二阶及高阶导数的概念及计算
- 格式:ppt
- 大小:101.50 KB
- 文档页数:10
2-10高阶导数的概念及常见高阶导数公式模块基本信息一级模块名称 微分学二级模块名称基础模块三级模块名称 高阶导数的概念及常见高阶导数公式模块编号 2-10 先行知识导数的概念 模块编号2-2知识内容 教学要求掌握程度1、高阶导数的概念 1、理解高阶导的概念一般掌握2、常见初等函数的高阶导数 2、熟记常见初等函数的高阶导3、莱布尼兹公式3、掌握隐函数高阶导的求解(一般是二阶)4、隐函数的高阶导数4、掌握参数方程高阶导的求解(一般是二阶)5、参数方程的高阶导数5、熟记正弦、余弦等常见函数的n阶导数公式能力目标 1、提高学生的观察分析能力2、培养学生的逻辑思维、类比推导能力时间分配45分钟编撰黄小枚校对方玲玲审核危子青修订肖莉娜 二审 危子青一、正文编写思路及特点:思路:本文先借助速度和加速度的概念引出高阶导数的定义,然后分别介绍常见的初等函数的高阶导数、莱布尼兹公式、隐函数的高阶导数、参数方程的高阶导数。
特点:通过实际问题引出高阶导数的概念,在求解高阶导数时分类进行讲解,层层递进,有助于学生理解和掌握。
二、授课部分 1.引例(1) 变速直线运动的速度)(t v 是位置函数)(t s 对时间t 的导数,即)()('t s t v = 或dtdst v =)( (2) 速度函数)(t v 对时间t 的变化率就是加速度)(t a ,即)(t a 是)(t v 对t 的导数:[]'')(')()(t s t v t a ==或)()(dtdsdt d t a =(3)加速度)(t a 就是位置函数)(t s 对时间t 的导数的导数,称为)(t s 对t 的二阶导数,记为)(''t s 或22dtsd2.高阶导数的定义设y=f(x)在某区间上可导,即有 ()x f ' 存在,如果()x f '也可导,则称()x f ' 的导数为函数 f(x) 的二阶导数。
§2.3 高阶导数教学内容: 一.高阶导数二阶导数的定义:0(+)()()limx f x x f x f x x∆→''∆-''=∆.高阶导数:(1)(1)()0(+)()()lim n n n x f x x f x f x x--∆→∆-=∆二.高阶导数的运算法则(1)若函数(),()==u u x v v x 在x 点处具有n 阶导数,则()()±u x v x 、()(Cu x C 为常数)在点x 点处具有n 阶导数,且()()()()±=±n n n u v u v ,()()()=n n Cu Cu .(2)函数(),()==u u x v v x 在x 点处具有n 阶导数, ()()()()1C nn k n k k n k uv u v -==∑,此公式称为莱布尼茨公式.三.例题讲解例1.设3π()4cos 3sin sin 2f x x x x =-+-,求()f x ',(0)f '.例2.设2e sin x y x x +,求y '.例3.设x y tan =,求y '.同理可推得 ()x x 2csc cot -='.例4.设x y sec =,求y '.同理可推得 ()x x x cot csc csc -='.例5.证明(arcsin )'x =.例6.证明 ()ln x xa a a '=.特别地,当e a =时, (e )e x x'=.例7.求下列函数的导数.(1)3cos y x =; (2)1e xy =; (3)y =; (4)arcsin y =.例8.求下列双曲函数的导数.(1)双曲正弦 e e sh 2x x x -- =;(2)双曲余弦 e e ch 2x x x -+ =; (3)双曲正切 e e th e +e x xx xx --- = .例9.求下列函数的导数. (1)3sin ln x y =; (2)1tan2xy =; (3)2sin (34)y x =-.例10.求下列函数的导数.(1)221cos sin y x x=⋅; (2)ln(y x =.例11.已知()f u 可导,求下列函数的导数.(1)3f y =; (2)(ln )ln ()y f x f x =+.例14.设324e 5ln xy x x =-+,求y ''.例15.求下列函数的n 阶导数.(1)xa y =; (2)x y sin =.例16.求函数11=+y x的n 阶导数.例17.已知214=-y x ,求(100)y .例18.已知2sin 3=y x x ,求(20)y .。
导数的定义和求导规则一、导数的定义1.1 极限的概念:当自变量x趋近于某一数值a时,函数f(x)趋近于某一数值L,即称f(x)当x趋近于a时的极限为L,记作:lim (x→a) f(x) = L1.2 导数的定义:函数f(x)在点x=a处的导数,记作f’(a)或df/dx|_{x=a},表示函数在某一点的瞬时变化率。
定义如下:二、求导规则2.1 常数倍法则:如果u(x)是可导函数,c是一个常数,则cu(x)也是可导函数,且(cu(x))’ = c*u’(x)。
2.2 幂函数求导法则:如果u(x) = x^n,其中n为常数,则u’(x) = n*x^(n-1)。
2.3 乘积法则:如果u(x)和v(x)都是可导函数,则(u(x)v(x))’ = u’(x)v(x) +u(x)v’(x)。
2.4 商法则:如果u(x)和v(x)都是可导函数,且v(x)≠0,则(u(x)/v(x))’ =(u’(x)v(x) - u(x)v’(x))/(v(x))^2。
2.5 和差法则:如果u(x)和v(x)都是可导函数,则(u(x) + v(x))’ = u’(x) + v’(x),(u(x) - v(x))’ = u’(x) - v’(x)。
2.6 链式法则:如果y = f(u),u = g(x),则y关于x的导数可以表示为dy/dx = (dy/du) * (du/dx)。
2.7 复合函数求导法则:如果y = f(g(x)),则y关于x的导数可以表示为dy/dx = (df/dg) * (dg/dx)。
2.8 高阶导数:如果f’(x)是f(x)的一阶导数,则f’‘(x)是f’(x)的一阶导数,以此类推。
2.9 隐函数求导法则:如果方程F(x,y) = 0表示隐函数,则y关于x的导数可以表示为(dy/dx) = -F_x / F_y,其中F_x和F_y分别是F(x,y)对x和y的偏导数。
三、导数的应用3.1 函数的单调性:如果f’(x) > 0,则f(x)在区间内单调递增;如果f’(x) < 0,则f(x)在区间内单调递减。
求导法则与高阶导数计算导数是微积分中一个重要的概念,求导法则是用来计算函数导数的一系列规则。
无论是简单的一次导数还是更高阶的导数,掌握这些求导法则对于解决实际问题和理解函数的性质都具有重要意义。
一、基本导数法则1. 变量的导数对于自变量是单个变量的函数,导数的计算方法如下:- 若函数是常数:导数为零。
- 若函数是自变量的线性函数:导数为常数。
- 若函数是自变量的幂函数(幂指数是常数):导数为幂函数的幂指数乘以常数。
- 若函数是自变量的指数函数(底数是常数):导数为指数函数的自然对数乘以常数。
2. 和差的导数法则对于函数的和差,导数的计算方法如下:- 若函数为两个函数的和:导数等于两个函数各自的导数之和。
- 若函数为两个函数的差:导数等于两个函数各自的导数之差。
3. 乘法的导数法则对于函数的乘法,导数的计算方法如下:- 若函数为两个函数的乘积:导数等于一个函数的导数乘以另一个函数加上另一个函数的导数乘以一个函数。
4. 商的导数法则对于函数的商,导数的计算方法如下:- 若函数为两个函数的商:导数等于分子的导数乘以分母减去分子乘以分母的导数除以分母的平方。
二、高阶导数计算高阶导数是指导函数的导数再次求导的结果。
高阶导数的计算可以使用以下方法:1. 一次求导后再次求导。
2. 利用高阶导数的公式,如幂函数和指数函数的高阶导数规律。
3. 利用递推法则,将高阶导数表示为一阶导数的形式。
三、实例分析下面通过几个实例来说明求导法则和高阶导数的计算方法:例1:求函数f(x) = 3x^2 + 4x + 2的导数和二阶导数。
解:首先求一阶导数:f'(x) = 6x + 4然后求二阶导数:f''(x) = 6例2:求函数f(x) = e^x / x的导数和三阶导数。
解:首先求一阶导数:f'(x) = (e^x * x - e^x) / x^2然后求二阶导数:f''(x) = (2e^x - e^x * x + e^x) / x^3最后求三阶导数:f'''(x) = (6e^x - 6e^x * x + 3e^x * x^2 - e^x) / x^4通过这些例子可以看出,求导法则和高阶导数的计算非常有用,可以帮助我们快速准确地获得函数的导数信息,并进一步分析函数的性质、变化趋势等。
第1篇一、二阶导数的概念1. 定义二阶导数,也称为函数的二阶导数,是导数的导数。
对于一元函数y=f(x),其导数f'(x)表示函数在某一点的瞬时变化率。
而二阶导数f''(x)则表示导数f'(x)在某一点的瞬时变化率,即函数的曲率。
2. 计算公式对于一元函数y=f(x),其二阶导数的计算公式为:f''(x) = lim(h→0)[f'(x+h) - f'(x)] / h或者:f''(x) = d/dx[f'(x)]二、二阶导数的性质1. 可导性若函数y=f(x)在点x处可导,则其导数f'(x)在点x处也可导,即f'(x)在x处存在二阶导数。
2. 连续性若函数y=f(x)及其一阶导数f'(x)在区间[a, b]上连续,则f''(x)也在区间[a, b]上连续。
3. 非负性对于函数y=f(x),若f''(x)≥0,则函数图像在对应区间上为凸函数;若f''(x)≤0,则函数图像在对应区间上为凹函数。
4. 凸凹性若函数y=f(x)及其二阶导数f''(x)在区间[a, b]上连续,则:(1)若f''(x) > 0,则函数在区间[a, b]上为凸函数;(2)若f''(x) < 0,则函数在区间[a, b]上为凹函数。
三、二阶导数的应用1. 曲率分析通过计算函数的二阶导数,可以判断函数图像的凸凹性,进而分析曲线的曲率。
2. 最值问题在求解函数最值问题时,可以通过分析函数的二阶导数,判断函数的极值类型。
3. 函数图像分析通过分析函数的二阶导数,可以了解函数图像的形状,如拐点、极值点等。
4. 工程应用在工程领域,二阶导数常用于描述物理量变化的趋势,如速度、加速度等。
四、二阶导数在实际问题中的重要性1. 描述物理现象在物理学中,二阶导数常用于描述物体的运动规律,如速度、加速度等。
高阶导数一、高阶导数的定义:定义 若函数)(x f 的导函数)('x f 在点0x 可导,则称函数)(x f 在点0x 二阶可导,并称)('x f 在点0x 的导数为)(x f 在点0x 的二阶导数,记作)(''0x f ,22x x dx yd =,…,即:.)()(lim )()(lim )(00''0'0'0220''00x x x f x f x x f x x f dxdy x f x x x x x --=∆-∆+==→→∆= 一般的,若函数)(x f 的1-n 阶导函数)()1(x f n -在点0x 可导,则称函数)(x f 在点0x n 阶可导,并称)()1(x fn -在点0x 的导数为)(x f 在点0x 的n 阶导数,记作)(0)(x fn ,0x x nn dxy d =,…,即:.)()(lim )()(lim )(00)1()1(0)1(0)'1(00)(00x x x f x f x x f x x f dxdy x fn n x x n n x x x nnn --=∆-∆+==--→--→∆= 二阶及二阶以上的导数称为高阶导数,以前介绍的导数也可称作一阶导数;若函数)(x f 在区间I 上每一点都可导,即I x ∈∀0,有)(x f 在点0x 的唯一n 阶导数与其对应,这样建立了一个函数,称为)(x f 在I 上的n 阶导函数,简称为)(x f 在I 上的n 阶导数,记作: ,),()(n nn dxdy x f。
二、高阶导数的计算:函数n 阶导数的计算一般思路就是按照定义,连续利用一阶导数的求导公式及求导法则n 次即可。
除此之外我们再介绍两个计算函数n 阶导数的计算公式。
1.)()()(][n n n v u v u ±=±。
2.设uv y =,则'''uv v u y +=;()'''''''''''2uv v u v u uv v u y ++=+=;()''''''''''''''''''''''332uv vu v u v u uv v u v u y +++=++=;依此类推,我们可由数学归纳法证得如下莱布尼茨公式(结果与二项式()nv u +展开式极为相似):+++=--)2()2(2)1()1(1)0()()()(v u C v u C v u uv n n n n n n )()()1()1(1)()(n o n n n k k n k n v u v u C v u C ++++---∑=-=NK k k n knv u C)()(, 其中u u =)0(,v v =)0(。
高阶导数的常用公式导数是微积分中的重要概念,它描述了函数在某一点处的变化率。
而高阶导数则是导数的导数,它描述了函数变化率的变化率。
在实际应用中,高阶导数在多个领域都有重要的作用,如物理学、工程学、经济学等。
本文将介绍几个高阶导数的常用公式,并探讨它们在实际问题中的应用。
1. 一阶导数的计算公式一阶导数即函数的导数,它描述了函数在某一点的切线斜率。
一阶导数的计算公式如下:f'(x) = lim(h->0) [f(x+h) - f(x)] / h2. 二阶导数的计算公式二阶导数是一阶导数的导数,它描述了函数切线的变化率。
二阶导数的计算公式如下:f''(x) = (d/dx)[f'(x)]3. 高阶导数的计算公式高阶导数是指二阶导数及以上的导数。
高阶导数的计算可以通过递归地应用一阶导数的计算公式来实现。
例如,三阶导数可以通过以下公式计算:f'''(x) = (d/dx)[f''(x)]4. 高阶导数的物理意义高阶导数在物理学中有广泛的应用,特别是描述物体的运动和变化。
例如,加速度是速度的一阶导数,描述了物体速度的变化率;而位移是速度的一阶导数,描述了物体位置的变化率。
高阶导数可以进一步描述这些变化率的变化率,从而提供更详细的物理信息。
5. 高阶导数在工程学中的应用在工程学中,高阶导数有助于分析和优化系统的性能。
例如,在信号处理中,高阶导数可以用于提取信号的特征,如边缘检测和图像增强。
在控制系统中,高阶导数可以用于设计和调整控制器的响应特性,以实现更好的控制效果。
6. 高阶导数在经济学中的应用高阶导数在经济学中也有重要的应用。
例如,在经济学中,边际效用是总效用的一阶导数,描述了消费者对某种商品的满足程度。
高阶导数可以用于分析消费者对多个商品的替代和互补关系,从而为市场调节提供参考。
7. 求解高阶导数的技巧在实际计算中,求解高阶导数可以使用多种技巧。