第一章习题讲评(1)
- 格式:ppt
- 大小:134.50 KB
- 文档页数:43
章节复习及练习讲评知识与能力:1.建立化学反应中能量变化的观点,了解吸热反应和放热反应,并会正确书写热化学方程式;2.学会利用题目中所提供的信息,对电解池、原电池等电解原理实际应用的电极材料和电极反应式判断和书写;3.解决好电子转移的关系来完成电解有关计算。
过程与方法:通过知识点的简单回顾,以及考点的归纳分析,进一步在练习上加深对知识点的认识,在讲评中强化一些概念和多增加一些注意点,以协助和补充对课本内容的理解和掌握。
然后通过抓主干去枝叶来拓展思维,在头脑这高层领域里对知识点的有新的认识。
情感态度与价值观:养成循序渐进的思维历程,在研究和探讨中激发起学习的兴趣。
课型:练习研讨课教学重难点:旨在让学生了解考点以及对练习的把握,如何能够将知识融会贯通,在解决问题的过程中能够积极开动脑筋。
课时安排:2课时教学过程:(第一课时)【考点归纳】本章教科书以“能量转化”为主线,首先学习了通过实验测定方法和理论方法来定量描述化学反应的热效应,然后学习了化学能与电能相互转化的两种具体形式:一是电能转化为化学能—电解;二是化学能转化为电能—电池。
(一起阅读P26--27)【考点一】化学反应的热效应1.建立化学反应中能量变化的观点,了解吸热反应和放热反应2.书写热化学方程式应注意的问题【考点二】电解原理极其应用1.电解池判断2.电极反应3.电解有关计算的方法规律【考点三】原电池工作原理极其应用1.原电池判断2.电极反应3.化学电源【题1】下列各项与反应热的大小无关的是(D)A.反应物的状态B.生成物的状态C.反应物的多少D.表示反应热的单位【解析】反应热指化学反应在一定的温度下进行时,反应所释放或吸收的热。
反应热与反应物的物质的量成正比。
与物质状态有关,与表示反应热的单位无关。
【题3】已知充分燃烧a g乙炔气体时生成1 mol二氧化碳气体和液态水,并放出热量b kJ,则乙炔燃烧的热化学方程式正确的是(A)A.2C2H2(g)+5O2(g)==4CO2(g)+2H2O(l) ΔH=-4b kJ•mol-1B.C2H2(g)+5/2O2(g)==2CO2(g)+H2O(l) ΔH=-2b kJ•mol-1C.2C2H2(g)+5O2(g)==4CO2(g)+2H2O(l) ΔH=-2b kJ•mol-1D.2C2H2(g)+5O2(g)==4CO2(g)+2H2O(l) ΔH=b kJ•mol-1【解析】放热反应中ΔH <0,所以B、D错误。
《工程数学》教案第一章行列式与矩阵一、教学目标与基本要求:1.掌握n阶行列式的定义和行列式的性质。
2.掌握n阶行列式按行或列展开定理。
3.利用行列式的性质和展开定理计算n阶行列式。
4.掌握矩阵的定义及矩阵的加减、数乘及矩阵的乘法。
5.掌握矩阵转置、对称及反对称矩阵、矩阵的行列式。
6.了解分块矩阵的定义及其运算规律。
7.掌握逆阵的定义及求法。
8.了解初等变换和初等矩阵的概念,会利用初等变换求矩阵的逆矩阵。
二、教学内容及学时分配:1、教学内容1.1 行列式1.2 矩阵1.3 矩阵的运算1.4 几类特殊的矩阵1.5 矩阵的初等变换1.6 逆矩阵2、学时分配:22学时三、本章教学内容的重点和难点:1、本章重点:(1)、n阶行列式的概念和性质。
(2)、利用行列式的性质和按行(列)展开定理计算行列式。
(3)、矩阵的概念及其运算。
(4)、矩阵的初等变换与矩阵的标准型。
(5)、矩阵秩的概念及其求法。
(6)、逆矩阵的概念及其求法。
(7)、矩阵方程的求解。
2、本章难点:1.n阶行列式的计算方法的掌握。
2.逆矩阵的性质及相关问题的证明。
四、本章教学内容的深化和拓宽1.n阶行列式的计算方法。
2.方阵的高次幂运算五、教学过程中应注意的问题1、行列式中某一项的正负号的确定。
2、代数余子式的重要性质的应用。
3、一般情况下AB BA,即矩阵乘法不满足交换律。
4、特殊矩阵的性质与初等方程的作用。
5、分块矩阵的运算性质须满足相应的分块原则。
六、本章的习题和思考题1、习题:1(1)(2)(3)(4)(5)(7)(8),2,3(1)(2),4,5(1)(3)(4),6,7,8,9(1),(3),(5),(7),10,11,12,17,18,19,20(1),(3),(5),(7),21,22,23,24,272、思考题:1(6),3(3),5(2),9(2),(4),(6),(8),13,14,25,26,28,29。
习题课一:1、讲评第一章的作业。
七年级数学下册第一章第1节同底数幂的乘法参考教案1 (新版)北师大版●教学目标(一)教学知识点1.经历探索同底数幂的乘法运算性质的过程,进一步体会幂的意义.2.了解同底数幂乘法的运算性质,并能解决一些实际问题.(二)能力训练要求1.在进一步体会幂的意义时,发展推理能力和有条理的表达能力.2.学习同底幂乘法的运算性质,提高解决问题的能力.(三)情感与价值观要求在发展推理能力和有条理的表达能力的同时,体会学习数学的兴趣,培养学习数学的信心.●教学重点同底数幂的乘法运算法则及其应用.●教学难点同底数幂的乘法运算法则的灵活运用.●教学方法引导启发法教师引导学生在回忆幂的意义的基础上,通过特例的推理,再到一般结论的推出,启发学生应用旧知识解决新问题,得出新结论,并能灵活运用.●教具准备投影片第一张:问题情景,记作(§1.1 A)第二张:做一做,记作(§1.1 B)第三张:议一议,记作(§1.1 C)第四张:例题,记作(§1.1 D)第五张:随堂练习,记作(§1.1 E)●教学过程Ⅰ.创设问题情景,引入新课[师]同学们还记得“a n”的意义吗?[生]a n 表示n 个a 相乘,我们把这种运算叫做乘方.乘方的结果叫幂,a 叫做底数,n 是指数.[师]我们回忆了幂的意义后,下面看这一章最开始提出的问题(出示投影片§1.3 A): 问题1:光的速度约为3×105千米/秒,太阳光照射到地球上大约需要5×102秒,地球距离太阳大约有多远?问题2:光在真空中的速度大约是3×108米/秒,太阳系以外距离地球最近的恒星是比邻星,它发出的光到达地球大约需4.22年.一年以3×107秒计算,比邻星与地球的距离约为多少千米?[生]根据距离=速度×时间,可得:地球距离太阳的距离为:3×108×5×102=3×5×(108×102)(米)比邻星与地球的距离约为:3×108×3×107×4.22=37.98×(108×107)(米)[师]108×102,108×107如何计算呢?[生]根据幂的意义:108×102=10(1010101010101010)⨯⨯⨯⨯⨯⨯⨯8个× 102)1010(个⨯ =1010101010⨯⨯⨯⋅⋅⋅⨯10个=1010108×107=10710(1010101010101010)(101010)⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⋅⋅⋅⨯8个个=15151010101010⨯⨯⋅⋅⋅⨯=个 [师]很棒!我们观察108×102可以发现108、102这两个因数是同底的幂的形式,所以108×102我们把这种运算叫做同底数幂的乘法,108×107也是同底数幂的乘法.由问题1和问题2不难看出,我们有必要研究和学习这样一种运算——同底数幂的乘法. Ⅱ.学生通过做一做、议一议,推导出同底数幂的乘法的运算性质1.做一做出示投影片(§1.1 B)计算下列各式:(1)102×103;(2)105×108;(3)10m ×10n (m,n 都是正整数)你发现了什么?注意观察计算前后底数和指数的关系,并能用自己的语言加以描述.(4)2m ×2n 等于什么?(71)m ×(71)n呢,(m,n 都是正整数).[师]根据幂的意义,同学们可以独立解决上述问题.[生](1)102×103=(10×10)×(10×10×10)=105=102+3因为102的意义表示两个10相乘;103的意义表示三个10相乘.根据乘方的意义5个10相乘就表示105同样道理,可求得:(2)105×108= 105101010个⨯⋅⋅⋅⨯⨯×108101010个⨯⋅⋅⋅⨯⨯ =1013=105+8(3)10m ×10n= 10101010个m ⨯⋅⋅⋅⨯⨯×10101010个n ⨯⋅⋅⋅⨯⨯ =10m+n从上面三个小题可以发现,底数都为10的幂相乘后的结果底数仍为10,指数为两个同底的幂的指数和.[师]很好!底数不同10的同底的幂相乘后的结果如何呢?接着我们来利用幂的意义分析第(4)小题.[生](4)2m ×2n= 2)222(个m ⨯⋅⋅⋅⨯⨯×2)222(个n ⨯⋅⋅⋅⨯⨯ =2m+n (71)m ×(71)n =个m )717171(⨯⋅⋅⋅⨯⨯× 个n )717171(⨯⋅⋅⋅⨯⨯ =(71)m+n我们可以发现底数相同的幂相乘的结果的底数和原来底数相同,指数是原来两个幂的指数的和.2.议一议出示投影片(§1.1 C)a m ·a n等于什么(m,n 都是正整数)?为什么?[师生共析]a m ·a n 表示同底的幂的乘法,根据幂的意义,可得a m ·a n = a m a a a 个)(•••⋅⋅⋅·a n a a a 个)(•••⋅⋅⋅ =a n m a a a 个)(+•••⋅⋅⋅=a m+n即有a m ·a n =a m+n (m,n 都是正整数)用语言来描述此性质,即为:同底数幂相乘,底数不变,指数相加.[师]同学们不妨再来深思,为什么同底数幂相乘,底数不变,指数相加呢?即为什么a m ·a n =a m+n 呢?[生]a m 表示m 个a 相乘,a n 表示n 个a 相乘,a m ·a n 表示m 个a 相乘再乘以n 个a 相乘,即有(m+n)个a 相乘,根据乘方的意义可得a m ·a n =a m+n .[师]也就是说同底数幂相乘,底数不变,指数要降低一级运算,变为相加.Ⅲ.例题讲解出示投影片(§1.1 D)[例1]计算:(1)(-3)7×(-3)6;(2)(101)3×(101); (3)-x 3·x 5;(4)b 2m ·b 2m+1.[例2]用同底数幂乘法的性质计算投影片(§1.3 A)中的问题1和问题2.[师]我们先来看例1中的四个小题,是不是都能用同底数幂的乘法的性质呢? [生](1)、(2)、(4)都能直接用同底数幂乘法的性质——底数不变,指数相加.[生](3)也能用同底数幂乘法的性质.因为-x 3·x 5中的-x 3相当于(-1)×x 3,也就是说-x 3的底数是x,x 5的底数也为x,只要利用乘法结合律即可得出.[师]下面我就叫四个同学板演.[生]解:(1)(-3)7×(-3)6=(-3)7+6=(-3)13; (2)(101)3×(101)=(101)3+1=(101)4; (3)-x 3·x 5=[(-1)×x 3]·x 5=(-1)[x 3·x 5]=-x 8;(4)b 2m ·b 2m+1=b 2m+2m+1=b 4m+1.[师]我们接下来看例2.[生]问题1中地球距离太阳大约为:3×105×5×102=15×107=1.5×108(千米)据测算,飞行这么远的距离,一架喷气式客机大约要20年.问题2中比邻星与地球的距离约为:3×105×3×107×4.22=37.98×1012=3.798×1013(千米)想一想:a m ·a n ·a p 等于什么?[生]a m ·a n ·a p =(a m ·a n )·a p =a m+n ·a p =a m+n+p ;[生]a m ·a n ·a p =a m ·(a n ·a p )=a m ·a n+p =a m+n+p ;[生]a m ·a n ·a p = a m a a a 个)(•••⋅⋅⋅· a n a a a 个)(•••⋅⋅⋅· ap a a a 个)(•••⋅⋅⋅=a m+n+p .Ⅳ.练习出示投影片(§1.1 E)1.随堂练习(课本P 3):计算(1)52×57;(2)7×73×72;(3)-x 2·x 3;(4)(-c)3·(-c)m .解:(1)52×57=59;(2)7×73×72=71+3+2=76;(3)-x 2·x 3=-(x 2·x 3)=-x 5;(4)(-c)3·(-c)m =(-c)3+m .2.补充练习:判断(正确的打“√”,错误的打“×”)(1)x 3·x 5=x 15 ( )(2)x ·x 3=x 3 ( )(3)x 3+x 5=x 8 ( )(4)x 2·x 2=2x 4 ( )(5)(-x)2·(-x)3=(-x)5=-x 5 ( )(6)a 3·a 2-a 2·a 3=0 ( )(7)a 3·b 5=(ab)8 ( )(8)y 7+y 7=y 14 ( )解:(1)×.因为x3·x5是同底数幂的乘法,运算性质应是底数不变,指数相加,即x3·x5=x8.(2)×.x·x3也是同底数幂的乘法,但切记x的指数是1,不是0,因此x·x3=x1+3=x4.(3)×.x3+x5不是同底数幂的乘法,因此不能用同底数幂乘法的性质进行运算,同时x3+x5是两个单项式相加,x3和x5不是同类项,因此x3+x5不能再进行运算.(4)×.x2·x2是同底数幂的乘法,直接用运算性质应为x2·x2=x2+2=x4.(5)√.(6)√.因为a3·a2-a2·a3=a5-a5=0.(7)×.a3·b5中a3与b5这两个幂的底数不相同.(8)×.y7+y7是整式的加法且y7与y7是同类项,因此应用合并同类项法则,得出y7+y7=2y7.Ⅴ.课时小结[师]这节课我们学习了同底数幂的乘法的运算性质,请同学们谈一下有何新的收获和体会呢?[生]在探索同底数幂乘法的性质时,进一步体会了幂的意义.了解了同底数幂乘法的运算性质.[生]同底数幂的乘法的运算性质是底数不变,指数相加.应用这个性质时,我觉得应注意两点:一是必须是同底数幂的乘法才能运用这个性质;二是运用这个性质计算时一定是底数不变,指数相加.即a m·a n=a m+n(m、n是正整数).Ⅵ.课后作业课本习题1.1 第1、2、3题Ⅶ.活动与探究计算:2-22-23-24-25-26-27-28-29+210.[过程]注意到210-29=29·2-29×1=29·(2-1)=29,同理,29-28=28,…23-22=22,即2n+1-2n=2·2n-2n=(2-1)·2n=2n.逆用同底数幂的乘法的运算性质将2n+1化为21·2n.[结果]解:原式=210-29-28-27-26-25-24-23-22+2=2·29-29-28-27-26-25-24-23-22+2=29-28-27-26-25-24-23-22+2=…=22+2=6●板书设计1.1 同底数幂的乘法一、提出问题:地球到太阳的距离为15×(105×102)千米,如何计算105×102.二、结合幂的运算性质,推出同底数幂乘法的运算性质.(1)105×102=(10×10×10×10×10)×(10×10)=107=105+2;(2)105×108= 1051010101010个⨯⨯⨯⨯×108101010个⨯⋅⋅⋅⨯⨯=1013=105+8; (3)10m ×10n = 10101010个m ⨯⋅⋅⋅⨯⨯×10101010个n ⨯⋅⋅⋅⨯⨯=10m+n ; (4)2m ×2n = 2222个m ⨯⋅⋅⋅⨯⨯×2222个n ⨯⋅⋅⋅⨯⨯=2m+n ; (5)(71)m ×(71)n = 71)717171(个m ⨯⋅⋅⋅⨯⨯× 71)717171(个n ⨯⋅⋅⋅⨯⨯=(71)m+n;综上所述,可得a m ·a n = a m a a a 个)(⨯⋅⋅⋅⨯⨯×a n a a a 个)(⨯⋅⋅⋅⨯⨯=a m+n(其中m 、n 为正整数)三、例题:(由学生板演,教师和学生共同讲评)四、练习:(分组完成)●迁移发散迁移 运用本节课所学知识,解答下列题目:a m ·a m-3+a 2m-4·a点拨:先利用公式进行乘法运算,若所得结果是同类项再进行合并.在运用公式时,a 的指数是1,不要漏掉.解:a m ·a m-3+a2m-4·a =am+m-3+a 2m-4+1 =a 2m-3+a2m-3 =2a 2m-3发散 本节课会用到的以前知识:1.幂的知识在a m 中,a 是底数,m 是指数,a m叫幂.2.同类项:所含字母相同,并且相同字母的指数也相同的项叫同类项.3.合并同类项法则:在合并同类项时,将同类项的系数相加,字母和字母的指数不变.4.乘法结合律a ·b ·c=a ·(b ·c)运用公式时,适当地利用乘法运算律,可简化运算.●备课资料一、参考例题[例1]计算:(1)(-a)2·(-a)3 (2)a5·a2·a分析:(1)中的两个幂的底数都是-a;(2)中三个幂的底数都是 a.根据同底数幂的乘法的运算性质:底数不变,指数相加.解:(1)(-a)2·(-a)3=(-a)2+3=(-a)5=-a5.(2)a5·a2·a=a5+2+1=a8评注:(2)中的“a”的指数为1,而不是0.[例2]计算:(1)a3·(-a)4(2)-b2·(-b)2·(-b)3分析:底数的符号不同,要把它们的底数化成同底的形式再运算,运算过程中要注意符号.解:(1)a3·(-a)4=a3·a4=a3+4=a7;(2)-b2·(-b)2·(-b)3=-b2·b2·(-b3)=b2·b2·b3=b7.评注:(1)中的(-a)4必须先化为a4,才可运用同底数幂的乘法性质计算;(2)中-b2和(-b)2不相同,-b2表示b2的相反数,底数为b,而不是-b,(-b)2表示-b的平方,它的底数是-b,且(-b)2=(+b)2,所以(-b)2=b2,而(-b)3=-b3.[例3]计算:(1)(2a+b)2n+1·(2a+b)3·(2a+b)m-1(2)(x-y)2(y-x)3分析:分别把(2a+b),(x-y)看成一个整体,(1)是三个同底数幂相乘;(2)中底不相同,可把(x-y)2化为(y-x)2或把(y-x)3化为-(x-y)3,使底相同后运算.解:(1)(2a+b)2n+1·(2a+b)3·(2a+b)m-1=(2a+b)2n+1+3+m-1=(2a+b)2n+m+3(2)解法一:(x-y)2·(y-x)3=(y-x)2·(y-x)3=(y-x)5解法二:(x-y)2·(y-x)3=-(x-y)2(x-y)3=-(x-y)5评注:(2)中的两个幂必须化为同底再运算,采用两种化同底的方法运算得到的结果是相同的.[例4]计算:(1)x3·x3 (2)a6+a6 (3)a·a4分析:运用幂的运算性质进行运算时,常会出现如下错误:a m·a n=a mn,a m+a n=a m+n.例如(1)易错解为x3·x3=x9;(2)易错解为a6+a6=a12;(3)易错解为a·a4=a4,而(1)中3和3应相加;(2)是合并同类项;(3)也是易忽略的地方,把a的指数1看成0.解:(1)x3·x3=x3+3=x6;(2)a6+a6=2a6;(3)a·a4=a1+4=a5二、在同底数幂的乘法常用的几种恒等变形.(a-b)=-(b-a)(a-b)2=(b-a)2(a-b)3=-(b-a)3(a-b)2n-1=-(b-a)2n-1(n为正整数)(a-b)2n=(b-a)2n(n为正整数)●方法点拨[例1]计算:(1)-a·(-a)3·(-a)2(2)-b3·b n(3)(x+y)n·(x+y)m+1点拨:应用同底数幂的乘法公式时,一定要保证底数相同.(1)中底数是-a,-a可看作(-a)1;(2)中-b3可看作(-1)·b3,这样b3与b n可利用公式进行计算;(3)中底数是x+y,将它看作一个整体.解:(1)-a·(-a)3·(-a)2(不要漏掉指数1)= (-a)1·(-a)3·(-a)2=(-a)6(2)-b3·b n=(-1)·(b3·b n)——乘法结合律=(-1)·b3+n=-b3+n(3)(x+y)n·(x+y)m+1=(x+y)n+(m+1)=(x+y)n+m+1[例2]计算:(1)a6·a6(2)a6+a6点拨:对于(1),可利用“同底数幂的乘法公式”计算,而第(2)题,是两个幂相加,需进行合并同类项,注意两者的区别.解:(1)a6·a6=a6+6=a12(2)a6+a6=2a6注意区分:同底数幂的乘法是乘法运算,且底数不变,指数相加...而合并同类项是加(减)法,且系数相加,字母与字母的指数不.变..[例3]计算:(1)8×2m×16(2)9×27-3×34点拨:这两道题的乘法中,底数都不相同,但可进行相应的调整,变为同底数幂,即可利用公式进行计算.而(2)中先进行乘法,再进行减法,注意运算顺序.解:(1)8×2m×16=23×2m×24=23+m+4=2m+7(2)9×27-3×34=32×33-3×34=35-35=0。
五年级英语上册知识点归纳一、 各单元教学内容及话题Unit 1 My New Teachers一、重点词汇(一)四会单词年老的 tall 高的矮的 thin 瘦的年轻的胖的强壮的严格的 helpful 有用的clever 聪明的、巧妙地 friendly 有好的滑稽可笑的 polite 有礼貌的 和蔼的、亲切的quiet 安静的、文静的辛勤工作 shy 害羞的our 我们的 know 知道,了解 Ms 女士will 将要 sometimes 有时候 robot 机器人him 他 (宾格 speak 会将、会说 finish 完成二、语法1、 反义词tall —short long —short young —oldnew —old strong —thin fat —thin kind —strict active —quiet2、称呼:Mr 先生Miss 小姐(指未结婚的)Mrs 夫人(指结婚的)Ms 女士(不管是否结婚)3、询问对方某一学科的老师是谁,用:Who is your +学科+ teacher?回答:(A):Mr/Miss/Ms/Mrs +姓氏(B)My /Our+学科+teacher is ......例如:Who is your art teacher.?谁是你的、你们的美术老师?A:Mr Wang.王先生B:My/Our art teacher is Mr Wang.我们的美术老师是王先生。
4、Who的用法(1)询问对方的身份:Who is she/he/that man/that woman/that girl/that boy? 他是谁?He is my father. 他是我的爸爸。
(2)询问对方的名字:Who is he?他是谁? He is Mike. 他是麦克。
(3)询问职务Who is he ?他是谁?He is a head teacher.他是校长。
5、will的用法,(1)表示:将要、、、、后面加动词原形。