坐标计算转角
- 格式:xls
- 大小:22.50 KB
- 文档页数:1
坐标计算公式一、计算公式1、圆曲线坐标计算公式β=180°/π×L/R (L= βπ R/180°)弧长公式β为圆心角△X=sinβ×R△Y=(1-cosβ)×RC= 弦长X=X1+cos (α±β/2)×CY=Y1+sin (α±β/2)×Cβ代表偏角,(既弧上任一点所对的圆心角)。
β/2是所谓的偏角(弦长与切线的夹角)△X、△Y代表增量值。
X、Y代表准备求的坐标。
X1、Y1代表起算点坐标值。
α代表起算点的方位角。
R 代表曲线半径2、缓和曲线坐标计算公式β= L2/2RLS ×180°/πC= L - L5/90R2LS2X=X1+cos (α±β/3)×CY=Y1+sin (α±β/3)×CL代表起算点到准备算的距离。
LS代表缓和曲线总长。
X1、Y1代表起算点坐标值。
3、直线坐标计算公式X=X1+cosα×LY=Y1+sinα×LX1、Y1代表起算点坐标值α代表直线段方位角。
L代表起算点到准备算的距离。
4、左右边桩计算方法X边=X中+cos(α±90°)×LY边=Y中+sin(α±90°)×L在计算左右边桩时,先求出中桩坐标,在用此公式求左右边桩。
如果在线路方向左侧用中桩方位角减去90°,线路右侧加90°,乘以准备算的左右宽度。
二、例题解析例题:直线坐标计算方法α(方位角)=18°21′47″DK184+714.029求DK186+421.02里程坐标X1=84817.831 Y1=352.177 起始里程解:根据公式X=X1+cosα×LX=84817.831+COS18°21′47″×(86421.02—84714.029)=86437.90 1Y=Y1+sinα×LY=352.177+sin18°21′47″×(86421.02—84714.029)=889.943 求DK186+421.02里程左右边桩,左侧3.75m,右侧7.05m.解:根据公式线路左侧计算:X边=X中+cos(α±90°)×LX边=86437.901+cos(18°21′47″- 90°)×3.75=86439.082Y边=Y中+sin(α±90°)×LY边=889.943+sin(18°21′47″- 90°)×3.75=886.384线路右侧计算:X边=X中+cos(α±90°)×LX边=86437.901+cos(18°21′47″+ 90°)×7.05=86435.680Y边=Y中+sin(α±90°)×LY边=889.943+sin(18°21′47″+90°)×7.05=896.634例题:缓和曲线坐标计算方法α(ZH点起始方位角)=18°21′47″ X1=86437.901 Y1=889.941 起始里程DK186+421.02曲线半径2500 缓和曲线长120m求HY点坐标,也可以求ZH点到HY点任意坐标解:根据公式β=L2/2RLS×180°/πβ={1202/(2×2500×120)}×(180°/π)= 1°22′30.36″C=L-L5/90R2LS2C=120-1205/(90×25002×1202)=119.997X=X1+cos(α±β/3)×CX=86437.901+cos(18°21′47″-1°22′30.36″/3)×119.997=86552.086 Y=Y1+sin(α±β/3)×CY=889.941+sin(18°21′47″-1°22′30.36″/3)×119.997=926.832 求DK186+541.02里程左右边桩,左侧3.75m,右侧7.05m.解:根据公式线路左侧计算:X边=X中+cos(α±90°)×LX边=86552.086+cos{(18°21′47″-1°22′30.36″)- 90°}×3.75=86553.182 Y边=Y中+sin(α±90°)×LY边=926.832+sin{(18°21′47″-1°22′30.36″)- 90°}×3.75=923.246 线路右侧计算:X边=X中+cos(α±90°)×LX边=86552.086+cos{(18°21′47″-1°22′30.36″)+ 90°}×7.05=86550.026 Y边=Y中+sin(α±90°)×LY边=926.832+sin{(18°21′47″-1°22′30.36″)+ 90°}×7.05=933.574 缓和曲线方位角计算方法α=(起始方位角±β偏角)= 18°21′47″-1°22′30.36″=16°59′16.64″注:缓和曲线在计算坐标时,此公式只能从两头往中间推,只能从ZH点往HY点推,HZ点往YH点推算,如果YH往HZ点推算坐标,公式里的β为β2/3.例题:圆曲线坐标计算方法α(HY点起始方位角)= 16°59′16.64″ X1=86552.086 Y1=926.832 曲线半径2500 曲线长748.75 起始里程DK186+541.02求YH点坐标,也可以求QZ点坐标或任意圆曲线一点坐标.解:根据公式β=180°/π×L/Rβ= 180°/π×748.75/2500=17°09′36.31″△X=sinβ×R△X=sin17°09′36.31″×2500=737.606△Y=(1-cosβ)×R△Y=(1-cos17°09′36.31″)×2500=111.290C= 弦长C=745.954X=X1+cos(α±β/2)×CX= 86552.086 +cos(16°59′16.64″+360°-17°09′36.31″/2)×745.954=87290.023 Y=Y1+sin(α±β/2)×CY=926.832+ sin(16°59′16.64″+360°-17°09′36.31″/2)×745.954=1035.905圆曲线方位角计算方法α=(起始方位角±β偏角)=16°59′16.64″+360°-17°09′36.31″=359°49′40.33″求DK187+289.77里程左右边桩,左侧3.75m,右侧7.05m.解:根据公式线路左侧计算:X边=X中+cos(α±90°)×LX边=87290.023+cos(359°49′40.33″-90°)×3.75=87290.012 Y边=Y中+sin(α±90°)×LY边=1035.905+sin(359°49′40.33″-90°)×3.75=1032.155线路右侧计算:X边=X中+cos(α±90°)×LX边=87290.023+cos(359°49′40.33″+90°)×7.05=87290.044 Y边=Y中+sin(α±90°)×LY边=1035.905+sin(359°49′40.33″+90°)×7.05=1042.955三、公式解析公式解析一.坐标转换X =A +NCOSα-ESINαY =B +NSINα+ECOSα N=(X-A) COSα±(Y-B)SINα E=(Y-B)COSα±(X-A)SINαA,B为施工坐标系坐标原点α为施工坐标系与北京坐标系X轴的夹角(旋转角)即大地坐标系方位角X,Y为北京坐标值N,E为施工坐标值二.方位角计算1.直线段方位角: α=tanˉ¹ [(Yb-Ya)/(Xb-Xa)]2.交点转角角度: α=2 tanˉ¹ (T/R)计算结果①为﹢且<360,则用原数;②为﹢且>360,则减去360;③为﹣,则加上180.3.缓和曲线上切线角: α=ƟZH±90°*Lo²/(π*R* Ls)α= Lo/(2ρ)=Lo²/(2 A²)=Lo²/(2R*Ls)ρ—该点的曲率半径4.圆曲线上切线角: α=ƟHY±180°*Lo/(π*R)ƟZH—直缓点方位角, ƟHY—缓圆点方位角,注:以计算方向为准,左偏,取"﹣";右偏,取"﹢"。
三维空间坐标的旋转算法引言三维空间坐标的旋转算法是计算机图形学中一个重要的概念。
它用于描述和计算物体在三维空间中的旋转变换。
在计算机图形学中,我们经常需要对物体进行旋转、平移和缩放等操作,而旋转是其中一种基本的操作之一。
因此,了解和掌握三维空间坐标的旋转算法对于计算机图形学的学习和应用非常重要。
本文将详细介绍三维空间坐标的旋转算法,包括旋转矩阵的推导、旋转向量的计算以及实际应用中的旋转问题。
并且,我们将通过具体的示例和数学推导来说明这些概念和算法的原理。
二级标题1三级标题1旋转矩阵三维空间中的旋转可以通过一个特殊的矩阵来描述和计算,这个矩阵被称为旋转矩阵。
旋转矩阵通常用一个3x3的矩阵表示,可以将一个三维向量绕某个旋转轴旋转一定角度。
旋转矩阵的推导过程比较复杂,这里我们给出最终的结果。
旋转矩阵的一般形式如下:[ R =]其中,()表示旋转的角度。
对于二维空间的旋转,只需要按照上述形式将z坐标置为0即可。
三级标题2旋转向量旋转矩阵描述了三维空间中的旋转变换,但是在实际应用中,我们更常用的是旋转向量来描述和计算旋转。
旋转向量通常用一个三维向量表示,其中向量的方向表示旋转轴,向量的长度表示旋转角度。
旋转向量的计算可以通过旋转矩阵进行推导得到。
假设旋转矩阵为R,旋转轴为向量v,旋转角度为θ,那么旋转向量可以通过以下公式计算:[ v =]其中,(R_{ij})表示旋转矩阵R的第i行第j列的元素。
二级标题2三级标题3应用示例三维空间坐标的旋转算法在许多应用中都有广泛的应用,例如飞行模拟、3D游戏和计算机辅助设计等领域。
让我们以飞行模拟为例来说明三维空间坐标的旋转算法的应用。
在飞行模拟中,我们需要根据飞行器的姿态信息来计算飞行器的位移和姿态。
姿态信息通常包括飞行器的欧拉角(俯仰角、偏航角和滚转角),我们可以通过旋转矩阵或旋转向量将欧拉角转换为旋转矩阵或旋转向量,然后使用这些信息来计算飞行器的位移。
三级标题4旋转问题在实际应用中,我们可能会遇到一些旋转问题,例如旋转顺序的影响、旋转角度的表示范围等。
公式解析一.坐标转换X =A +N COSα-E SINαY =B +N SINα+E COSαN=(X-A) COSα±(Y-B)SINαE=(Y-B)COSα±(X-A)SINαA,B为施工坐标系坐标原点α为施工坐标系与北京坐标系X轴的夹角(旋转角)即大地坐标系方位角X,Y为北京坐标值 N,E为施工坐标值二.方位角计算1.直线段方位角: α=tanˉ¹ [(Yb-Ya)/(Xb-Xa)]2.交点转角角度: α=2 tanˉ¹ (T/R)计算结果①为﹢且<360,则用原数;②为﹢且>360,则减去360;③为﹣,则加上180.3.缓和曲线上切线角: α=ƟZH±90°*Lo²/(π*R* Ls)α= Lo/(2ρ)=Lo²/(2 A²)=Lo²/(2R*Ls)ρ—该点的曲率半径4.圆曲线上切线角: α=ƟHY±180°*Lo/(π*R)ƟZH—直缓点方位角, ƟHY—缓圆点方位角,注:以计算方向为准,左偏,取"﹣";右偏,取"﹢"。
左偏,则第一段缓和曲线和圆曲线上取"﹣",第二段缓和曲线上取"﹢" ;右偏,则第一段缓和曲线和圆曲线上取"﹢",第二段缓和曲线上取"﹣" .。
符号说明:A—回旋线参数(A²=R* Ls) Ls—缓和曲线长度R—曲线半径Lo—曲线长度:计算点位到特殊点(ZH、HY、YH、HZ)的长度三.坐标值计算1.直线段坐标计算公式:直线两端点A.B间距离为S;A点坐标为A(Xa, Ya);方位角为αXb= Xa+S*cosαYb= Ya+S*sinα2.缓和曲线及圆曲线坐标计算公式:①缓和曲线坐标计算公式:X=XZH+(Lo-Lo^5/(40*R^2*Ls^2)+Lo^9/(3456*R^4*Ls ^4)-Lo^13/(599040*R^6*Ls^6)+Lo^17/(175472640*R ^8*Ls^8))*cosα-(Lo^3/(6*R*Ls)-Lo^7/(336*R^3*L s^3)+Lo^11/(42240*R^5*Ls^5)-Lo^15/(9676800*R^7 *Ls^7)+Lo^19/(3530096640*R^9*Ls^9))*sinαY=YZH+(Lo-^5/(40*R^2*Ls^2)+Lo^9/(3456*R^4*Ls^4 )-Lo^13/(599040*R^6*Ls^6)+Lo^17/(175472640*R^8 *Ls^8))*sinα+(Lo^3/(6*R*Ls)-Lo^7/(336*R^3*Ls^ 3)+Lo^11/(42240*R^5*Ls^5)-Lo^15/(9676800*R^7*L s^7)+Lo^19/(3530096640*R^9*Ls^9))* cosα符号说明:XZH—直缓点X坐标值 YZH—直缓点Y坐标值 A—回旋线参数(A²=R* Ls)Lo—计算点位到特殊点的长度 Ls—缓和曲线长度R—曲线半径α—方位角注:式中,紫色部分为缓和曲线任意点的坐标增量(支距坐标)。
测量坐标方位角计算在数学和物理学中,坐标方位角是指从参考方向(通常为正方向)开始逆时针旋转到目标方向所需的角度。
这个术语通常用于描述平面坐标系中的点。
为了测量坐标方位角,可以使用以下步骤:Step 1:确定参考方向在测量坐标方位角之前,需要确定参考方向。
这通常是正方向,可以选择为x轴或y轴的正方向。
例如,可以选择x轴的正方向作为参考方向。
Step 2:计算向量坐标方位角涉及到从参考方向到目标方向的旋转角度。
为了计算旋转角度,需要先计算从参考方向到目标方向的向量。
可以使用下面的公式来计算向量的分量:v_x=x-x_0v_y=y-y_0其中,(x_0,y_0)是参考点的坐标,(x,y)是目标点的坐标。
Step 3:计算方位角一旦计算出向量的分量,可以使用向量的分量来计算方位角。
可以使用反正切函数来计算角度。
反正切函数的定义如下:θ = atan2(v_y, v_x)其中,θ表示方位角,atan2(是一个数学函数,用于计算反正切。
Step 4:转换为度数在计算方位角后,结果通常以弧度表示。
如果需要以度数表示,可以将方位角乘以180并除以π(π是圆周率)。
θ_degrees = θ * 180 / π这样就得到了以度数表示的方位角。
总结:测量坐标方位角的步骤包括确定参考方向,计算向量的分量,使用反正切函数计算方位角,然后将结果转换为度数。
这个过程可以帮助我们找到从参考方向到目标方向的旋转角度。
坐标方位角的概念在很多领域中都有应用,例如导航、无人机操作和图形设计。
主桩计算公式:切线长:曲线长:圆曲线长度:外距:切曲差:切线加长:切线内移量:缓和曲线角:X=X 0+Cos(FWJ)*(ZH-ZH 0)Y=Y 0+Sin(FWJ)*(ZH-ZH 0)60496.303QD曲线要素公式:直线段:X 0;Y 0;FWJ;ZH 0第一缓和曲线段:圆曲线:第二缓和曲线段:)(2)(m m tg p R T ++=α)(180m Ls R L +=απο180)2(0πβα-=R L y )m (R 2sec )p R (E -α+=)(2m LT q -=⎪⎪⎪⎭⎪⎪⎪⎬⎫•==-=πβο18022424020223R L R L P R L L m s s s s2710420.530419921.016第一缓和曲线长2710752.946152.027420120.0562711595.8740.54030.912左偏45.58°387.450740.714436.66064.07534.18675.9871.3015.885°第一段387.450直线起始桩号:60496.303起始桩号(直缓):直线方位角(弧度):0.540第一方位角(弧度):基点X:2710420.5299基点X:基点Y:419921.0161基点Y:长度(选择桩号-起始桩号):0.000xp值:选择桩号:60496.303yp值:X坐标:2710420.5299长度(选择桩号-起始桩号):Y坐标:419921.0161选择桩号:X坐标:Y坐标:方位角:第一缓和曲线第一直线计算步骤:两点距离:L′=√(Xb-Xa)^2+(Yb-Ya)^2QD JD ZD坐标计算:点在缓和曲线上点位于圆曲线上l为点到坐标原点的曲线长。
半径第二缓和曲线长740.000152.027FWJ2QD 60496.3036.027ZH 60496.303345.332HY 60648.3300.796-1.000QZ 60866.660387.450YH 61084.990740.714HZ61237.017ZD 61720.89475.9871.3010.103第二段871.32660496.303起始桩号(直缓):60496.303起始桩号(缓直):0.540第一方位角(弧度):0.540第二方位角(弧度):2710420.5300基点X:2710420.5300基点X:419921.0162基点Y:419921.0162基点Y:151.867q175.987xp值:5.202p11.301yp值:152.027tp 0.103(起始桩号-选择桩号):60648.330xp 151.867选择桩号:2710553.4974yp 5.202X坐标:419994.5701长度(选择桩号-起始桩号):152.027Y坐标:25°1′34.79″选择桩号:60648.330方位角:X坐标:2710553.4975Y坐标:419994.5701方位角:25°1′34.79曲线圆曲线第二缓和骤:61237.017直线起始桩号:61237.0176.027直线方位角(弧度): 6.027*******.7683基点X:2711127.7683420021.9448基点Y:420021.9448151.867长度(选择桩号-起始桩号):0.0005.202选择桩号:61237.017152.027X坐标:2711127.768361084.990Y坐标:420021.94482710979.5343420055.3690351°13′1.73″第二直线二缓和曲线。
直线曲线转角表1. 背景介绍直线曲线转角表是用来记录并展示直线和曲线转角的工具。
在工程设计、建筑规划、道路运输等领域中,我们常常需要计算和确定两个物体之间的转角,以确保设计和运输的顺利进行。
直线曲线转角表可以帮助我们快速准确地计算和查找转角数值,提高工作效率。
2. 直线曲线转角的概念直线曲线转角指的是两条线段或曲线之间的夹角。
直线转角通常是两条直线的夹角,而曲线转角则是两条曲线的夹角。
直线曲线转角的数值通常以角度来表示,常用单位有度(°)和弧度(rad)。
直线曲线转角在许多领域中都有着重要的应用。
3. 直线曲线转角的计算方法3.1 直线转角的计算方法直线转角的计算方法相对简单,可以通过几何图形的性质来推导得出。
对于两条直线之间的转角,我们可以利用向量的内积公式求解。
设直线的方向向量分别为A和B,则两条直线的夹角θ满足以下公式:cos(θ) = (A·B) / (|A||B|) 其中,A·B表示向量A和向量B的内积,|A|和|B|分别表示向量A和向量B的模。
通过求解这个公式,即可得到直线转角的数值。
3.2 曲线转角的计算方法曲线转角的计算方法相对复杂,需要根据具体的曲线类型采用不同的计算方法。
对于圆弧和二次曲线来说,曲线转角可以通过弧长和半径之间的关系来计算。
设圆弧或二次曲线的半径为R,弧长为D,则曲线转角θ满足以下公式:θ = D / R 对于其他类型的曲线,计算方法可能会有所不同,需要根据具体情况进行推导和计算。
4. 直线曲线转角表的使用方法4.1 转角表的结构直线曲线转角表一般以表格的形式呈现,列出不同情况下的直线和曲线转角数值。
常见的表格结构包括起点、终点、转角角度等列。
4.2 使用方法使用直线曲线转角表时,需要根据具体的情况找到对应的转角数值。
以直线为例,可以通过查找起点和终点的坐标在转角表中找到对应的直线转角数值。
对于曲线转角,需要知道曲线的类型和特征参数,然后在转角表中找到相应的曲线转角数值。
线路测量坐标正、反算计算原理及卡西欧fx-5800P程序说明一、计算原理在各测量书中对于坐标正算的相关计算式均有说明,故在此不做详解,仅对正算过程中需要用到的原理及公式做一汇总。
对于坐标反算,虽然都采用无限趋近原理进行计算,但计算方式各有差别,本文仅对其中一种自认为相对简单易懂并便于操作的原理进行详解。
1.1 坐标转换[1]如图1,设X P、Y P为P点在国家控制网坐标系中的坐标;x P、y P为P点在工程独立控制网坐标系中的坐标。
X O、Y O为工程独立坐标系原点o在国家坐标系中的坐标,Δα为两坐标系纵坐标轴的交角。
如果一条边在国家坐标系中的坐标方位角为A,而在工程独立坐标系中的坐标方位角为α,则:∆α=A−α(1-1)当由工程独立坐标系坐标换算至国家坐标系坐标时,换算公式为:X=x cos∆α−y sin∆α+X O(1-2)Y=x sin∆α+y cos∆α+Y O}当由国家坐标系坐标换算至工程独立坐标系坐标时,也可使用式(1-2),此时应将X、Y与x、y互换,且∆α=α−A。
1.2 坐标方位角关系计算1.2.1 正、反坐标方位角[2]一条直线的坐标方位角与直线的前进方向有关,沿直线前进方向的坐标方位角称为正坐标方位角,与其相反方向的坐标方位角称为反坐标方位角。
如图2,由于轴子午线之间是互相平行的,因此同一直线的正、反坐标方位角相差180°,即:α正=α反±180°(2-1)当α反<180°时,取“+”号;当α反>180°时,取“-”号。
1.2.2 坐标方位角的推算[3] 1.2.2.1 转折角为右角如图3(a),α12为已知边坐标方位角,α23为推算边的坐标方位角,β右为该两边所夹的右角,则:α23=α12±180°−β右=α21−β右 (2-2)1.2.2.2 转折角为左角如图3(b),α12为已知边坐标方位角,α23为推算边的坐标方位角,β左为该两边所夹的右角,则:α23=α12+β左±180°=α21+β左(2-3) 无论用右角还是左角推算,如遇出现负数的情形,应加上360°。
公式解析一.坐标转换X =A +N COSα-E SINαY =B +N SINα+E COSαN=(X-A) COSα±(Y-B)SINαE=(Y-B)COSα±(X-A)SINαA,B为施工坐标系坐标原点α为施工坐标系与北京坐标系X轴的夹角(旋转角)即大地坐标系方位角X,Y为北京坐标值N,E为施工坐标值二.方位角计算1.直线段方位角: α=tanˉ¹ [(Y b-Y a)/(X b-X a)]2.交点转角角度: α=2 tanˉ¹ (T/R)计算结果①为﹢且<360,则用原数;②为﹢且>360,则减去360;③为﹣,则加上180.3.缓和曲线上切线角: α=ƟZH±90°*Lo²/(π*R* Ls)α= Lo/(2ρ)=Lo²/(2 A²)=Lo²/(2R*Ls)ρ—该点的曲率半径4.圆曲线上切线角: α=ƟHY±180°*Lo/(π*R)ƟZH—直缓点方位角, ƟHY—缓圆点方位角,注:以计算方向为准,左偏,取"﹣";右偏,取"﹢"。
左偏,则第一段缓和曲线和圆曲线上取"﹣",第二段缓和曲线上取"﹢" ;右偏,则第一段缓和曲线和圆曲线上取"﹢",第二段缓和曲线上取"﹣" .。
符号说明:A—回旋线参数(A²=R* Ls)Ls—缓和曲线长度R—曲线半径Lo—曲线长度:计算点位到特殊点(ZH、HY、YH、HZ)的长度三.坐标值计算1.直线段坐标计算公式:直线两端点A.B间距离为S;A点坐标为A(X a, Y a);方位角为αX b= X a+S*cosαY b= Y a+S*sinα2.缓和曲线及圆曲线坐标计算公式:①缓和曲线坐标计算公式:X=X ZH+(Lo-Lo^5/(40*R^2*Ls^2)+Lo^9/(3456*R^4*Ls^4)-Lo^13/( 599040*R^6*Ls^6)+Lo^17/(175472640*R^8*Ls^8))*cosα-(Lo^3/(6 *R*Ls)-Lo^7/(336*R^3*Ls^3)+Lo^11/(42240*R^5*Ls^5)-Lo^15/(9 676800*R^7*Ls^7)+Lo^19/(3530096640*R^9*Ls^9))*sinαY=Y ZH+(Lo-^5/(40*R^2*Ls^2)+Lo^9/(3456*R^4*Ls^4)-Lo^13/(59 9040*R^6*Ls^6)+Lo^17/(175472640*R^8*Ls^8))*sinα+(Lo^3/(6* R*Ls)-Lo^7/(336*R^3*Ls^3)+Lo^11/(42240*R^5*Ls^5)-Lo^15/(96 76800*R^7*Ls^7)+Lo^19/(3530096640*R^9*Ls^9))* cosα符号说明:X ZH—直缓点X坐标值Y ZH—直缓点Y坐标值A—回旋线参数(A²=R* Ls)Lo—计算点位到特殊点的长度Ls—缓和曲线长度R—曲线半径α—方位角注:式中,紫色部分为缓和曲线任意点的坐标增量(支距坐标)。