七年级数学图形的变化1
- 格式:doc
- 大小:423.00 KB
- 文档页数:3
初中图形变化教案教学目标:1. 了解平移、旋转和轴对称的概念及其在实际中的应用。
2. 学会使用平移、旋转和轴对称对图形进行变换。
3. 培养学生的观察能力、操作能力和解决问题的能力。
教学重点:1. 平移、旋转和轴对称的概念及性质。
2. 平移、旋转和轴对称在实际中的应用。
教学难点:1. 平移、旋转和轴对称的计算。
2. 灵活运用平移、旋转和轴对称解决实际问题。
教学准备:1. 教学课件或黑板。
2. 图形模板。
3. 练习题。
教学过程:一、导入(5分钟)1. 引导学生观察教室里的物体,如桌子、椅子、黑板等,找出它们之间的平移、旋转和轴对称关系。
2. 学生分享观察结果,教师点评并总结。
二、新课讲解(15分钟)1. 讲解平移的概念和性质,如平移的定义、平移的方向和距离等。
2. 讲解旋转的概念和性质,如旋转的定义、旋转的中心和角度等。
3. 讲解轴对称的概念和性质,如轴对称的定义、对称轴等。
三、实例演示(10分钟)1. 教师用图形模板进行实例演示,展示平移、旋转和轴对称的变换过程。
2. 学生跟随教师一起操作,体会平移、旋转和轴对称的性质。
四、练习巩固(10分钟)1. 学生独立完成练习题,巩固平移、旋转和轴对称的知识。
2. 教师选取部分学生的作业进行点评,解答学生的疑问。
五、应用拓展(5分钟)1. 学生分组讨论,思考平移、旋转和轴对称在实际中的应用,如设计图案、解决几何问题等。
2. 每组选代表进行分享,教师点评并总结。
六、课堂小结(5分钟)1. 教师引导学生总结本节课所学内容,巩固知识点。
2. 学生分享学习收获,教师给予鼓励和评价。
教学反思:本节课通过引导学生观察生活中的实例,让学生了解平移、旋转和轴对称的概念和性质,学会运用这些知识进行图形的变换。
在教学过程中,注意调动学生的积极性,鼓励学生参与课堂讨论,提高学生的观察能力和操作能力。
同时,通过练习题和应用拓展环节,让学生巩固所学知识,提高解决问题的能力。
在今后的教学中,可以尝试引入更多实际应用案例,让学生更好地理解和运用图形变化知识。
备战2023年中考数学考试易错题易错点07图形的变化01图形的平移平移的性质(1)平移的条件平移的方向、平移的距离(2)平移的性质①把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.②新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.1.(2022春•新城区校级期中)在直角坐标系中,点A,B的坐标分别是(1,0),(0,3),将线段AB平移,平移后点A的对应点A′的坐标是(2,﹣2),那么点B的对应点B′的坐标是()A.(1,1)B.(1,2)C.(2,2)D.(2,1)2.(2022秋•定远县期中)如图,在平面直角坐标系中,点A(﹣1,0),点A第1次向上跳动1个单位至点A1(﹣1,1),紧接着第2次向右跳动2个单位至点A2(1,1),第3次向上跳动1个单位,第4次向左跳动3个单位,第5次又向上跳动1个单位,第6次向右跳动4个单位,…依此规律跳动下去,点A第2022次跳动至点A2022的坐标是()A.(505,1009)B.(﹣506,1010)C.(﹣506,1011)D.(506,1011)3.(2022•南京模拟)如图,从起点A到终点B有多条路径,其中第一条路径为线段AB,其长度为a,第二条路径为折线ACB,其长度为b,第三条路径为折线ADEFGHIJKLB,其长度为c,第四条路径为半圆弧ACB,其长度为d,则这四条路径的长度关系为()A.a<b<c<d B.a<c<d<b C.a<b=c<d D.a<b<c=d4.(2022秋•拱墅区期末)以A(﹣1,7),B(﹣1,﹣2)为端点的线段上任意一点的坐标可表示为:(﹣1,y)(﹣2≤y≤7).现将这条线段水平向右平移5个单位,所得图形上任意一点的坐标可表示为.5.如图,在平面直角坐标系xOy中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)在图中画出△ABC向右平移4个单位,再向下平移2个单位的△A1B1C1;(2)写出点A1,B1,C1的坐标:A1,B1,C1;(3)设点P在x轴上,且△BCP与△ABC的面积相等,直接写出点P的坐标.02 轴对称轴对称的性质(1)如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.由轴对称的性质得到一下结论:①如果两个图形的对应点的连线被同一条直线垂直平分,那么这两个图形关于这条直线对称;②如果两个图形成轴对称,我们只要找到一对对应点,作出连接它们的线段的垂直平分线,就可以得到这两个图形的对称轴.(2)轴对称图形的对称轴也是任何一对对应点所连线段的垂直平分线.1.(2022秋•福州月考)如图,在Rt△ABC中,∠BAC=90°,∠B=55°,AD⊥BC,垂足为D,△ADB与△ADB'关于直线AD对称,点B的对称点是点B',则∠CAB'的度数为()A.10°B.20°C.30°D.40°2.(2022春•天桥区校级期中)如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点(且点P不与点B、C重合),PE⊥AB于E,PF⊥AC于F.则EF的最小值为()A.2.4B.4.8C.5.2D.63.(2022•上虞区模拟)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=,点P是斜边AB上一动点,连结CP,将△BCP以直线CP为对称轴进行轴对称变换,B点的对称点为B',连结AB',则在P点从点A出发向点B运动的整个过程中,线段AB'长度的最小值为()A.1B.C.﹣1D.3﹣4.(2021秋•讷河市期末)如图,∠AOB=30°,点P在∠AOB的内部,点C,D分别是点P关于OA、OB的对称点,连接CD交OA、OB分别于点E,F;若△PEF的周长的为10,则线段OP=()A.8B.9C.10D.115.(2021秋•思明区校级期末)如图,已知AB∥CD,AD∥BC,∠ABC=60°,BC=2AB=8,点C 关于AD的对称点为E,连接BE交AD于点F,点G为CD的中点,连接EG、BG,则S△BEG=()A.B.C.16D.326.(2022秋•渝中区校级期末)如图,在△ABC中,∠ABC=90°,AB=6,BC=8,AC边的垂直平分线交BC于E,交AC于D,F为上一点,连接EF,点C关于EF的对称点C'恰好落在ED的延长线上,则C'D的长为.7.(2022秋•东丽区校级期末)如图,在△ABC中,AB=AC,∠BAC=108°,点D在BC边上,△ABD、△AFD关于直线AD对称,∠F AC的角平分线交BC边于点G,连接FG.∠BAD=θ,当θ的值等于时,△DFG为等腰三角形.03 轴对称与坐标变化坐标与图形变化-对称(1)关于x轴对称横坐标相等,纵坐标互为相反数.(2)关于y轴对称纵坐标相等,横坐标互为相反数.(3)关于直线对称①关于直线x=m对称,P(a,b)⇒P(2m-a,b)②关于直线y=n对称,P(a,b)⇒P(a,2n-b)1.(2022•清城区一模)在平面直角坐标系中,点A(x2+2x,1)与点B(﹣3,1)关于y轴对称,则x的值为()A.1B.3或1C.﹣3或1D.3或﹣12.(2021秋•花都区期末)剪纸艺术是最古老的中国民间艺术之一,很多剪纸作品体现了数学中的对称美.如图,蝴蝶剪纸是一幅轴对称图形,将其放在平面直角坐标系中,如果图中点E的坐标为(2m,﹣n),其关于y轴对称的点F的坐标(3﹣n,﹣m+1),则(m﹣n)2022的值为()A.32022B.﹣1C.1D.03.(2022•金水区校级模拟)如图,在平面直角坐标系中,已知A(﹣2,0),B(0,4),点C与坐标原点O关于直线AB对称.将△ABC沿x轴向右平移,当线段AB扫过的面积为20时,此时点C的对应点C'的坐标为()A.B.C.D.4.(2022秋•渠县期末)在平面直角坐标系中,对△MBC进行循环往复的轴对称变换,若原来点A 的坐标是(,),则经过第2022次变换后所得的点A的坐标是.5.(2022秋•谢家集区期中)如图,在平面直角坐标系中,已知点A的坐标为(4,3).①若△ABC是关于直线y=1的轴对称图形,则点B的坐标为;②若△ABC是关于直线y=a的轴对称图形,则点B的坐标为.6.(2022秋•温江区校级期中)在平面直角坐标系xOy中,经过点M(0,m)且平行于x轴的直线可以记作直线y=m,平行于y轴的直线可以记作直线x=m,我们给出如下的定义:点P(x,y)先关于x轴对称得到点P1,再将点P1关于直线y=m对称得点P′,则称点P′为点P关于x轴和直线y=m的二次反射点.已知点P(2,3),Q(2,2)关于x轴和直线y=m的二次反射点分别为P1,Q1,点M(2,3)关于直线x=m对称的点为M1,则当三角形P1Q1M1的面积为1时,则m=.04 图形的翻折1、翻折变换(折叠问题)实质上就是轴对称变换.2、折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.3、在解决实际问题时,对于折叠较为复杂的问题可以实际操作图形的折叠,这样便于找到图形间的关系.首先清楚折叠和轴对称能够提供给我们隐含的并且可利用的条件.解题时,我们常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.我们运用方程解决时,应认真审题,设出正确的未知数.1.(2022秋•二七区校级期末)如图,在矩形ABCD中,点F是CD上一点,连结BF,然后沿着BF将矩形对折,使点C恰好落在AD边上的E处.若AE:ED=4:1,则tan∠EBF的值为()A.4B.3C.D.2.(2022秋•南岸区期末)如图,正方形ABCD的边长为4,E是边CD的中点,F是边AD上一动点,连接BF,将△ABF沿BF翻折得到△GBF,连接GE.当GE的长最小时,DF的长为()A.B.C.D.3.(2022秋•运城期末)如图,在菱形ABCD中,∠A=60°,点E,F分别在AB,AD上,沿EF折叠菱形,使点A落在BC边上的点G处,且EG⊥BD于点M,若AB=a(取=1.4,=1.7),则BE等于()A.B.C.D.4.(2023•市南区一模)如图,在矩形ABCD中,AB=1,在BC上取一点E,连接AE、ED,将△ABE沿AE翻折,使点B落在B'处,线段EB'交AD于点F,将△ECD沿DE翻折,使点C的对应点C'落在线段EB'上,若点C'恰好为EB'的中点,则线段EF的长为()A.B.C.D.5.(2022秋•徐汇区期末)如图所示,在△ABC中.沿着过点C的直线折叠这个三角形,使顶点A 落在BC边上的点E处,折痕为CD,并联结DE.如果BC=9cm,且满足=,边AC =.6.(2022秋•浦东新区期末)如图,正方形ABCD的边长为5,点E是边CD上的一点,将正方形ABCD沿直线AE翻折后,点D的对应点是点D',联结CD'交正方形ABCD的边AB于点F,如果AF=CE,那么AF的长是.05 中心对称中心对称(1)中心对称的定义把一个图形绕着某个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点..(2)中心对称的性质①关于中心对称的两个图形能够完全重合;②关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分.1.(2022春•嘉鱼县期末)如图,点O为矩形ABCD的两对角线交点,动点E从点A出发沿AB边向点B运动,同时动点F从点C出发以相同的速度沿CD边向点D运动,作直线EF,下列说法错误的是()A.直线EF平分矩形ABCD的周长B.直线EF必平分矩形ABCD的面积C.直线EF必过点OD.直线EF不能将矩形ABCD分成两个正方形2.(2022秋•莱西市期末)如图,点O为矩形ABCD的对称中心,点E从点A出发沿AB向点B运动,移动到点B停止,延长EO交CD于点F,则四边形AECF形状的变化依次为()A.平行四边形→菱形→平行四边形→矩形B.平行四边形→正方形→平行四边形→矩形C.平行四边形→正方形→菱形→矩形D.平行四边形→菱形→正方形→矩形3.(2021秋•中牟县期末)如图是两个完全重合的矩形,将其中一个始终保持不动,另一个矩形绕其对称中心按逆时针方向进行旋转,第一次旋转后得到图①,第二次旋转后得到图②,…,则第2022次旋转后得到的图形与图①~④中相同的()A.图①B.图②C.图③D.图④4.(2022•仙居县二模)如图,把正方形ABCD绕着它的对称中心O沿着逆时针方向旋转,得到正方形A′B′C′D′,A′B′和B'C′分别交AB于点E,F,在正方形旋转过程中,∠EOF的大小()A.随着旋转角度的增大而增大B.随着旋转角度的增大而减小C.不变,都是60°D.不变,都是45°5.(2022春•连城县校级月考)如图,在平面直角坐标系中,平行四边形OABC的顶点A在x轴上,定点B的坐标为(8,4),若直线经过点D(2,0),且将平行四边形OABC分割成面积相等的两部分,则直线DE的表达式()A.y=x﹣2B.y=2x﹣4C.D.y=3x﹣606 轴对称与最短路线问题1、最短路线问题在直线L上的同侧有两个点A、B,在直线L上有到A、B的距离之和最短的点存在,可以通过轴对称来确定,即作出其中一点关于直线L的对称点,对称点与另一点的连线与直线L的交点就是所要找的点.2、凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合本节所学轴对称变换来解决,多数情况要作点关于某直线的对称点.1.(2022秋•乌鲁木齐期末)如图,在锐角△ABC中,∠C=40°;点P是边AB上的一个定点,点M、N分别是AC和BC边上的动点,当△PMN的周长最小时,∠MPN的度数是()A.90°B.100°C.110°D.80°2.(2022秋•南沙区校级期末)如图,在△ABC中,∠ABC=60°,BD平分∠ABC,点E是BC上的一动点,点P是BD上一动点,连接PC,PE,若AB=6,S△ABC=15,则PC+PE的最小值是()A.B.6C.D.103.(2022秋•和平区校级期末)如图,在四边形ABCD中,∠A=∠C=90°,M,N分别是BC,AB 边上的动点,∠B=58°,当△DMN的周长最小时,∠MDN的度数是()A.122°B.64°C.62°D.58°4.(2022秋•长安区校级期末)如图,点E在等边△ABC的边BC上,BE=6,射线CD⊥BC于点C,点P是射线CD上一动点,点F是线段AB上一动点,当EP+PF的值最小时,BF=7,则AC 为()A.10B.12C.13D.145.(2022秋•黄陂区校级期末)如图,等腰三角形ABC的底边AB长为8,面积为24,腰BC的垂直平分线EF交边AB于点E,若D为AB边的中点,P为线段EF上一动点,则三角形DPB的周长的最小值为()A.7B.8C.9D.106.(2022秋•番禺区校级期末)如图,等腰三角形ABC的底边BC长为6,腰AC的垂直平分线EF分别交边AC、AB于点E,F,若D为BC边的中点,M为线段EF上一动点,若三角形CDM的周长的最小值为13,则等腰三角形ABC的面积为()A.78B.39C.42D.30A.①②③B.②③④C.③④⑤D.②③④⑤07 旋转的性质旋转的性质(1)旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等.(2)旋转三要素:①旋转中心;②旋转方向;③旋转角度.注意:三要素中只要任意改变一个,图形就会不一样.1.(2022秋•武昌区校级期末)如图,矩形ABCD中,AB=8,AD=6,将矩形ABCD绕点B按顺时针方向旋转后得到矩形A'B'C'D'.若边A'B交线段CD于H,且BH=DH,则DH的值是()A.B.C.D.2.(2022秋•泰山区期末)如图,在△ABC中,AB=AC,∠BAC=120°,O为BC的中点,将△ABC 绕点O顺时针旋转得到△DEF,当点D,E分别在边AC和CA的延长线上,连接CF,若AD=3,则△OFC的面积是()A.B.C.D.3.(2022秋•泰山区期末)如图,点P是等边三角形ABC内部一点,连接AP、BP、CP,且AP2=BP2+CP2,现将△APC绕点A顺时针旋转到△ADB的位置,对于下列结论:①△ADP是等边三角形;②△ABP≌△CBP;③∠DBP=90°;④∠BDA+∠BP A=210°.其中正确的结论有()A.1个B.2个C.3个D.4个4.(2022秋•遵义期末)如图,已知矩形ABCD,AB=5,AD=3,矩形GBEF是由矩形ABCD绕点B顺时针旋转90°得到的,点H为CD边上一点,现将四边形ABHD沿BH折叠得到四边形A'BHD',当点A'恰好落在EF上时,DH的长是()A.B.C.D.5.(2022秋•荔湾区校级期末)如图,正方形ABCD中,AB=5cm,以B为圆心,1cm为半径画圆,点P是⊙B上一个动点,连接AP,并将AP绕点A逆时针旋转90°至AP′,连接BP′,在点P 移动的过程中,BP′长度的取值范围是cm.6.(2022秋•达川区期末)如图,在平面直角坐标系中,点A的坐标为(﹣2,0),点B的坐标为(4,0),点M为x轴上方一动点,且MA=3,以点M为直角顶点构造等腰直角三角形BMP,当线段AP取最大值时,AP=,点M的坐标为.08 旋转与坐标变换坐标与图形变化-旋转(1)关于原点对称的点的坐标P(x,y)⇒P(-x,-y)(2)旋转图形的坐标图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.1.(2022秋•南宫市期末)如图,在平面直角坐标系中,Rt△ABC的直角顶点C的坐标为(2,0),点A在x轴正半轴上,且AC=4.将△ABC绕点C逆时针旋转90°,则旋转后点A的对应点的坐标为()A.(2,4)B.(2,﹣4)C.(2,2)D.(4,2)2.(2022秋•金华期末)如图,在平面直角坐标系中,已知点A(0,2),点B在第一象限内,AO =AB,∠OAB=120°,将△AOB绕点O逆时针旋转,每次旋转60°,则第2022次旋转后,点B 的坐标为()A.(﹣,3)B.(,0)C.(,3)D.(﹣2,0)3.(2022秋•汕尾期中)在平面直角坐标系中,等边△AOB如图放置,点A的坐标为(1,0),每一次将△AOB绕着点O逆时针方向旋转60°,同时每边扩大为原来的2倍,第一次旋转后得到△A1OB1,第二次旋转后得到△A2OB2,…,依次类推,则点A2021的坐标为()A.(﹣22020,﹣×22020)B.(22021,﹣×22021)C.(22020,﹣×22020)D.(﹣22011,﹣×22021)09 几何变换综合问题1.(2022秋•商河县期末)如图,已知△ABC中,AB=AC,∠BAC=α.点D是△ABC所在平面内不与点A、C重合的任意一点,连接CD,将线段CD绕点D顺时针旋转α得到线段DE,连接AD、BE.(1)如图1,当α=60°时,线段BE与AD的数量关系是;直线BE与AD相交所成的锐角的度数是.(2)如图2,当α=90°时,①(1)中的结论是否仍然成立,请说明理由;②当BE∥AC,AB=8,AD=时,请直接写出△DCE的面积.2.(2022秋•中原区期末)已知,△ABC和△DEC都是等腰直角三角形,C为它们公共的直角顶点,如图1,D,E分别在BC,AC边上,F是BE的中点,连接CF.(1)求证:△ACD≌△BCE.(2)请猜想AD与CF的数量关系和位置关系,并说明理由.(3)如图2,将△ABC固定不动,△DEC由图1位置绕点C逆时针旋转,旋转角∠BCD=α,(0°<a<90°),旋转过程中,其他条件不变.试判断,AD与CF的关系是否发生改变?若不变,请说明理由;若改变,请求出相关正确结论.3.(2022秋•顺义区期末)如图,△ABC为等边三角形,在∠BAC内作射线AP(∠BAP<30°),点B关于射线AP的对称点为点D,连接AD,作射线CD交AP于点E,连接BE.(1)依题意补全图形;(2)设∠BAP=α,求∠BCE的大小(用含α的代数式表示);(3)用等式表示EA,EB,EC之间的数量关系,并证明.4.(2023•临川区校级一模)旋转变换在平面几何中有着广泛的应用.特别是在解(证)有关等腰三角形、正三角形、正方形等问题时,更是经常用到的思维方法,请你用旋转交换等知识,解决下面的问题.如图1,△ABC与△DCE均为等腰直角三角形,DC与AB交于点M,CE与AB交于点N.(1)以点C为中心,将△ACM逆时针旋转90°,画出旋转后的△A′CM′(2)在(1)的基础上,证明AM2+BN2=MN2.(3)如图2,在四边形ABCD中,∠BAD=45°,∠BCD=90°,AC平分∠BCD,若BC=4,CD =3,则对角线AC的长度为多少?(直接写出结果即可,但在图中保留解决问题的过程中所作辅助线、标记的有关计算数据等)5.(2022•兴庆区校级一模)已知:如图,在矩形ABCD和等腰Rt△ADE中,AB=8cm,AD=AE=6cm,∠DAE=90°.点P从点B出发,沿BA方向匀速运动.速度为1cm/s;同时,点Q从点D 出发,沿DB方向匀速运动,速度为1cm/s.过点Q作QM∥BE,交AD于点H,交DE于点M,过点Q作QN∥BC,交CD于点N.分别连接PQ,PM,设运动时间为t(s)(0<t<8).解答下列各题:(1)当PQ⊥BD时,求t的值;(2)设五边形PMDNQ的面积为S(cm2),求S与t之间的函数关系式.6.(2022秋•晋中月考)综合与实践.项目式学习小组研究了一个问题,如图1,在矩形ABCD中,AB=4,AD=6,E,F分别是AB,AD的中点,四边形AEGF是矩形,连接CG.(1)请直接写出CG与DF的长度比为;(2)如图2,将矩形AEGF绕点A按顺时针方向旋转至点G落在AB边上,求点F到AD的距离;(3)将矩形AEGF绕点A按顺时针方向旋转至如图3所示的位置时,猜想CG与DF之间的数量关系,并证明你的猜想.7.(2022秋•淮北月考)在等腰△ABC中,BC=AC,点D在BC上,延长AC至点E,使CE=CD,连接AD,DE,BE.(1)若∠ACB=90°,①如图1,求证:BE=AD;②如图2,将△DCE绕点C按顺时针方向旋转一定的角度,使点A,D,E三点在一条直线上,判定△ABE的形状,并说明理由.(2)若∠DCE=∠ACB≠90°,如图3,(1)中①的结论是否成立?若不成立,请给出AD,BE 之间的数量关系;若成立,请给出证明.8.(2022秋•沙河口区期末)如图1,平面直角坐标系中,AB∥x轴,OA=AB,C是点A关于x轴的对称点,BC∥OA,交x轴于点E,连接OB.(1)求证:①OB平分∠AOE,②△OCE是等边三角形;(2)如图2,若F在OB上,∠BAF=45°,连接CF.点B的坐标为(a,b),直接写出点F的坐标(用a、b表示).。
一、轴对称是图形变换之一,我们应该熟练掌握常见的轴对称图形和中心对称图形。
常见的轴对称图形有:直线、线段、角、等腰三角形、等边三角形、矩形、正方形、菱形、正n边形(n ≥3,且n为正整数)、圆及二次函数的图象等。
常见的中心对称图形有:直线、线段、平行四边形、矩形、正方形、菱形、圆、正n边形(n≥4,且n为正偶数)及反比例函数的图象等。
既是轴对称图形又是中心对称图形的有:矩形、正方形、菱形、圆、正n边形(n≥4,且n为正偶数)等。
二、折叠是图形变换的第二种类型,满分技巧:凡是在几何图形中出现“折叠”的字眼,第一反应就是存在一组全等形,其次找出与要求几何量相关的条件.若涉及直角,则优先考虑勾股定理或三角函数的运用,尤其是在求线段长度的题目中,利用折叠的性质借助等量代换构造方程是通用计算步骤,故要养成解此类试题的思维习惯。
三、旋转是图形变换的第三种类型,我们首先要掌握旋转的性质:(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前后的图形全等。
其次要掌握旋转变换的易错点,在旋转过程中,旋转角、对应边、对应角都是相等的,容易触
雷的地方有两处:(1)找不准对应角、对应边;(2)分不清哪一个是旋转角。
四、位似是图形变换的第四种类型,首先必须掌握位似图形的性质,性质1:如果两个图形位似,那么任意一对对应点到位似中心的距离之比都等于位似比,任意一组对应边都互相平行(或在一条直线上);性质2:在平面直角坐标系中,如果以原点为位似中心,相似比为k,那么位似图形上的对应点的坐标的比等于k或-k。
其次还要掌握作位似图形的步骤:①确定位似中心;②确定原图形中的各顶点关于位似中心的对应点;③描出新的图形。
初一数学图形的变化试题1.某宾馆在重新装修后,准备在大厅的主楼梯上铺上红色地毯.已知这种红色地毯的售价为每平方米32元,主楼道宽2米,其侧面如图所示,则购买地毯至少需要________元.【答案】512【解析】本题考查平移性质的实际运用根据题意,结合图形,先把楼梯的横竖向上向左平移,构成一个矩形,再求得其面积,则购买地毯的钱数可求.如图,利用平移线段,把楼梯的横竖向上向左平移,构成一个矩形,长宽分别为5.5米,2.5米,∴地毯的长度为2.5+5.5=8米,地毯的面积为8×2=16平方米,∴买地毯至少需要16×32=512元.2.经过平移或旋转不可能将甲图案变成乙图案的是( ).【答案】C【解析】本题考查了平移和旋转的性质根据平移和旋转的性质进行选择,平移不改变图形的大小和形状,旋转改变图形的方向,可以作出选择.A、B、D通过旋转和平移,和乙图各点对应,均正确;C、经过平移和旋转变换不可能将甲图案变成乙,故错误.故选C.3.图中4个小三角形都是等边三角形.其中,可以通过平移△ABC而得到的三角形有A.0个B.1个C.2个D.3个【答案】C【解析】本题考查的是平移的性质根据平移不改变图形的形状及大小可得出答案.根据平移的性质可得:可以通过平移△ABC而得到的三角形有△FAE,△ECD共两个.故选C.4.如图,将一个三角形的三边依次都分成2、3、4……等分,并将分点按图1、图2、图3那样连起来,这样,每个图中所得到的小三角形都会全等.按此方法,当三边都分成10等分时,所得到的全等小三角形的个数是( ).A.98B.99C.100D.101【答案】C【解析】本题考查的是图形的变化第一图形中三角形的个数为4,第二个图形中三角形的个数为9,这两个数均为完全平方数,那么就可得到第n个图形中全等的三角形个数.由图可知(1)中顺次连接各中点所得全等的小三角形为;(2)中顺次连接各中点所得全等的小三角形为;同理如果把三条边分成3等分可得到个全等的小三角形,按照这种方式分下去,第n个图形中应该得到个全等的小三角形.10等分时,n=9,∴当三边都分成10等分时,所得到的全等小三角形的个数是.故选C.5.平移不改变图形的_______ 和______,只改变图形的_______。【答案】大小,形状,位置【解析】本题考查的是平移的性质根据平移的性质即可得到结果。
【关键字】数学点线面体的基本认识、立体图形的分类与图形的变化【本讲教育信息】一. 教学内容:点线面体的基本认识、立体图形的分类与图形的变化[目标]1. 从现实世界中抽象出几何图形,即只看物体的形状、大小和位置关系.2. 认识到图形是由点、线、面构成的,认识点、线、面、体之间的关系,即“面与面相交成线,线与线相交成点”.3. 认识圆柱、圆锥、棱柱、棱锥、正方体、长方体与球等立体图形的基本特征并能对简单几何体进行分类.4. 能把一些简单的平面图形(如三角形、多边形等)按要求(或自由的)拼成较复杂的图形.5. 会将图形平移、翻折和旋转.二. 重点、难点:1. 认识几何体的基本特征及其分类.2. 图形的变化三. 知识要点:(一)点线面的基本认识1. 图形由点、线、面构成(1)棱柱、棱锥1)相关概念:①棱柱、棱锥中任何相邻两面的交线叫做棱,(相邻两正面的交线叫做侧棱)②棱柱棱与棱的交点叫做棱柱的顶点③棱锥各侧棱的公共点叫做棱锥的顶点[注意]①除三棱锥外,棱锥的顶点只有1个,三棱锥4个顶点;②棱锥底面上棱与棱的交点不能称为棱锥的顶点,应称为棱锥的底面顶点.2)特点①棱柱的侧棱长相等②棱柱的上下底面是相同的多边形,棱柱正面都是平行四边形(特别地,直棱柱的正面都是长方形)③棱锥的正面都是三角形(2)圆柱、圆锥1)构成:①圆柱由3个面围成,其中2个面是平的,1个面是曲的;②圆锥由2个面围成,其中1个面是平的,;另一个面是曲的.2)异同点:①相同点:圆柱、圆锥底面都是圆(平面),正面都是曲面②不同点:圆柱有两个相同的底面,且互相平行;圆锥只有一个底面(二)立体图形的分类1. 分类标准:1)按柱、锥、球来分2)按几何体的面中是否有曲面2. 几种立体图形的分类:(2)(3)(6)是柱体(1)(5)是锥体(1)(3)(6)都是平面图形围成的几何体(2)(4)(5)都是曲面图形围成的几何体(1)(3)底面都是五边形(2)(5)底面都是圆面(1)(6)都是由6个平面图形围成的几何体(三)图形的变化1. 剪拼如:三角形拼图(1)、(2)等腰三角形;(3)、(4)平行四边形;(5)矩形;(6)筝形2. 平移由一个图形改变为另一个图形,在改变的过程中,原图形上所有的点都沿同一个方向运动,且运动相等的距离.这样的图形改变叫做图形的平移变换.3. 旋转(1)由一个图形改变为另一个图形,在改变的过程中,原图形上的所有点都绕一个固定的点或一条线,按同一个方向,转动同一个角度,这样的图形改变叫做图形的旋转变换.(2)点动成线,线动成面,面动成体4. 翻折如下图(1)到(2)【典型例题】例1. 在下列两行图形中,分别找出相互对应的图解:如下图:例2. 下列图形都是由半圆经过变化而得到的,请说出它们最简单的变化过程.答:图(1)是先沿AB翻转,再沿AB平移;图(2)是以MN为轴翻转;图(3)是以O为中心旋转180°.例3. 将以下方格图图(1)中阴影图形围绕点O,按顺时针方向依次旋转90°,看看会得到什么图形?(1)(2)分析:找准关键点的位置.答:如图(2).说明:旋转中图形的形状、大小与原图相同.通过平移、旋转、翻转可以得到很多美丽的图案,而变化前后仅仅是图形位置变化,形状、大小不变.例 4. 小明用如下左图的胶滚沿从左到右的方向将图案滚涂到墙上,右边所给的四个图案中符合胶滚的图案的是()答:选C.例5. 适当地剪几刀,可以把图中的十字变成一个正方形,有人说用两刀就可以,你试试看.解:剪法如下图所示:例 6. 由平的面围成的立体图形又叫做多面体,有几个面,就叫做几面体.三棱锥有四个面,所以三棱锥又叫四面体;正方体又叫做六面体,有五条侧棱的棱柱又叫做七面体.(1)探索:如果把一个多面体的顶点数记为V,棱数记为E,面数记为F,填表:多面体V F E V+F–E四面体长方体五棱柱(2)猜想:由上面的探究你能得到一个什么结论?(3)验证:在课本的插图中再找出一个多面体,数一数它有几个顶点,几条棱,几个面,看看面数、顶点数、棱数还是否满足上述关系.(4)应用:(2)的结果对所有的多面体都成立,伟大的数学家欧拉证明了这个关系式,上述关系式叫做欧拉公式.根据欧拉公式,想一想会不会有一个多面体,它有10个面,30条棱,20个顶点?解:(1)多面体V F E V+F–E四面体 4 4 6 2长方体8 6 12 2五棱柱10 7 15 2(2)V+F–E=2(3)略(4)20+10-30=0≠2,所以不会有这样的多面体.【模拟试题】(答题时间:30分钟)1. 判断题:1)长方形绕任意一条直线旋转一周形成圆柱.()2)直角三角形绕着任一条直线旋转总成一个圆锥.()3)一个圆绕着其直径旋转半周形成一个球面.()4)电风扇的三个叶片高速旋转时看到的是一整个圆面.()2. 下列图形不是立体图形的是()A. 球B. 圆柱C. 圆锥D. 圆3. 下列说法正确的是()A. 有六条侧棱的棱柱的底面一定是三角形B. 棱锥的侧面是三角形C. 长方体和正方体不是棱柱D. 柱体的上、下两底面可以大小不一样4. 下图几何体是由哪个图形旋转形成的?()5. 将下列几何体分类,柱体有:,锥体有(填序号)6. 长方体ABCD-A′B′C′D′有个面,条棱,个顶点.与棱AB垂直相交的棱有条,与棱AB平行的棱有条.7. 若一个棱柱的底面是一个七边形,则它的侧面必须有个长方形,它一共有个面.8. 有一个面是曲面的立体图形有(列举出三个).9. 从一个顶点出发,分别连接这个顶点与其余各顶点,分割下面的多边形,数一数它的边数,再数一数分割所得的三角形的个数,看一看多边形的边数与三角形的个数之间的关系.10. 一位父亲有4个儿子,他有一块正方形的土地,其中的四分之一留给了自己,如图,余下的分给他的4个儿子,他想使每个儿子获得的土地面积相等,形状相同,这位父亲应怎样完成这件事?【想一想】如图是一块带有圆形空洞和方形空洞的小木板,则下列物体中既可以堵住圆形空洞,又可以堵住方形空洞的是【试题答案】1. 1)×;2)×;3)√;4)√;2. D3. B4. B5. (1)(2)(3) ;(5)(6)6. 6 ;12;8;4;37. 7;98. 圆柱,圆锥,球(答案不唯一)9. 分割如下图,边数为n,分割成的三角形个数为n-2.10. 分割方法如下图所示:此文档是由网络收集并进行重新排版整理.word可编辑版本!。
§ 5.2图形的变化(1) [教案]
【课前预习】
1.点动成 ,线动成 , 动成体.
2.将一张矩形的纸对折,然后用笔尖在上面扎出“B ”,再把它铺平,你可见到
( )
A B C D
3.将一个图形平行移动到另一个位置,就形成了图形的平移. 如图,图 与图 可以经过平移相互得到.
4.把第一排中的平面图形绕虚线旋转一周,能形成第二排中的某个几何体,请把两排的相应图形用线连接起来.
【课堂重点】
1.将两块相同的直角三角板的相等边拼在一起,能拼出几种不同的平面图形?你能说出这些图形的名称吗?
2.(1)长方形纸板绕它的一条边旋转1周; (2)直角三角尺绕它的一条直角边旋转1周; (3)一枚硬币在桌面上竖直快速旋转; 它们分别形成怎样的几何体?
3.沿点划线一旁空白的方格中画图,使点划线两旁的图形完全相同.
4、完成课本P124做一做3、4两题(直接写在书上)
5、阅读教材P123-124内容、完成书后“练一练”.
6、本节课学习的主要内容是什么?你有哪些收获?
【课后巩固】
1.如图所示第一行的图形绕虚线旋转一周,便能形成第二行的某个几何体,用线连一连.
2.下列现象中是平移的是()A.将一张纸沿它的中线折叠 B.飞蝶的快速转动
C.电梯的上下移动 D.翻开书中的每一页纸张
3.右图
中的图形2可以看作图形1向下平移
格,再向左平
移格得到.
4.半圆面绕直径旋转一周形成.
5.画出将下图中的小船向左平移4格后的图
形.。
§5.2图形的变化(1)
【课前预习】
1.点动成,线动成,动成体.
2.将一张矩形的纸对折,然后用笔尖在上面扎出“B”,再把它铺平,
你可见到()
A
B C
D
3
如图,图与图可以经过平移相互得到.
4.把第一排中的平面图形绕虚线旋转一周,能形成第二排中的某个
几何体,请把两排的相应图形用线连接起来.
【课堂重点】
1.将两块相同的直角三角板的相等边拼在一起,能拼出几种不同的平
面图形?你能说出这些图形的名称吗?
A B C D
2.(1)长方形纸板绕它的一条边旋转1周;
(2)直角三角尺绕它的一条直角边旋转1周;
(3)一枚硬币在桌面上竖直快速旋转;
它们分别形成怎样的几何体?
3.沿点划线一旁空白的方格中画图,使点划线两旁的图形完全相同.
4、完成课本P124做一做3、4两题(直接写在书上)
5、阅读教材P123-124内容、完成书后“练一练”.
6、本节课学习的主要内容是什么?你有哪些收获?
【课后巩固】
1.如图所示第一行的图形绕虚线旋转一周,便能形成第二行的某个几何体,用线连一连.
2.下列现象中是平移的是()A.将一张纸沿它的中线折叠 B.飞蝶的快速转动
C.电梯的上下移动 D.翻开书中的每一页纸张
3.右图 中的图形2可以看作图形1向下平移 格,再向左平移 格得到.
4.半圆面绕直径旋转一周形成 .
5.画出将下图中的小船向左平移4格后的图形.
12。