第十二章随机过程及其统计描述概率论和数理统计
- 格式:ppt
- 大小:427.50 KB
- 文档页数:70
数理统计与随机过程一、数理统计的基本概念和方法1.1 数理统计的定义数理统计是应用数学和统计学的原理与方法,对各种现象进行观察、收集、整理、分析和解释,从而得出有关这些现象的规律性和特征性的科学。
1.2 数理统计的基本方法数理统计的基本方法包括:数据收集、数据整理、数据分析和结论推断等。
1.3 数据收集数据收集是指通过各种手段获取有关某一现象或问题的信息。
常见的数据收集方式包括问卷调查、实验观测、抽样调查等。
1.4 数据整理数据整理是指对收集到的原始数据进行加工处理,使其变成可分析和可比较的形式。
常见的数据整理方式包括分类汇总、编码标记等。
1.5 数据分析数据分析是指通过各种统计方法对已经整理好的数据进行描述性分析和推断性分析。
常见的数据分析方法包括频率分布、中心位置测度、离散程度测度等。
1.6 结论推断结论推断是指根据已经得出的结果,对所研究问题作出科学合理判断。
常见的结论推断方式包括假设检验、置信区间估计等。
二、随机变量及其分布2.1 随机变量的定义随机变量是指在一次试验中可能取到不同值的变量,其取值不仅受试验本身的性质决定,还受到随机因素的影响。
2.2 随机变量的分类随机变量可以分为离散型和连续型两种。
离散型随机变量只能取有限个或可数个值,而连续型随机变量可以取任意实数值。
2.3 随机变量的分布函数随机变量的分布函数是指对于任何实数x,求出X≤x的概率。
对于离散型随机变量,其分布函数为累积分布函数;对于连续型随机变量,其分布函数为概率密度函数。
2.4 常见离散型随机分布常见离散型随机分布包括:伯努利分布、二项式分布、泊松分布等。
2.5 常见连续型随机分布常见连续型随机分布包括:均匀分布、正态分布、指数分布等。
三、参数估计和假设检验3.1 参数估计的基本概念参数估计是指通过样本数据对总体分布的某些未知参数进行估计。
常见的参数估计方法包括点估计和区间估计。
3.2 点估计点估计是指用样本数据直接求出总体分布的某个未知参数的值。
浙江大学概率论与数理统计第4版复习笔记详解|才聪学习网浙江大学《概率论与数理统计》(第4版)笔记和课后习题(含考研真题)详解文章来源:才聪学习网/概率论与数理统计内容简介本书是浙江大学盛骤等主编的《概率论与数理统计》(第4版)的学习辅导书,主要包括以下内容:(1)梳理知识脉络,浓缩学科精华。
本书每章的复习笔记均对该章的重难点进行了整理,并参考了国内名校名师讲授该教材的课堂笔记。
因此,本书的内容几乎浓缩了该教材的知识精华。
(2)详解课后习题,巩固重点难点。
本书参考大量相关辅导资料,对盛骤主编的《概率论与数理统计》(第4版)的课后思考题进行了详细的分析和解答,并对相关重要知识点进行了延伸和归纳。
(3)精选考研真题,培养解题思路。
本书从历年考研真题中挑选最具代表性的部分,并对之做了详尽的解析。
所选考研真题基本涵盖了每章的考点和难点,考生可以据此了解考研真题的命题风格和难易程度,并检验自己的复习效果。
目录第1章概率论的基本概念1.1 复习笔记1.2 课后习题详解1.3 考研真题详解第2章随机变量及其分布2.1 复习笔记2.2 课后习题详解2.3 考研真题详解第3章多维随机变量及其分布3.1 复习笔记3.2 课后习题详解3.3 考研真题详解第4章随机变量的数字特征4.1 复习笔记4.2 课后习题详解4.3 考研真题详解第5章大数定律及中心极限定理5.1 复习笔记5.2 课后习题详解5.3 考研真题详解第6章样本及抽样分布6.1 复习笔记6.2 课后习题详解6.3 考研真题详解第7章参数估计7.1 复习笔记7.2 课后习题详解7.3 考研真题详解第8章假设检验8.1 复习笔记8.2 课后习题详解8.3 考研真题详解第9章方差分析及回归分析9.1 复习笔记9.2 课后习题详解9.3 考研真题详解第10章bootstrap方法10.1 复习笔记10.2 课后习题详解10.3 考研真题详解第11章在数理统计中应用Excel软件11.1 复习笔记11.2 课后习题详解11.3 考研真题详解第12章随机过程及其统计描述12.1 复习笔记12.2 课后习题详解12.3 考研真题详解第13章马尔可夫链13.1 复习笔记13.2 课后习题详解13.3 考研真题详解第14章平稳随机过程14.1 复习笔记14.2 课后习题详解14.3 考研真题详解复习笔记详解第1章概率论的基本概念1.1 复习笔记在个别试验中其结果呈现出不确定性,在大量重复试验中其结果又具有统计规律性的现象,称为随机现象.一、随机试验1.定义试验包括各种各样的科学实验,甚至对某一事物的某一特征的观察也认为是一种试验.2.试验的特点(1)可以在相同的条件下重复地进行;(2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;(3)进行一次试验之前不能确定哪一个结果会出现.在概率论中,将具有上述三个特点的试验称为随机试验.二、样本空间、随机事件1.样本空间随机试验E的所有可能结果组成的集合称为E的样本空间,记为S.样本空间的元素,即E的每个结果,称为样本点.2.随机事件一般地,称试验E的样本空间S的子集为E的随机事件,简称事件.在每次试验中,当且仅当这一子集中的一个样本点出现时,称这一事件发生.特别地,由一个样本点组成的单点集,称为基本事件.样本空间S包含所有的样本点,它是S自身的子集:(1)在每次试验中它总是发生的,S称为必然事件.(2)空集不包含任何样本点,也是样本空间的子集,它在每次试验中都不发生,称为不可能事件.3.事件间的关系与事件的运算事件间的关系与事件的运算按照集合论中集合之间的关系和集合运算来处理.设试验E的样本空间为S,而A,B,A k(k=1,2,…)是S的子集.(1)包含关系①若,则称事件B包含事件A,即事件A发生必导致事件B发生;②若且,即A=B,则称事件A与事件B相等.(2)和事件事件A∪B={x|x∈A或x∈B)称为事件A与事件B的和事件.当且仅当A,B 中至少有一个发生时,事件A B发生.称为n个事件A1,A2,…,A n的和事件;称为可列个事件A1,A2,…的和事件.(3)积事件事件A∩B={x|x∈A且x∈B)称为事件A与事件B的积事件.当且仅当A,B 同时发生时,事件A∩B发生.A∩B也记作AB.称为n个事件A1,A2,…,A n的积事件;称为可列个事件A1,A2,…的积事件.(4)差事件事件A-B={x|x∈A且x B)称为事件A与事件B的差事件.当且仅当A发生、B不发生时事件A-B发生.(5)互斥若,则称事件A与B是互不相容的,或互斥的.即事件A与事件B不能同时发生.基本事件是两两互不相容的.(6)逆事件若A∪B=S且,则称事件A与事件B互为逆事件,又称事件A与事件B互为对立事件.对每次试验而言,事件A、B中必有一个发生,且仅有一个发生.A的对立事件记为.(7)定律设A,B,C为事件,则有:①交换律:A∪B=B∪A;A∩B=B∩A;②结合律:A∪(B∪C)=(A∪B)∪C;A∩(B∩C)=(A∩B)∩C;③分配律:A∪(B∩C)=(A∪B)∩(A∪C);A∩(B∪C)=(A∩B)∪(A ∩C);④德摩根律:;.。
数理统计与随机过程
数理统计是一门研究如何从数据中提取信息的学科,它是现代统计学的基础。
数理统计的主要任务是通过对数据的分析和处理,得出数据的规律性和特征,从而对数据进行预测和决策。
数理统计的应用范围非常广泛,包括经济、金融、医学、环境、社会等各个领域。
随机过程是一种随机变量的序列,它描述了随机事件在时间上的演化过程。
随机过程是概率论和统计学中的重要概念,它在信号处理、通信、控制、金融等领域中有着广泛的应用。
数理统计和随机过程有着密切的联系。
在数理统计中,我们通常需要对数据进行建模,而随机过程提供了一种自然的建模方式。
例如,我们可以将时间序列数据看作是一个随机过程,然后通过对随机过程的分析和处理,得出数据的规律性和特征。
另外,在随机过程中,我们通常需要对随机变量的分布进行估计,而数理统计提供了一种有效的估计方法。
在实际应用中,数理统计和随机过程经常被用来解决各种问题。
例如,在金融领域中,我们可以使用随机过程来建立股票价格的模型,然后使用数理统计的方法对模型进行分析和预测。
在医学领域中,我们可以使用数理统计的方法对疾病的发病率进行分析,然后使用随机过程来建立疾病传播的模型。
数理统计和随机过程是现代统计学和概率论的重要组成部分,它们
在各个领域中都有着广泛的应用。
通过对数据的分析和建模,我们可以更好地理解数据的规律性和特征,从而为决策和预测提供更加准确的依据。
数理统计与随机过程
数理统计与随机过程是现代科学技术的重要基础,它们广泛应用于各个学科和领域。
在本文中,我们将介绍数理统计和随机过程的概念、应用及其重要性。
数理统计是一种研究统计规律的方法,它主要以概率论为基础,应用数学方法对数据进行分析和解释。
它可以帮助我们了解数据的分布、趋势和变化规律,从而提高决策的准确性。
数理统计应用广泛,包括经济学、环境科学、医学、社会科学等领域。
例如,在医学领域,数理统计可以帮助我们确定药物的有效性和安全性,从而提高临床治疗的质量和效果。
随机过程是一种研究随机现象的模型,它描述了随机变量随时间的变化规律。
随机过程在信号处理、通信、金融等领域应用广泛。
例如,在金融领域,随机过程可以用于模拟股票价格的变化,帮助投资者进行风险管理和决策。
数理统计和随机过程在现代科学技术中具有重要的地位。
它们可以提高决策的准确性和效率,帮助我们更好地理解和应对复杂的现实问题。
同时,它们也为我们提供了一种深入思考和探索科学世界的方法和工具。
数理统计和随机过程是现代科学技术的重要基础,它们在各个学科和领域中应用广泛,具有重要的理论和实践意义。
我们应该积极学
习和应用数理统计和随机过程的知识,不断拓展我们的科学视野和能力。
数理统计与随机过程数理统计与随机过程1. 引言数理统计与随机过程是两个密切相关的概念,既有相似之处又有一些区别之处。
数理统计是一种研究数据收集、分析和解释的方法,而随机过程则是研究时间上的随机变化的数学模型。
本文将深入探讨数理统计与随机过程的基本概念、应用以及相互关系,以期帮助读者更全面地理解这两个领域。
2. 数理统计数理统计是一种通过收集、处理和解释数据来进行推断和决策的学科。
它包括描述统计和推断统计两个方面。
描述统计主要包括对数据的总结、图形展示和基本统计指标的计算,通过这些方法可以揭示数据的特征和分布。
推断统计则是基于样本数据对总体特征进行估计和推断的方法,其中包括参数估计和假设检验。
数理统计在各个领域都有广泛的应用,如市场调研、医学研究和金融风险评估等。
3. 随机过程随机过程是一种描述随机现象演变的数学模型,它涉及到时间上不确定性的变化。
随机过程可以看作是一系列随机变量的集合,这些随机变量在时间上有关联,并且它们的取值取决于某个随机事件的结果。
随机过程可以分为离散时间和连续时间两种类型。
离散时间下的随机过程通常用更简单的概率论工具进行描述,如马尔可夫链和随机游走。
而连续时间下的随机过程则需要用到更为复杂的数学方法,如随机微分方程和布朗运动。
随机过程在物理学、通信系统和金融工程等领域有着广泛的应用。
4. 数理统计与随机过程的联系数理统计和随机过程有着密切的联系,两者既有相互支持的关系,也有独立发展的特点。
数理统计可以用来对随机过程进行建模和推断。
通过收集随机过程的样本数据,可以应用数理统计中的方法来估计空间分布、预测未来变化趋势等。
而随机过程则为数理统计提供了数据来源,将现实世界的随机现象进行数学描述,为数理统计的分析提供了基础。
随机过程的理论和方法也常常被运用到数理统计中。
在时间序列分析中,随机过程的模型可以用来描述数据随时间变化的规律,从而可以对未来的观测结果进行预测和分析。
数理统计和随机过程的融合使得对数据的分析更加全面和准确。
概率论与数理统计知识点总结免费超详细版概率论与数理统计是一门研究随机现象及其规律的数学学科,它在自然科学、工程技术、社会科学、经济金融等众多领域都有着广泛的应用。
以下是对概率论与数理统计主要知识点的详细总结。
一、随机事件与概率1、随机事件随机事件是指在一定条件下,可能出现也可能不出现的事件。
我们通常用大写字母A、B、C 等来表示。
随机事件的关系包括包含、相等、互斥(互不相容)和对立等。
2、概率的定义概率是用来度量随机事件发生可能性大小的数值。
概率的古典定义是:如果一个试验有 n 个等可能的结果,事件 A 包含其中的 m 个结果,则事件 A 发生的概率为 P(A) = m / n 。
概率的统计定义是:在大量重复试验中,事件 A 发生的频率稳定地接近于某个常数 p,就把 p 称为事件 A 的概率。
3、概率的性质概率具有非负性(0 ≤ P(A) ≤ 1)、规范性(P(Ω) = 1,其中Ω 表示样本空间)和可加性(对于互斥事件 A 和 B,有 P(A∪B) = P(A) +P(B))。
二、条件概率与乘法公式1、条件概率条件概率是指在事件 B 发生的条件下,事件 A 发生的概率,记作P(A|B)。
其计算公式为 P(A|B) = P(AB) / P(B) ,其中 P(AB) 表示事件A 和B 同时发生的概率。
2、乘法公式乘法公式有两种形式:P(AB) = P(A|B)P(B) 和 P(AB) =P(B|A)P(A) 。
三、全概率公式与贝叶斯公式1、全概率公式设 B₁,B₂,,Bₙ 是样本空间Ω 的一个划分,且 P(Bᵢ) > 0(i =1, 2,, n),则对于任意事件 A,有 P(A) =Σ P(Bᵢ)P(A|Bᵢ) 。
2、贝叶斯公式在全概率公式的基础上,如果已知 P(A) 和 P(Bᵢ)、P(A|Bᵢ)(i = 1, 2,,n),则对于任意事件 Bᵢ(i = 1, 2,, n),有 P(Bᵢ|A) = P(Bᵢ)P(A|Bᵢ)/Σ P(Bₙ)P(A|Bₙ) 。
数理统计与随机过程知识点总结数理统计和随机过程是基础研究探索世界现象和未知现象的杰出工具,因此,对于想要发展科学技术的知识和研究能力的研究人员和学者是至关重要的。
在本文中,我们将概述数理统计和随机过程学科中重要的知识点,以期帮助研究人员和学者更好地理解这两门学科,以及它们在工程应用和科学研究中的重要性。
首先,数理统计的基本概念是频率学派的思想,它以概率和概率分布理论为基础。
在数理统计中,可以用不同的分析方法来研究特定的统计分布,并使用统计学的工具来确定问题的解决方案。
此外,数理统计还涉及描述性统计,回归分析,分析和预测统计,经验概率分布和统计推断。
其次,随机过程是一门研究不确定性或未知性行为的学科,一般是指随机变量或随机变量序列的行为。
主要用于处理过去,现在和未来时刻发生的事件。
在随机过程中,可以使用概率论来研究集合中变量的关系,从而了解系统的发展趋势,以及如何运用随机过程的知识来解决问题。
随机过程涉及到随机变量的分布,频率,跳跃,稳定性,非平稳性,随机变量序列和模型,马尔可夫链,随机微分方程,随机微分方程的数值求解和随机微分方程的解析求解。
此外,数理统计和随机过程学科还涉及应用,例如生物统计学,医学统计学,金融统计学,社会统计学,环境统计学,工程统计学和经济统计学。
此外,数理统计和随机过程的工程应用也在不断发展,例如用于风险分析,信号处理,统计图形分析,生物信息学,数据挖掘,人工智能,搜索引擎优化和机器学习等。
综上所述,数理统计和随机过程是关键的学科,这些学科的研究可以帮助研究人员和学者更好地理解世界现象,并有助于他们在未来的研究中发挥更大的作用。
本文旨在总结数理统计和随机过程学科中重要的知识点,并展示两个学科在工程应用和科学研究中的重要性。
深入了解这些学科将有助于研究人员和学者更好地利用数理统计和随机过程研究现象和未知现象,从而最大化社会,经济和技术发展的好处。
数学中的随机过程与概率论数学中的随机过程与概率论是两个密切相关的领域,它们在各个学科中都扮演着重要的角色。
随机过程是一组随机变量的集合,描述了随机现象在时间上的演化规律;而概率论是研究随机现象的定量分析方法和数学理论。
本文将介绍数学中的随机过程与概率论,并探讨它们在实际问题中的应用。
一、随机过程的基本概念随机过程是一组随机变量的集合,其中每个随机变量表示在不同的时间点上观察到的随机现象。
随机过程可以分为离散随机过程和连续随机过程。
离散随机过程是在离散的时间点上进行观察的,例如抛硬币的结果;而连续随机过程则是在连续的时间区间上进行观察的,例如股票价格的波动。
随机过程可以通过概率分布函数或概率密度函数来描述其随机性质。
常见的随机过程模型包括马尔可夫链、布朗运动等。
马尔可夫链是一类满足马尔可夫性质的随机过程,即未来的状态只依赖于当前的状态,而与过去的状态无关。
布朗运动是一种具有连续性和 Markov性质的随机过程,广泛应用于金融学、物理学等领域。
二、概率论的基本概念概率论是研究随机现象的定量分析方法和数学理论,它提供了一种描述和分析随机现象的工具。
概率论涉及到概率的定义、概率分布、随机变量等概念。
概率的定义是指事件发生的可能性大小,它的取值范围是0到1之间。
对于随机变量,可以通过概率分布函数或概率密度函数来描述其取值的概率分布情况。
概率分布函数描述了随机变量的离散取值情况,而概率密度函数描述了随机变量的连续取值情况。
在概率论中,有许多重要的分布模型,如正态分布、泊松分布、指数分布等。
正态分布是最常见的分布模型之一,它在自然界和社会科学中广泛应用。
泊松分布和指数分布则分别用于描述稀有事件的发生频率和连续事件的等待时间。
三、随机过程与概率论的应用随机过程和概率论在众多领域中都扮演着重要的角色,例如金融学、通信工程、统计学等。
在金融学中,随机过程和概率论被广泛应用于金融市场的建模与分析。
例如,布朗运动被用来描述股票价格的变动情况,通过对股票价格的随机性质进行建模,可以帮助投资者进行风险评估和投资决策。
高等数学不用看的部分:第5页映射;第17页到第20页双曲正弦双曲余弦双曲正切及相应的反函数可以不记;第107页由参数方程所确定的函数的导数;第119页微分在近似方程中的应用记住几个公式4,5,6还有120页的近似公式即可,不用看例题;第140页泰勒公式的证明可以不看,例题中的几个公式一定要记住,比如正弦公式等;第169页第七节;第178页第八节;第213页第四节;第218页第五节;第280页平行截面面积为已知的立体体积;第282页平面曲线的弧长;第287页第三节;第316页第五节;在第七章微分方程中建议大家只要会解方程即可,凡是书上涉及到物理之类的例题不看跳过例如第301页的例2例3例4;第八章;第90页第六节;第101页第七节;第157页第三节;165页第四节;第十一章;第261页定理6;第278页第四节;第285页第五节;第302页第七节;第316第八节线性代数不用看的部分:第102页第五节概率论与数理统计要考的部分:第一二三四五章;第六章第135页抽样分布;第7章第一节点估计和第二节最大似然估计注意:数学课本和习题中标注星号的为不考内容,在上面的内容中我并没有标出。
上述内容是根据文都发放的教材编的。
《高等数学》目录与2010数三大纲对照的重点计划用时(天)标记及内容要求:★─大纲中要求“掌握”和“会”的内容以及对学习高数特别重要的内容,应当重点加强,对其概念、性质、结论及使用方法熟知,对重要定理、公式会推导。
要大量做题。
☆─大纲中要求“理解”和“了解”的内容以及对学习高数比较重要的内容,要看懂定理、公式的推导,知道其概念、性质和方法,能使用其结论做题●─大纲中没有明确要求,但对做题和以后的学习有帮助。
要能看懂,了解其思路和结论。
▲─超出大纲要求。
第一章函数与极限第一节映射与函数(☆集合、影射,★其余)第二节数列的极限(☆)第三节函数的极限(☆)第四节无穷小与无穷大(★)第五节极限运算法则(★)第六节极限存在准则(★)第七节无穷小的比较(★)第八节函数的连续性与间断点(★)第九节连续函数的运算与初等函数的连续性(★)第十节闭区间上连续函数的性质(★)总习题第二章导数与微分第一节导数概念(★)第二节函数的求导法则(★)第三节高阶导数(★)第四节隐函数及由参数方程所确定的函数的导数相关变化率(★)第五节函数的微分(★)总习题二第三章微分中值定理与导数的应用第一节微分中值定理(★罗尔,★拉格朗日,☆柯西)第二节洛必达法则(★)第三节泰勒公式(☆)第四节函数的单调性与曲线的凹凸性(★)第五节函数的极值与最大值最小值(★)第六节函数图形的描绘(★)第七节曲率(●)第八节方程的近似解(●)总习题三(★注意渐近线)第四章不定积分第一节不定积分的概念与性质(★)第二节换元积分法(★)第三节分部积分法(★)第四节有理函数的积分(★)第五节积分表的使用(★)总习题四第五章定积分第一节定积分的概念与性质(☆)第二节微积分基本公式(★)第三节定积分的换元法和分部积分法(★)第四节反常积分(☆概念,★计算)第五节反常积分的审敛法г函数(●)总习题五第六章定积分的应用第一节定积分的元素法(★)第二节定积分在几何学上的应用(★平面面积,★旋转体,★简单经济应用)第三节定积分在物理学上的应用(★求函数平均值)总习题六、第七章微分方程第一节微分方程的基本概念(☆)第二节可分离变量的微分方程(☆)(★掌握求解方法)第三节齐次方程(☆)(★掌握求解方法)第四节一阶线性微分方程(☆)(★掌握求解方法)第五节可降阶的高阶微分方程(☆)第六节高阶线性微分方程(☆)第七节常系数齐次线性微分方程(★二阶的)第八节常系数非齐次线性微分方程(★二阶的)第九节欧拉方程(●)第十节常系数线性微分方程组解法举例(●)总习题七附录I 二阶和三阶行列式简介附录II 几种常用的曲线附录、积分表第八章空间解析几何与向量代数(▲)第一节向量及其线性运算第二节数量积向量积混合积第三节曲面及其方程第四节空间曲线及其方程第五节平面及其方程第六节空间直线及其方程总习题八第九章多元函数微分法及其应用第一节多元函数的基本概念(☆)第二节偏导数(☆概念。
数理统计与随机过程李忠范数理统计与随机过程是概率论和统计学的重要分支,它们的研究对象都是随机现象。
数理统计主要研究如何从样本中推断总体的性质,而随机过程则关注于随机现象在时间上的演化规律。
本文将从简单介绍数理统计和随机过程的基本概念开始,逐渐深入探讨其应用和研究方法。
一、数理统计1.1 基本概念数理统计是一门研究如何根据数据推断总体特征的学科。
它涉及到总体、样本、参数估计、假设检验等基本概念。
在实际应用中,我们往往无法直接获得总体的信息,只能通过对样本进行观察和分析来推断总体的性质。
1.2 参数估计参数估计是数理统计中的重要内容,它通过样本数据来估计总体的未知参数。
最常用的参数估计方法有矩估计和最大似然估计。
矩估计是根据样本矩的性质来估计总体参数,而最大似然估计则是寻找最有可能产生观测数据的参数值。
1.3 假设检验假设检验是数理统计中用来判断总体参数是否符合某种设定的方法。
它分为参数检验和非参数检验两种。
参数检验通常是对总体参数进行假设,然后通过样本数据来判断该假设是否成立;非参数检验则不对总体参数做特定的假设,通过对样本的分布进行比较来得出结论。
1.4 方差分析方差分析是数理统计中用来分析多个总体均值是否相等的方法。
它通过比较组间变异和组内变异的大小来推断不同组的均值是否有显著差异。
方差分析在实际应用中广泛用于比较不同处理组之间的差异。
二、随机过程2.1 基本概念随机过程是描述随机现象在时间上演化的数学模型。
它由状态空间、时间集合和转移概率组成。
随机过程可以是离散的,也可以是连续的。
通过研究转移概率和状态空间的性质,我们可以了解随机过程在不同状态之间的转移规律。
2.2 马尔可夫链马尔可夫链是随机过程的一种特殊形式,它具有马尔可夫性质,即未来状态的概率分布仅依赖于当前状态,而与历史状态无关。
马尔可夫链在很多领域中都有广泛应用,比如排队论、货物流动等。
2.3 布朗运动布朗运动是一种连续时间、连续状态的随机过程,它具有独立增量和正态分布特性。