的点在原点的左侧;(3)它的绝对值比2小.18.若直角三角形的三边长分别为2,3,a,等腰三角形的三边长分别为2,3,b.下列结论:①a一定是无理数;②a<b;③ab<11.其中所有正确结论的序号是.19.请写出一个比3大比4小的无理数:.20.在,3.14,0,0.101 001 000 1…,中,无理数有个.21.写出一个大于﹣4的负无理数:.22.请你写出一个大于0而小于2的无理数:.23.下列说法:(1)若a为实数,则a2>0;(2)若a为实数,则a的倒数是;(3)若a为实数,则|a|≥0;(4)若a为无理数,则a的相反数是﹣a.其中正确的是(填序号)24.请你写出一个同时符合下列条件的代数式,①同时含有字母a,b;②是一个4次单项式;③它的系数是一个负无理数,你写出的一个代数式是.25.如图,在5×5的正方形网格中,以AB为边画直角△ABC,使点C在格点上,且另外两条边长均为无理数,满足这样条件的点C共个.三.解答题(共11小题)26.(1)写出两个负数,使它们的差为﹣4,并写出具体算式.(2)说说“一个无理数与一个有理数的积一定是无理数”是否正确,请举例说明.27.无限循环小数如何化为分数呢?请你仔细阅读下列资料:由于小数部分位数是无限的,所以不可能写成十分之几、百分之几、千分之几等等的数.转化时需要先去掉无限循环小数的“无限小数部分”.一般是用扩倍的方法,把无限循环小数扩大十倍、一百倍或一千倍…使扩大后的无限循环小数与原无限循环小数的“无限小数部分”完全相同,然后这两个数相减,这样“大尾巴”就剪掉了.例题:例如把0.和0.2化为分数请用以上方法解决下列问题(1)把0.化为分数(2)把0.3化为分数.28.已知实数:﹣3,2,4.请用学过的运算对其进行计算,使其结果分别是(1)负有理数;(2)无理数.(要求:1.每种结果都只要写出一个;2.每个数和每种运算都只出现一次;3.先写出式子后计算结果)29.判断下面两句话是否正确.若正确请说明理由;若不正确,请举例说明.(1)两个实数的和一定大于每一个加数.(2)两个无理数的积一定是无理数.30.把下列各实数填在相应的大括号内,﹣|﹣3|,,0,,﹣3.,,1﹣,1.1010010001…(两个1之间依次多1个0)整数{…};分数{…};无理数{…}.31.如图,是一个数值转换器,原理如图所示.(1)当输入的x值为16时,求输出的y值;(2)是否存在输入的x值后,始终输不出y值?如果存在,请直接写出所有满足要求的x值;如果不存在,请说明理由.(3)输入一个两位数x,恰好经过两次取算术平方根才能输出无理数,则x=.32.判断下列说法是否正确,如果正确请在括号内打“√”,错误请在括号内打“×”,并各举一例说明理由.(1)有理数与无理数的积一定是无理数.(2)若a+1是负数,则a必小于它的倒数..33.在下列4×4各图中,每个小正方形的边长都为1,请在每一个图中分别画出一条线段,且它们的长度均表示不等的无理数.表示:表示:表示:(注:横线上填入对应的无理数)34.已知某个长方体的体积是1800cm3,它的长、宽、高的比是5:4:3,请问该长方体的长、宽、高是有理数还是无理数?为什么?35.数学课上,好学的小明向老师提出了一个问题:无限循环小数是无理数吗?以0.为例,老师给小明做了以下解答(注:0.即0.33333…):设0.为x,即:0.3=x等式两边同时乘10,得:3.=10x即:3+0.=10x因为0.=x所以3+x=10x解得:x=即0.=因为分数是有理数,所以0.是有理数,同学们,你们学会了吗?请根据上述阅读,解决下列问题:(1)无限循环小数0.写成分数的形式是(2)请用解方程的办法将0.写成分数.36.500多年前,数学各学派的学者都认为世界上的数只有整数和分数,直到有一天,大数学家毕达哥拉斯的一个名叫希帕索斯的学生,在研究1和2的比例中项时(若1:x=x:2,那么x叫1和2的比例中项),他怎么也想不出这个比例中项值.后来,他画了一个边长为1的正方形,设对角线为x,于是由毕达哥拉斯定理x2=12+12=2,他想x代表对角线的长,而x2=2,那么x必定是确定的数,这时他又为自己提出了几个问题:(1)x是整数吗?为什么不是?(2)x可能是分数吗?是,能找出来吗?不是,能说出理由吗?亲爱的同学,你能帮他解答这些问题吗?北师大新版八年级上学期《2.1 认识无理数》同步练习卷参考答案与试题解析一.选择题(共10小题)1.下列一组数:﹣8,2.6,0,﹣π,﹣,0.202002…(每两个2中逐次增加一个0)中,无理数有()A.0个B.1个C.2个D.3个【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:无理数有﹣π,0.202002…(每两个2中逐次增加一个0),故选:C.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.202002…等有这样规律的数.2.下列数是无理数的是()A.B.0C.D.﹣0.2【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、是分数,属于有理数;B、0是整数,属于有理数;C、是无理数;D、﹣0.2是分数,属于有理数;故选:C.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.3.一组数据:,3.131131113…(相两个3之间依次多一个1),﹣π,,其中是无理数的个数有()A.1个B.2个C.3个D.4个【分析】根据无理数的定义求解即可.【解答】解:所列4个数中无理数有3.131131113…(相两个3之间依次多一个1),﹣π这两个,故选:B.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.4.在数﹣,0,,0.101001000…,中,无理数有()A.1个B.2个C.3个D.4个【分析】直接利用无理数的定义分析得出答案.【解答】解:在数﹣,0,,0.101001000…,中,无理数有:,0.101001000…共2个.故选:B.【点评】此题主要考查了无理数,正确把握无理数的定义是解题关键.5.为了证明数轴上的点可以表示无理数,老师给学生设计了如下材料:如图,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上一点由原点(记为点0)到达点A,点A对应的数是多少?从图中可以看出OA的长是这个圆的周长π,所以点A对应的数是π,这样,无理数π可以用数轴上的点表示出来,上述材料体现的数学思想是()A.方程思想B.从特殊到一般C.数形结合思想D.分类思想【分析】根据数形结合的思路即可求解.【解答】解:由题意可知,上述材料体现的数学思想是数形结合思想.故选:C.【点评】本题考查的是无理数,利用数形结合求解是解答此题的关键.6.下列说法中①无限小数都是无理数②无理数都是无限小数③﹣2是4的平方根④带根号的数都是无理数.其中正确的说法有()A.3个B.2个C.1个D.0个【分析】分别根据无理数、有理数的定义即可判定选择项.【解答】解:①无限不循环小数都是无理数,故①错误;②无理数都是无限不循环小数,故②正确;③﹣2是4的平方根,故③正确;④带根号的数不一定都是无理数,故④错误;故选:B.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,0.8080080008…(每两个8之间依次多1个0)等形式.7.在,π,7.7070070007…,这四个数中,无理数的个数为()A.4个B.3个C.2个D.1个【分析】根据无理数的定义,逐个判断得到正确结论.【解答】解:是无限循环小数,属于有理数;π是无理数;7.7070070007…是无限不循环小数,是无理数;是分数,是有理数.所以四个数中,无理数有两个:π,7.7070070007…故选:C.【点评】本题考查了无理数的定义.无理数一般有以下几种形式:①含π的数,例如π,,π+3等,②开方开不尽的数,例如,等,③无限不循环小数,例如0.202002000200002…等,④有些三角函数,例如sin27°.cos11°.tan30°等.8.下列各数:3.14,﹣2,0.131131113,0,﹣π,,0.,其中无理数有()A.1个B.2个C.3个D.4个【分析】根据无理数的意义求解即可.【解答】解:3.14,﹣2,0.131131113,0,,0.是有理数,﹣π是无理数,故选:A.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.9.下列各数是无理数的是()A.﹣5B.C.4.121121112D.【分析】分别根据无理数、有理数的定义即可判定选择项.【解答】解:﹣5,,4.121121112是有理数,是无理数,故选:D.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.10.下列说法:①带根号的数是无理数;②不含根号的数一定是有理数;③无理数是开方开不尽的数;④无限小数是无理数;⑤π是无理数,其中正确的有()A.4个B.3个C.2个D.1个【分析】根据无理数的三种形式求解.【解答】解:①带根号的数不一定是无理数,如;②不含根号的数不一定是有理数,如无限不循环小数;③开方开不尽的数是无理数;④无限不循环小数是无理数;⑤π是无理数,该说法正确.故选:D.【点评】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.二.填空题(共15小题)11.在数﹣1,0,,π,0.2020020002…,0.中,是无理数的是π,0.2020020002….【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.【解答】解:在数﹣1,0,,π,0.2020020002…,0.中,是无理数的是π,0.2020020002….故答案为:π,0.2020020002….【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.12.两个无理数,它们的和为1,这两个无理数可以是π,1﹣π(只要写出两个就行)【分析】根据无理数的意义,可得答案.【解答】解:π+(1﹣π)=1,故答案是:π,1﹣π.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.13.在0,,π﹣1,0.121121112…(每两个2之间依次多一个1),0.33333…这5个数中,无理数有2个.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.【解答】解:在0,,π﹣1,0.121121112…(每两个2之间依次多一个1),0.33333…这5个数中,无理数有π﹣1,0.121121112…(每两个2之间依次多一个1),一共2个.故答案为:2.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π类;开方开不尽的数;以及像0.1010010001…(每两个1之间依次多一个0),虽有规律但是无限不循环的小数.14.有六个数:0.123,(﹣1.5)3,3.1416,,﹣2π,0.1020020002,若其中无理数的个数为x,正数的个数为y,则x+y=5.【分析】分别根据无理数、有理数的定义即可判定选择项.【解答】解:﹣2π是无理数,0.123,3.1416,,0.1020020002是正数,故x=1,y=4,x+y=1+4=5,故答案为:5.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.15.写出一个比0大的无理数:.【分析】本题需先根据已知条件,写出一个正数并且是无理数即可求出答案.【解答】解:比0大的无理数有等,故答案为:.【点评】本题主要考查无理数,用到的知识点是无理数的定义和实数的大小比较,在解题时根据负无理数的定义写出结果是解题的关键.16.写出两个无理数,使得它们的和为有理数,则这两个无理数可以为①π+3;②﹣π+3.【分析】根据无理数的意义,可得答案.【解答】解:(π+3)+(﹣π+3)=6,故答案为:π+3,﹣π+3.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.17.写出一个同时符合下列条件的数:﹣.(1)它是一个无理数;(2)在数轴上表示它的点在原点的左侧;(3)它的绝对值比2小.【分析】根据无理数的定义求解即可.【解答】解:写出一个同时符合下列条件的数﹣,故答案为:﹣.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.18.若直角三角形的三边长分别为2,3,a,等腰三角形的三边长分别为2,3,b.下列结论:①a一定是无理数;②a<b;③ab<11.其中所有正确结论的序号是①③.【分析】①利用勾股定理可求出a=或a=,进而可得出a一定是无理数,结论①正确;②根据等腰三角形的性质可得出b=2或b=3,由2<<3<,可得出a、b无法比较大小,结论②错误;③由≤,b≤3,可得出ab≤3<11,结论③正确.综上即可得出结论.【解答】解:①∵直角三角形的三边长分别为2,3,a,∴a==或a==,∴a一定是无理数,结论①正确;②∵等腰三角形的三边长分别为2,3,b,∴b=2或b=3,∵2<<3<,∴a、b无法比较大小,结论②错误;③∵a≤,b≤3,∴ab≤3<11,结论③正确.故答案为:①③.【点评】本题考查了无理数及实数的大小,逐一分析三条结论的正误是解题的关键.19.请写出一个比3大比4小的无理数:π.【分析】由于带根号的要开不尽方是无理数,无限不循环小数为无理数,根据无理数的定义即可求解.【解答】解:比3大比4小的无理数很多如π.故答案为:π.【点评】此题主要考查了无理数的定义,解题时注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.20.在,3.14,0,0.101 001 000 1…,中,无理数有2个.【分析】根据无理数的定义求解即可.【解答】解:在,3.14,0,0.101 001 000 1…,中,,0.101 001 000 1…是无理数,无理数有2个.故答案为:2.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.21.写出一个大于﹣4的负无理数:﹣π.【分析】根据无理数的定义求解即可.【解答】解:写出一个大于﹣4的负无理数:﹣π,故答案为:﹣π.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.22.请你写出一个大于0而小于2的无理数:(答案不唯一).【分析】依据算术平方根的性质求解即可.【解答】解:∵1<2<4,∴1<<2.故答案为:.【点评】本题主要考查的是算术平方根的性质,熟练掌握算术平方根的性质是解题的关键.23.下列说法:(1)若a为实数,则a2>0;(2)若a为实数,则a的倒数是;(3)若a为实数,则|a|≥0;(4)若a为无理数,则a的相反数是﹣a.其中正确的是(3)(4)(填序号)【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:(1)若a为实数,则a2≥0,故(1)错误;(2)若a≠0为实数,则a的倒数是,故(2)错误;(3)若a为实数,则|a|≥0,故(3)正确;(4)若a为无理数,则a的相反数是﹣a,故(4)正确;故答案为:(3)(4).【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.24.请你写出一个同时符合下列条件的代数式,①同时含有字母a,b;②是一个4次单项式;③它的系数是一个负无理数,你写出的一个代数式是﹣ab3.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.单独一个数字也是单项式.【解答】解:①同时含有字母a,b;②是一个4次单项式;③它的系数是一个负无理数,你写出的一个代数式是﹣ab3,故答案为:﹣ab3.【点评】本题考查了单项式,确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.注意单项式的系数包括前面的符号.25.如图,在5×5的正方形网格中,以AB为边画直角△ABC,使点C在格点上,且另外两条边长均为无理数,满足这样条件的点C共4个.【分析】画出图形即可就解决问题.【解答】解:如图所示,满足条件的点C有4个.故答案为4.【点评】本题考查无理数、直角三角形、勾股定理等知识,解题的关键是画好图形,注意不能漏解,考虑问题要全面.三.解答题(共11小题)26.(1)写出两个负数,使它们的差为﹣4,并写出具体算式.(2)说说“一个无理数与一个有理数的积一定是无理数”是否正确,请举例说明.【分析】(1)根据有理数的减法,可得答案;(2)根据实数的乘法,可得答案.【解答】解:(1)﹣5﹣(﹣1)=﹣5+1=﹣4;(2)说法错误,如×0=0,∴一个无理数与一个有理数的积一定是无理数的说法错误.【点评】本题考查了无理数的计算,利用实数的运算是解题关键.27.无限循环小数如何化为分数呢?请你仔细阅读下列资料:由于小数部分位数是无限的,所以不可能写成十分之几、百分之几、千分之几等等的数.转化时需要先去掉无限循环小数的“无限小数部分”.一般是用扩倍的方法,把无限循环小数扩大十倍、一百倍或一千倍…使扩大后的无限循环小数与原无限循环小数的“无限小数部分”完全相同,然后这两个数相减,这样“大尾巴”就剪掉了.例题:例如把0.和0.2化为分数请用以上方法解决下列问题(1)把0.化为分数(2)把0.3化为分数.【分析】(1)、(2)根据所给例题的解题方法进行解答即可.【解答】解(1)∵0.×100=17.∴0.×100﹣0.=17.﹣0.0.×(100﹣1)=17,0.=,(2)∵0.3×10=3.①0.3×1000=313.•②∴由②﹣①得0.3×1000﹣0.3×10=313.﹣3.,0.3(1000﹣10)=310,0.3=.【点评】本题考查了有理数,掌握材料中所提供的解题方法是解题的关键,难度不大.28.已知实数:﹣3,2,4.请用学过的运算对其进行计算,使其结果分别是(1)负有理数;(2)无理数.(要求:1.每种结果都只要写出一个;2.每个数和每种运算都只出现一次;3.先写出式子后计算结果)【分析】(1)根据有理数的乘法即可求解;(2)根据算术平方根的定义即可求解.【解答】解:(1)﹣3×4=﹣12;(2).【点评】此题考查了无理数,关键是熟练掌握有理数的乘法,算术平方根的定义的知识点.29.判断下面两句话是否正确.若正确请说明理由;若不正确,请举例说明.(1)两个实数的和一定大于每一个加数.(2)两个无理数的积一定是无理数.【分析】(1)根据有理数的加法,可得答案;(2)根据无理数的乘法,可得答案.【解答】解:(1)错误.例子:(﹣1)+(﹣2)=﹣3﹣3<﹣1,﹣3<﹣2;(2)错误.例子:×=2无理数,而2是有理数.【点评】本题考查了实数的运算,熟记运算律法则是解题关键.30.把下列各实数填在相应的大括号内,﹣|﹣3|,,0,,﹣3.,,1﹣,1.1010010001…(两个1之间依次多1个0)整数{…};分数{…};无理数{…}.【分析】根据实数的定义即可作出判断.【解答】解:整数{﹣|﹣3|,0…};分数{,﹣3.…};无理数{,,1﹣,1.1010010001…(两个1之间依次多1个0)…}.故答案是:﹣|﹣3|,0;;,,1﹣,1.1010010001…(两个1之间依次多1个0).【点评】此题主要考查了实数的分类,理解无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.31.如图,是一个数值转换器,原理如图所示.(1)当输入的x值为16时,求输出的y值;(2)是否存在输入的x值后,始终输不出y值?如果存在,请直接写出所有满足要求的x值;如果不存在,请说明理由.(3)输入一个两位数x,恰好经过两次取算术平方根才能输出无理数,则x= 25.【分析】(1)根据运算的定义即可直接求解;(2)始终输不出y值,则x的任何次方根都是有理数,则只有0和1;(3)写出一个无理数,平方式有理数,然后两次平方即可.【解答】解:(1)=4,=2,则y=;(2)x=0或1时.始终输不出y值;(3)答案不唯一.x=[()2]2=25.故答案是:25.【点评】本题考查无理数,正确理解题目中规定的运算是关键.32.判断下列说法是否正确,如果正确请在括号内打“√”,错误请在括号内打“×”,并各举一例说明理由.(1)有理数与无理数的积一定是无理数.×(2)若a+1是负数,则a必小于它的倒数.√.【分析】(1)根据乘法法则即可判断;(2)根据a+1是负数即可求得a的范围,即可作出判断.【解答】解:(1)任何无理数有有理数0的乘积等于0,故命题错误;(2)a+1是负数,即a+1<0,即a<﹣1,则a必小于它的倒数.故答案是:×,√.【点评】此题主要考查了无理数的运算,正确理解运算性质是关键.33.在下列4×4各图中,每个小正方形的边长都为1,请在每一个图中分别画出一条线段,且它们的长度均表示不等的无理数.表示:表示:2表示:3(注:横线上填入对应的无理数)【分析】连接任意正方形的对角线,根据勾股定理计算出其长度,再由无理数的定义进行解答即可.【解答】解:如图所示:AB==;CD==2;EF==3.【点评】本题考查的是无理数的定义及勾股定理的应用,解答此题时要熟知无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.34.已知某个长方体的体积是1800cm3,它的长、宽、高的比是5:4:3,请问该长方体的长、宽、高是有理数还是无理数?为什么?【分析】根据长方体的体积公式,可得长、宽、高、根据无理数就是无限不循环小数,可得答案.【解答】解:长、宽、高不是无理数,理由如下:设长、宽、高分别为5x,4x,3x.由体积,得60x3=1800,解得x=,长、宽、高分别为5,4,3是无理数.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.35.数学课上,好学的小明向老师提出了一个问题:无限循环小数是无理数吗?以0.为例,老师给小明做了以下解答(注:0.即0.33333…):设0.为x,即:0.3=x等式两边同时乘10,得:3.=10x即:3+0.=10x因为0.=x所以3+x=10x解得:x=即0.=因为分数是有理数,所以0.是有理数,同学们,你们学会了吗?请根据上述阅读,解决下列问题:(1)无限循环小数0.写成分数的形式是(2)请用解方程的办法将0.写成分数.【分析】(1)根据给出的例子,设0.为x,即:0.=x,再根据解方程的方法,即可得到0.=;(2)根据给出的例子,设0.为x,即:0.=x,再根据解方程的方法,即可得到0.=.【解答】解:(1)设0.为x,即:0.=x,。
2.1 认识无理数
※课时达标
1.在下列数:2, 1.44,∏, 3.14, -9, 2+3, 3
1, 1.2121……中,无理数有 _____________.有理数有_____________.
2.判断正误:
(1)有理数包括整数、分数和零.( )
(2)无理数都是开方开不尽的数.( )
(3)不带根号的数都是有理数.( )
(4)带根号的数都是无理数.( )
(5)无理数都是无限小数.( )
(6)无限小数都是无理数.( )
3.已知一直角三角形的两直角边长分别为1,
2,斜边长为x.
(1)根据一直角三角形,写出关于x 的方程,
并说明x 是有理数吗?为什么?
(2)估计x 的值(结果精确到十分位), 并用
计算器验证你的估计.
(3)如果结果精确到百分位呢?
4.面积分别为1,2,3,4,5,6,7,8,9的正方形边长是有理数的正方形有________个,边长是无理数的正方形有________个.
★基础巩固
1.下列各数中:-1,23,3.14,-π,3,0,2,27, 25,-0.2020020002……(相邻两个2之间0的个数逐次加1).其中,是有理数的是_____________,是无理数的是_______________.在上面的有理数中,分数有____________,整数有______________.
2.x 2=8,则x______分数,______整数,______有理数.(填“是”或“不是”)
3.面积为3的正方形的边长______有理数;面积为4的正方形的边长______有理数.(填“是”或“不是”)
4.一个高为2米,宽为1米的大门,对角线大约是______米(精确到0.01).
5.下列数中是无理数的是( ).
A.0.12••32
B.2π C .0 D .7
22
6.下列说法中正确的是( ).
A.不循环小数是无理数
B.分数不是有理数
C.有理数都是有限小数
D.3.1415926是有理数
7.下列语句正确的是( ).
A.3.78788788878888是无理数
B.无理数分正无理数、零、负无理数
C.无限小数不能化成分数
D.无限不循环小数是无理数
8.在直角△ABC 中,∠C=90°,AC=23
,BC=2,则AB 为( ).
A.整数
B.分数
C.无理数
D.不能确定
9.面积为6的长方形,长是宽的2倍,则宽为( ).
A.小数
B.分数
C.无理数
D.不能确定
10.下列说法中,正确的是( ).
A.数轴上的点表示的都是有理数
B.无理数不能比较大小
C.无理数没有倒数及相反数
D.实数与数轴上的点是一一对应的
●中考在线
11.在()02-,38,0,9,0.010010001 (2)
,-0.333 (5)
3.1415,
2.010101…(相邻两个1之间有1个0)中,无理数有( ).
A.1个
B.2个 C .3个 D.4个
12.下列说法正确的是( ).
A.有理数只是有限小数
B.无理数是无限小数
C.无限小数是无理数
D.3π
是无理数
13.下列说法错误的是 ( ).
A.无理数的相反数还是无理数
B.无限小数都是无理数
C.正数、负数统称有理数
D.实数与数轴上的点一一对应
14.下列说法中:(1)无理数就是开方开不尽 的数;(2)无理数是无限小数;(3)无 理数包括正无理数、零、负无理数;(4) 无理数可以用数
轴上的点来表示.共有 ( )个是正确的. A.1
B.2
C.3
D.4
15.下列各数中,不是无理数的是( ). A.7 B.0.5
C.2π
D. 0.151151115…
16.下列说法正确的是( ).
A.有理数只是有限小数
B.无理数是无限不循环小数
C.无限小数是无理数
D.带根号的数都是无理数
17.在实数:3.14159,
,1.010010001…, ,π,中,无理数的( ).
A .1个 B.2个 C.3个 D.4个 18.下列实数中,无理数是( ).
A.﹣
B.π
C.
D.|﹣2| 19.下列实数中是无理数的是( ).
A.4
B. 83
C. 0π
D. 2
20.边长为4的正方形的对角线的长是
( ). A.整数 B.分数
C.有理数
D.不是有理数
21.已知下列结论:①在数轴上只能表示无理数2;②任何一个无理数都能用数轴上的点表示;③实数与数轴上的点一一对应;④有理数有无限个,无理数有有限个.其中正确的结论是( ).
A.①②
B.②③
C.③④
D.②③④。