《大学物理》第六章 恒定电流的磁场
- 格式:ppt
- 大小:5.32 MB
- 文档页数:69
第6章 恒定电流前面讨论了静电现象及其规律。
从本章开始将研究与电荷运动有关的一些现象和规律。
本章主要讨论恒定电流,6.1 电流 电流密度6.1.1 电流1、电流的产生 我们知道,导体中存在着大量的自由电子,在静电平衡条件下,导体内部的场强为零,自由电子没有宏观的定向运动。
若导体内的场强不为零,自由电子将会在电场力的作用下,逆着电场方向运动。
我们把导体中电荷的定向运动称为电流。
2、产生电流的条件:①导体中要有可以自由运动的带电粒子(电子或离子);②导体内电场强度不为零。
若导体内部的电场不随时间变化时,驱动电荷的电场力不随时间变化,因而导体中所形成的电流将不随时间变化,这种电流称为恒定电流(或稳恒电流)。
3、电流强度 电流的强弱用电流强度来描述。
设在时间t ∆内,通过任一横截面的电量是q ∆,则通过该截面的电流强度(简称电流)为q I t∆=∆ (6–1) 式(6–1)表示电流强度等于单位时间内通过导体任—截面的电量。
如果I 不随时间变化,这种电流称为恒定电流,又叫直流电。
如果加在导体两端的电势差随时间变化,电流强度也随时间变化,这时需用瞬时电流(0t ∆→时的电流强度)来表示:0lim t q dq I t dt∆→∆==∆ (6–2) 对于恒定电流,式(6–1)和式(6–2)是等价的。
在国际单位制中,电流强度的单位是安培(符号A)其大小为每秒钟内通过导体任一截面的电量为1库仑,即 111=库仑安培秒。
它是一个基本量。
电流强度是标量,所谓电流的方向只表示电荷在导体内移动的去向。
通常规定正电荷宏观定向运动的方向为电流的方向。
6.1.2 电流密度在粗细相同和材料均匀的导体两端加上恒定电势差后,;导体内存在恒定电场,从而形成恒定电流。
电流在导体任一截面上各点的分布是相同的。
如果在导体各处粗细不同,或材料不均匀(或是大块导体),电流在导体截面上各点的分布将是不均匀的。
电流在导体截面上各点的分布情况可用电流密度j 来描述。
1第6章 稳恒电流的磁场一 基本要求1. 掌握磁感应强度B的概念。
2. 掌握毕奥-萨伐尔定律,并能用该定律计算一些简单问题中的磁感应强度。
3. 掌握用安培环路定律计算磁感应强度的条件及方法,并能熟练应用。
4. 理解磁场高斯定理。
5. 了解运动电荷的磁场。
6. 理解安培定律,能用安培定律计算简单几何形状的载流导体所受到的磁场力。
7. 理解磁矩的概念,能计算平面载流线圈在均匀磁场中所受到的磁力矩,了解磁力矩所作的功。
8. 理解并能运用洛伦兹力公式分析点电荷在均匀磁场(包括纯电场、纯磁场)中的受力和运动的简单情况。
9. 了解霍耳效应。
10. 了解磁化现象及其微观解释。
11. 了解磁介质的高斯定理和安培环路定理,能用安培环路定理处理较简单的介质中的磁场问题。
12. 了解各向同性介质中H 与B的联系与区别。
13. 了解铁磁质的特性。
二 内容提要1. 毕奥-萨伐尔定律 电流元Id l 在真空中某一场点产生的磁感应强度d B 的大小与电流元的大小、电流元到该点的位矢r与电流元的夹角θ的正弦的乘积成正比,与位矢大小的平方成反比,即204r l I B θπμsin d d =dB 的方向与r l I⨯d 相同,其矢量式为304r rl I B⨯=d d πμ 2. 几种载流导体的磁场 利用毕奥-萨伐尔定律可以导出几种载流导体磁场的分布,这些结果均可作公式应用。
(1)有限长直载流导线的磁感应强度的大小)cos (cos π2104θθμ-=aIB方向与电流成右手螺旋关系。
式中,a 为场点到载流直导线的距离,21θθ、分别为直导线始末两端到场点的连线与电场方向的夹角。
2(2)长载流直导线(无限长载流直导线)的磁感应强度的大小rIB πμ20=方向与电流成右手螺旋关系。
(3) 直载流导线延长线上的的磁感应强度 0=B(4) 载流圆导线(圆电流)轴线上的磁感应强度的大小2322202)(x R IR B +μ=方向沿轴线,与电流成右手螺旋关系。
11-1 恒定电流电流密度磁现象:我国是世界上最早发现和应用磁现象的国家之一,早在公元前300年久发现了磁铁矿石吸引铁的现象。
在11世纪,我国已制造出航海用的指南。
在1820年之前,人们对磁现象的研究仅局限于铁磁极间的相吸和排斥,而对磁与电两种现象的研究彼此独立,毫无关联。
1820年7月丹麦物理学家奥斯特发表了《电流对磁针作用的实验》,公布了他观察到的电流对磁针的作用,从此开创了磁电统一的新时代。
奥斯特的发现立即引起了法国数学家和物理学家安培的注意,他在短短的几个星期内对电流的磁效应作出了系列研究,发现不仅电流对磁针有作用,而且两个电流之间彼此也有作用,如图所示;位于磁铁附近的载流线圈也会受到力或力矩的作用而运动。
此外,他还发现若用铜线制成一个线圈,通电时其行为类似于一块磁铁。
这使他得出这样一个结论:天然磁性的产生也是由于磁体内部有电流流动。
每个磁性物质分子内部,都自然地包含一环形电流,称为分子电流,每个分子电流相当于一个极小的磁体,称为分子磁矩。
一般物体未被磁化时,单个分子磁矩取向杂乱无章,因而对外不显磁性;而在磁性物体内部,分子磁矩的取向至少未被完全抵消,因而导致磁铁之间有“磁力”相互作用。
1820年是人们对电磁现象的研究取得重大成果的一年。
人们发现,电荷的运动是一切磁现象的根源。
一方面,运动电荷在其周围空间激发磁场;另一方面,运动电荷在空间除受电场力作用之外,还受磁场力作用。
电磁现象是一个统一的整体,电学和磁学不再是两个分立的学科。
11-1 恒定电流电流密度如前所述,电荷的运动是一切磁现象的根源。
电荷的定向运动形成电流,称为传导电流;若电荷或宏观带电物体在空间作机械运动,形成的电流称为运流电流。
常见的电流是沿着一根导线流动的电流,其强弱用电流强度来描述,它等于单位时间通过某一截面的电量,方向与正电荷流动的方向相同,其数学表达式为dtdq I ,虽然我们规定了电流强度的方向,但电流强度I 是标量而不是矢量,因为电流的叠加服从代数加减法则,而不服从矢量叠加的平行四边形法则。
9、选择题第四章恒定电流的磁场1 、均匀磁场的磁感应强度B 垂直于半径为R 的圆面,今以圆周为边线,作一半球面S,则通过S 面的磁通量的大小为()2 A、2 R B2B、R BC、0D、无法确定2、答案: B 有一个圆形回路,及一个正方形回路,圆直径和正方形的边长相等,二者载有大小相等的电流,它们各自中心产生的磁感强度的大小之比B1/B2 为()A 、0.90B、1.00C、1.11D、1.22答案:C3、在磁感强度为B 的均匀磁场中作一半径为r 的半球面S,S 边线所在平面的法线方向单位矢量n与B 的夹角为,则通过半4、5、6、7、8、A、球面S 的磁通量为()A、r2B22B、2 r BC、r 2BsinD、r 2Bcos答案:D四条皆垂直于纸面的载流细长直导线,每条中的电流强度皆为如图所示,它们组成了边长为2a 的正方形的四个角顶,每条导线中的电流流向亦如图所示,则在图中正方形中心点O 的磁感应强度的大小为()I,这四条线被纸面截得的断面,A、B 2U0 IB、B2U0I2a C、B=0 D 、B U0 I a答案:C边长为L 的一个导体方框上通有电流2A 、与L 无关B、正比于L2I ,则此框中心的磁感应强度(C、与L 成正比D、与L 成反比)E、与I2有关如图所示,电流从a点分两路通过对称的圆环形分路,汇合于 b 点,若ca,bd都沿环的径向,则在环形分路的环心处的磁感应强度() A 、方向垂直环形分路所在平面且指向纸内B、方向垂直环形分路所在平面且指向纸外C、方向在环形分路所在平面内,且指向b在一平面内,有两条垂直交叉但相互绝缘的导线,其方向如图所示,问哪些区域中某些点的磁感应强度A 、仅在象限ⅠD、零答案:I 的大小相等, B 可能为零?()流过每条导线的电流、仅在象限ⅡC、仅在象限Ⅰ、Ⅳ在真空中有一根半径为0I 0I、仅在象限Ⅱ答案:R 的半圆形细导线,流过的电流为I ,则圆心处的磁感应强度为()4RB、2RC、0 D、0I4R电流由长直导线 1 沿半径径向 a 点流入电阻均匀分布的圆环,再由 b 点沿切向从圆流出,经长导线 2 返回电源,(如图),已知直导线上电流强度为I,圆环的半径为R,且a,b 与圆心O 三点在同一直线上,设直线电流1、2 及圆环电流分别在O点产生的磁感应强度为B1,B2及B3。