极限状态设计法
- 格式:ppt
- 大小:3.39 MB
- 文档页数:37
极限状态法定义、极限状态设计法limit state design method当以整个结构或结构的一部分超过某一特定状态就不能满足设计规定的某一功能要求,则此特定状态称为该功能的极限状态,按此状态进行设计的方法称极限状态设计法。
它是针对破坏强度设计法的缺点而改进的工程结构设计法。
分为半概率极限状态设计法和概率极限状态设计法。
半概率极限状态设计法将工程结构的极限状态分为承载能力极限状态、变形极限状态和裂缝极限状态三类(也可将后两者归并为一类),并以荷载系数、材料强度系数和工作条件系数代替单一的安全系数。
对荷载或荷载效应和材料强度的标准值分别以数理统计方法取值,但不考虑荷载效应和材料抗力的联合概率分布和结构的失效概率。
概率极限状态设计法将工程结构的极限状态分为承载能力极限状态和正常使用极限状态两大类。
按照各种结构的特点和使用要求,给出极限状态方程和具体的限值,作为结构设计的依据。
用结构的失效概率或可靠指标度量结构可靠度,在结构极限状态方程和结构可靠度之间以概率理论建立关系。
这种设计方法即为基于概率的极限状态设计法,简称为概率极限状态设计法。
其设计式是用荷载或荷载效应、材料性能和几何参数的标准值附以各种分项系数,再加上结构重要性系数来表达。
对承载能力极限状态采用荷载效应的基本组合和偶然组合进行设计,对正常使用极限状态按荷载的短期效应组合和长期效应组合进行设计。
2、许应力设计法allowable stress design method以结构构件的计算应力不大于有关规范所给定的材料容许应力[]的原则来进行设计的方法。
一般的设计表达式为[]结构构件的计算应力按荷载标准值以线性弹性理论计算;容许应力[]由规定的材料弹性极限(或极限强度、流限)除以大于1的单一安全系数而得。
容许应力设计法以线性弹性理论为基础,以构件危险截面的某一点或某一局部的计算应力小于或等于材料的容许应力为准则。
在应力分布不均匀的情况下,如受弯构件、受扭构件或静不定结构,用这种设计方法比较保守。
概率极限状态设计方法概念:以概率为基础的极限状态设计方法,简称为概率极限状态设计法,1功能函数、极限状态方程结构构件完成预定功能的工作状态可以用作用效应S 和结构抗力R 的关系来描述,这种表达式称为结构功能函数,用Z 来表示当时,结构能够完成预定的功能,处于可靠状态;当时,结构不能完成预定的功能,处于失效状态;当时,即,结构处于极限状态。
,称为极限状态方程。
2结构可靠度、失效概率及可靠指标结构在规定的时间内,在规定的条件下完成预定功能的概率,称为结构的可靠度4结构的安全等级建筑结构设计时,应根据结构破坏可能产生的后果(危及人的生命、造成经济损失、产生社会影响等)的严重性,采用不同的安全等级。
建筑结构的安全等级划分见表 3.3 。
5目标可靠指标当有关变量的概率分布类型及参数已知时,就可按上述β值计算公式求得现有的各种结构构件的可靠指标。
《统一标准》以我国长期工程经验的结构可靠度水平为校准点,考虑了各种荷载效应组合情况,选择若干有代表性的构件进行了大量的计算分析,规定结构构件承载能力极限状态的可靠指标,称为目标可靠指标β。
结构构件属延性破坏时,目标可靠指标β取为 3.2 ;结构构件属脆性破坏时,目标可靠指标β取为 3.7 。
表3.3 建筑结构的安全等级对应于直接作用按随时间的变异分类,结构上的荷载可分为三类:( 1 )永久荷载,如结构自重、土压力、预应力等;( 2 )可变荷载,如楼面活荷载、屋面活荷载、积灰荷载、吊车荷载、风荷载和雪荷载等;( 3 )偶然荷载,如爆炸力、撞击力等。
荷载代表值是指设计中用以验算极限状态所采用的荷载量值。
建筑结构设计时,对不同荷载应采用不同的代表值。
永久荷载采用标准值作为代表值;可变荷载应根据设计要求采用标准值、组合值或准永久值作为代表值;偶然荷载应按建筑结构使用的特点确定其代表值。
6 荷载标准值荷载标准值是《荷载规范》规定的荷载基本代表值,为设计基准期内最大荷载统计分布的特征值(如均值、众值、中值或某个分位值)(如均值、众值、中值或某个分位值)。
概率极限状态设计法的计算内容
概率极限状态设计法是一种经典的结构可靠性分析方法,主要用于确定结构在预定概率下失效的最不利工况和极限状态的设计。
该方法的计算内容包括以下几个步骤:
1. 确定设计变量:包括结构的几何参数、材料参数等。
这些参数将直接影响结构的可靠性。
2. 确定荷载的随机特性:根据实际工况和统计数据,确定荷载的概率密度函数、统计特性等。
3. 确定结构的失效模式和极限状态函数:根据结构的特点和要求,确定结构的失效模式和极限状态函数。
失效模式是指结构在特定荷载作用下,失效的形式,如破坏、变形等。
极限状态函数是将荷载和结构的变量联系起来的函数,描述了结构失效的条件。
4. 进行可靠性分析:根据失效模式和极限状态函数,利用概率论和数理统计的方法,进行可靠性分析。
可以采用Monte Carlo模拟、有限元方法、可靠性指标等方法,计算结构在给定概率下失效的概率。
5. 确定安全系数:根据可靠性分析的结果,确定结构的安全系数。
安全系数是指结构可靠性和设计要求之间的比值,用于评估结构的安全性。
6. 进行设计优化:根据可靠性分析结果和安全系数,进行结构的优化设计。
可以通过调整设计变量、改变结构形式等方式,提高结构的可靠性和经济性。
综上所述,概率极限状态设计法的计算内容主要包括确定设计变量、确定荷载的随机特性、确定失效模式和极限状态函数、进行可靠性分析、确定安全系数和进行设计优化等步骤。
第3章 按近似概率理论的极限状态设计法知识点1.建筑结构的功能要求,结构的极限状态和概率极限状态设计方法;2.结构可靠度、失效概率和可靠指标;3.承载能力和正常使用两种极限状态及实用设计表达式;4.作用和作用效应,结构重要性系数,荷载和材料的分项系数,荷载组合;5.荷载分类及其标准值,钢筋和混凝土的强度标准值和设计值。
要点1.结构的可靠性:结构的可靠性是:结构在规定的时间内,在规定的条件下,完成预定功能的能力。
2.结构上的作用:凡施加在结构上的集中或分布荷载,以及引起结构外加变形或约束变形的原因,均称为结构上的作用。
3.结构上的可变荷载:在结构使用期间,其值随时间而变化,且其变化与平均值相比不可以忽略不计的荷载称为可变荷载。
4.结构上的永久荷载:在结构使用期间,其值不随时间而变化,或其变化与平均值相比可以忽略不计,或其变化是单调的并能趋于限值的荷载称为永久荷载。
5.建筑结构的安全性要求:能承受正常使用和施工产生的荷载和变形;在偶然事件发生时及发生后能保持整体稳定。
6.“作用”:通常是指使结构产生内力和变形的原因,分为直接作用和间接作用 。
7.正常使用极限状态的设计表达式,按不同的设计目的,分别考虑荷载的哪些组合。
正常使用极限状态的设计表达式,按不同的设计目的,分别考虑荷载的标准组合、荷载的准永久组合和荷载的频遇组合。
8.作用在结构上的荷载,按作用时间的长短如何分类。
作用在结构上的荷载,按作用时间的长短和性质,可分为永久荷载、可变荷载和偶然荷载。
9.写出功能函数的表达式,回答功能函数Z>0,Z<0,Z=0时结构所处的状态。
0),,(21==n x x x g Z 。
Z>0结构处于可靠状态;Z=0结构处于极限状态;Z<0结构处于失效状态。
10.可靠度:可靠度是指结构在规定的时间内和规定的条件下,完成预定功能的概率。
一般用失效概论(f P )和可靠可标(β)来度量。
在承载能力极限状态设计表达式中,可靠度体现在o γ、G γ、o γ、C γ、S γ中。
第三章按近似概率理论的极限状态设计法极限状态设计法(Limit State Design Method)是一种基于概率理论的结构设计方法,旨在保证结构在使用阶段的可靠性。
在设计过程中,结构的发生概率符合其中一可接受的安全水平,同时考虑了结构在使用过程中的变化和不确定性。
极限状态设计法主要分为两个步骤:极限状态的定义和确定极限状态的荷载。
极限状态的定义包括强度极限状态和服务性能极限状态,强度极限状态是指结构未来可能达到或超过强度限制的状态,而服务性能极限状态是指结构在其中表现出不满意性能的状态。
在极限状态设计法中,荷载的确定是关键步骤之一、常见的荷载包括自重、活荷载、风荷载、地震荷载等。
这些荷载在设计过程中要根据实际情况合理确定,并形成统计分布。
统计分布可以通过概率密度函数、累积分布函数等来描述不同荷载的变化范围和频率。
根据安全要求,需要确定合适的荷载组合,并利用极限状态函数来确定结构达到极限状态的概率。
极限状态设计法的核心是确定结构可靠性指标。
可靠性指标是描述结构达到极限状态的概率大小的参数。
常用的可靠性指标有可靠性指数(Reliability Index)和失效概率(Failure Probability)。
可靠性指数是在给定的设计条件下,结构达到极限状态的概率与结构所能承受的荷载的比值。
失效概率是指结构达到极限状态的概率。
对于极限状态设计法,可靠性指标的选择直接影响到结构的安全性和经济性。
一般来说,可靠性指标越小,结构的安全性越高,但结构的成本也就越高。
因此,要根据具体的工程要求和条件来选择合适的可靠性指标。
极限状态设计法的优点是可以综合考虑结构的不确定性和变化性,使得结构设计更加科学合理。
同时,由于采用了概率理论,可以更加准确地评估结构的可靠性,使得结构在使用过程中更加安全可靠。
然而,极限状态设计法也存在一些不足之处,如难以确定结构的可靠性指标、灵活性较差等。
总之,极限状态设计法是一种基于概率理论的结构设计方法,通过确定荷载的统计分布和可靠性指标,综合考虑结构的不确定性和变化性,使得结构在使用阶段的可靠性得到保证。
正常使用极限状态的设计方法极限状态设计方法是一种在产品研发过程中使用的方法,旨在考虑产品在极限条件下的性能和可靠性。
它是一种系统工程的思维方式,通过模拟和分析不同环境和使用条件下的极限情况,来指导产品设计和改进。
在使用极限状态设计方法进行产品设计时,首先需要定义产品的使用条件和环境。
这包括温度、湿度、压力、振动等环境参数,以及产品的使用方式和周期。
然后,根据定义的使用条件,确定产品的关键性能和可靠性指标。
这些指标可能包括产品的使用寿命、最大负荷、工作温度范围等。
接下来,通过模拟和分析不同环境和使用条件下的极限情况,来评估产品的性能和可靠性。
这可以通过计算、试验或仿真等方法进行。
通过这些极限情况的分析,可以找到产品的潜在问题和改进方向。
例如,如果产品在高温环境下容易发生故障,可以考虑使用高温耐受材料或改善散热设计。
在极限状态设计方法中,需要注意以下几个方面。
首先,要确保模拟和分析的结果是真实可靠的。
这需要选取合适的模型和方法,并进行验证和验证。
其次,需要考虑不同环境和使用条件的组合效应。
有些问题可能只在特定条件下才会发生,因此需要对各种可能情况进行综合评估。
最重要的是,要将极限状态设计方法融入到整个产品研发过程中。
这意味着在每个设计阶段都要考虑产品的极限性能和可靠性,从概念设计到详细设计再到制造和测试阶段,都需要进行相应的分析和优化。
极限状态设计方法的应用有助于提高产品的性能和可靠性。
通过在设计阶段考虑产品在不同环境和使用条件下的极限情况,可以减少故障和事故的发生,提高产品的工作效率和安全性。
此外,极限状态设计方法还可以帮助优化产品的成本和时间,避免不必要的设计和测试。
总之,极限状态设计方法是一种重要的设计方法,可以帮助产品设计人员充分考虑产品在不同环境和使用条件下的极限情况,从而改进产品的性能和可靠性。
在使用该方法时,需要明确产品的使用条件和环境,通过模拟和分析极限情况来评估产品的性能和可靠性,并将结果应用到整个产品研发过程中。
第三章按近似概率论理论的极限状态设计法_基本设计原则按近似概率论理论的极限状态设计法是结构设计中的一种常见方法,主要用于抗震设计。
其基本设计原则主要包括以下几点:1.安全性原则:结构设计的首要原则是保证结构的安全性。
根据近似概率论理论的极限状态设计法,要求结构在地震作用下的破坏概率应控制在可接受的范围内。
设计师需要根据地震参数、地质条件和结构性质等因素,进行适当的安全系数设计。
2.极限状态原则:按近似概率论理论的极限状态设计法将结构在地震作用下的破坏分为弹性极限状态和破坏极限状态。
弹性极限状态指结构在地震作用下仍然能够保持轴力、弯矩和剪力等内力在允许范围内的状态;破坏极限状态指结构在地震作用下无法再保持正常使用功能的状态。
设计要求结构在地震作用下达到弹性极限状态,但不超过破坏极限状态。
3.性能目标原则:根据近似概率论理论的极限状态设计法,设计应明确结构的性能目标。
性能目标可以根据结构的重要性和使用要求等因素进行确定,一般包括易修复性、可用性、避免不可修复的损失等方面。
根据性能目标,设计师需要根据相应的性能等级,确定结构的设计参数。
4.破坏概率控制原则:按近似概率论理论的极限状态设计法要求结构在地震作用下的破坏概率控制在可接受的范围内。
破坏概率的计算需要考虑地震参数、结构性能、结构重要性和设计性能目标等因素。
设计师需要根据这些因素,进行统计分析和可靠度计算,从而确定结构的合理设计参数,以控制破坏概率。
5.经济性原则:按近似概率论理论的极限状态设计法要求在保证结构安全的前提下,尽量减少结构成本,提高经济性。
设计师需要综合考虑结构的安全性、使用寿命、材料成本、施工成本等因素,进行合理的设计参数选择。
通过经济性分析,确定最佳的设计方案。
6.可行性原则:结构设计时需要考虑实施的可行性。
设计师需要综合考虑技术条件、材料供应、施工技术和成本等因素,确定能够实施的设计方案。
在设计过程中,应注重结构的可施工性和可操作性,确保设计方案的可行性。
极限状态设计法简介顾迪民一, 定义①极限状态设计法以相应于结构和构件各种功能要求的极限状态,如承载能力的极限状态和正常使用的极限状态等为依据的设计方法。
结构和构件应满足这些极限状态的限制。
② 许用应力设计法在规定的使用载荷(标准值)作用下,按线性弹性理论算得的结构或构件中的应力(计算应力)应不大于规范规定的材料许用应力。
材料的许用应力由材料的平均极限抗力(屈服点、临界应力和疲劳强度)除以安全系数而得,安全系数可由经验确定。
③ 概率设计法以概率理论为基础确定的结构或构件的失效概率)P (f 或可靠概率)1P P )(P (f s s =+来定量地度量结构或构件的可靠性。
用此法设计的各类结构或构件具有大体相同的可靠度。
④ 概率极限状态设计法在概率设计法基础上,进一步建立结构可靠性指标与极限状态方程之间的数学关系。
在设计表达式中采用载荷分项系数,这些分项系数也是根据各载荷变量的统计特征在概率分析的基础上经优选确定的。
载荷分项系数的确定有三种水平:其一为部分系数由概率分析确定,部分系数用经验确定,也称半概率极限状态设计法;其二为所有系数均由概率分析确定,但其概率分布曲线一列用正态分布曲线代替,故称近似概率极限状态设计法;其三为全概率极限状态设计法,是发展趋向.二, 近似概率极限状态设计法1, 极限状态承载能力极限状态------静强度,动力强度和稳定等计算.正常使用极限状态------静,动变形(刚性)和耐久性(疲劳)的计算.2, 结构可靠度包括结构安全性,适用性和耐久性.其定义为:在规定时间(寿命)内,规定条件下,完成预定功能的概率. 3, 极限状态方程0),,(321=⋅⋅⋅⋅⋅⋅⋅=n X X X X g Z式中Xi 是影响结构可靠度的变量。
在结构设计中可归纳为二个基本变量R (抗力)和S (载荷效应—内力)。
0),(=-==S R S R g ZR = S ,极限状态;R < S , 失效;R > S ,有效(可靠)。
极限状态设计法极限状态设计法是一种在工程设计中广泛应用的方法,它的目标是确保结构在极端条件下的安全性和可靠性。
本文将介绍极限状态设计法的基本原理、应用范围以及在实际工程中的重要性。
极限状态设计法是一种基于概率理论的设计方法,它考虑了结构在极端负荷情况下的破坏机制和失效概率。
通过对结构的荷载、材料性能和几何形状等因素进行全面的分析和计算,可以确定结构在设计寿命内的安全性。
极限状态设计法的应用范围非常广泛,涵盖了建筑、桥梁、航空航天、核工程等各个领域。
在建筑领域,极限状态设计法可以用于确定建筑物在地震、风灾等极端自然灾害下的安全性。
在桥梁设计中,极限状态设计法可以用于确定桥梁在超载、冰雪等极端条件下的承载能力。
在航空航天领域,极限状态设计法可以用于确定飞机在起飞、降落等关键阶段的结构安全性。
极限状态设计法在实际工程中的重要性不言而喻。
通过采用这种设计方法,可以有效地降低结构的失效风险,提高结构的安全性和可靠性。
同时,极限状态设计法还可以帮助工程师优化结构设计,减少材料和成本的浪费。
在进行极限状态设计时,需要考虑多种因素。
首先是荷载的确定,包括静态荷载、动态荷载和温度荷载等。
其次是材料的性能参数,如强度、刚度和韧性等。
此外,还需要考虑结构的几何形状和连接方式等因素。
为了实现极限状态设计的目标,工程师通常会采用一系列的分析方法和计算工具。
其中包括有限元分析、可靠性分析和统计学方法等。
通过这些方法的综合应用,可以对结构的安全性进行全面的评估和验证。
极限状态设计法是一种重要的工程设计方法,它可以确保结构在极端条件下的安全性和可靠性。
在实际工程中,合理应用极限状态设计法可以提高工程项目的质量和可持续发展能力。
因此,工程师们应该深入了解和掌握这一设计方法,并在实践中加以应用。
极限状态设计法与容许应⼒设计法1、极限状态设计法 limit state design method 当以整个结构或结构的⼀部分超过某⼀特定状态就不能满⾜设计规定的某⼀功能要求,则此特定状态称为该功能的极限状态,按此状态进⾏设计的⽅法称极限状态设计法。
它是针对破坏强度设计法的缺点⽽改进的⼯程结构设计法。
分为半概率极限状态设计法和概率极限状态设计法。
半概率极限状态设计法将⼯程结构的极限状态分为承载能⼒极限状态、变形极限状态和裂缝极限状态三类(也可将后两者归并为⼀类),并以荷载系数、材料强度系数和⼯作条件系数代替单⼀的安全系数。
对荷载或荷载效应和材料强度的标准值分别以数理统计⽅法取值,但不考虑荷载效应和材料抗⼒的联合概率分布和结构的失效概率。
概率极限状态设计法将⼯程结构的极限状态分为承载能⼒极限状态和正常使⽤极限状态两⼤类。
按照各种结构的特点和使⽤要求,给出极限状态⽅程和具体的限值,作为结构设计的依据。
⽤结构的失效概率或可靠指标度量结构可靠度,在结构极限状态⽅程和结构可靠度之间以概率理论建⽴关系。
这种设计⽅法即为基于概率的极限状态设计法,简称为概率极限状态设计法。
其设计式是⽤荷载或荷载效应、材料性能和⼏何参数的标准值附以各种分项系数,再加上结构重要性系数来表达。
对承载能⼒极限状态采⽤荷载效应的基本组合和偶然组合进⾏设计,对正常使⽤极限状态按荷载的短期效应组合和长期效应组合进⾏设计。
2、许应⼒设计法 allowable stress design method 以结构构件的计算应⼒σ不⼤于有关规范所给定的材料容许应⼒[σ]的原则来进⾏设计的⽅法。
⼀般的设计表达式为 σ≤[σ] 结构构件的计算应⼒σ按荷载标准值以线性弹性理论计算;容许应⼒[σ]由规定的材料弹性极限(或极限强度、流限)除以⼤于1的单⼀安全系数⽽得。
容许应⼒设计法以线性弹性理论为基础,以构件危险截⾯的某⼀点或某⼀局部的计算应⼒⼩于或等于材料的容许应⼒为准则。
分项系数极限状态设计法分项系数极限状态设计法(Subset Coefficient Method,SCM)是结构工程中用于进行极限状态设计的一种方法。
它适用于在结构设计中考虑材料强度、几何尺寸、荷载和组合效应等随机变量的影响。
下面将详细介绍SCM的原理和应用。
SCM的核心思想是将结构的极限状态方程表示为各个分项系数的乘积,并通过概率统计方法对这些系数进行合理的选择和组合,从而得到结构极限状态的概率分布。
具体地说,SCM将极限状态方程表示为以下形式:G(X)≤0其中,G(X)是极限状态函数,X是设计参数(例如材料强度、几何尺寸、荷载等),≤0表示结构要求保持安全。
SCM的关键是确定分项系数。
它们由被考虑的材料性质、几何尺寸以及荷载和组合效应等设计参数的随机变量表示。
假设有k个分项系数(C1,C2,...,Ck),则极限状态方程可以写成:G(X)=C1X1+C2X2+...+CkXk≤0其中,Xi是第i个设计参数的随机变量。
确定分项系数的方法有很多种,常用的方法包括矩匹配法(Methodof Moments)和极大似然估计法(Maximum Likelihood Estimation)。
这些方法通过对已知设计参数的概率分布进行拟合,得出分项系数的概率分布。
使用SCM进行极限状态设计的步骤如下:1.选择合适的设计参数和分项系数。
2.根据已知数据或经验,对设计参数的概率分布进行确定。
3.使用矩匹配法或极大似然估计法,对每个分项系数的概率分布进行拟合。
4.将分项系数和设计参数的概率分布带入极限状态方程,计算结构的失效概率。
5.根据失效概率与设计要求进行比较,确定结构是否满足要求。
6.若结构不满足要求,则对设计参数或分项系数进行调整,重复步骤2-5SCM的优点在于可以充分考虑结构设计参数的不确定性和随机性,从而提高结构的安全性和可靠性。
此外,它还能够灵活应用于不同类型的结构和不同设计要求的场景中。
然而,SCM也存在一些局限性。