5.35能追上小明吗 课件鲁六上一元一次方程的应用-
- 格式:ppt
- 大小:1.78 MB
- 文档页数:1
应用一元一次方程——能追上小明吗教学设计〖教学目标〗1.知识与技能(1)进一步掌握列方程解应用题的方法,能利用行程问题中的速度、路程、时间的关系列方程解应用题。
(2)借助“线段图〞分析复杂问题中的数量关系,从而建立方程,解决实际问题,提高分析问题、解决问题的能力。
2.数学思考(1)进一步体会方程的模型作用,提高应用数学的意识,培养文字语言、图形语言、符号语言这三种语言转换的能力。
(2)通过开放性问题培养创新意识。
〖教材分析〗本节课是行程问题。
引例给学生提出问题,只需掌握速度、路程、时间三个量之间的关系,其中两个量,便可求出第三个量。
行程问题分为两类:一类是相遇问题,一类是追及问题。
借助“线段图〞分析题意,找出等量关系,正确地列出方程并求解。
本节课的重点是:(1)用“线段图〞分析复杂问题中的数量关系,从而建立方程,解决实际问题;(2)熟悉行程问题中的速度、路程、时间三个量之间的关系,从而实现从文字语言到图形语言,以及从图形语言到符号语言的转换。
本节课的难点是:用“线段图〞分析复杂问题中的数量关系,从而建立方程。
〖学校及学生状况分析〗我校学生生源较差,学生的根底薄弱。
教学条件也比较差,主要还是黑板加粉笔。
〖教学设计〗(一)创设问题情境,引入新课引例:甲、乙两人在相距100米的两端同时相向而行,与此同时一只小狗也开始与甲同时同地起跑,它一遇到乙就立即转向跑回,遇到甲再立即转向跑回,小狗就这样在两步行的人之间来回跑行,直到两人相遇。
如果两人以1米/秒的速度匀速前进,小狗以2米/秒的速度匀速奔跑,那么小狗一共跑了多少米?与同伴交流,说说你的想法。
生:这个问题属于行程问题。
小狗的速度,只要求出小狗跑的时间,就能求出小狗跑的路程。
师:小狗跑的时间怎样求?生:根据题意,小狗跑的时间与两人从开始到相遇用的时间是相同的。
师:说得很好,这是问题的关键。
但是,时间能求出来吗?生:能,从题意我们知道甲、乙两人所走的距离(100米)及两人的速度(1米/秒),所以我们能够求出第三个量――时间,之后乘以小狗的速度即可得到小狗跑的路程。
初中数学7_应用一元一次方程——能追上小明吗_教案2word版教学目标:1.使学生能分析相遇问题中已知数与未知数之间的相等关系,利用路程、时间与速度三个量之间的关系式,列出一元一次方程解简单的应用题。
2.使学生会区分同时出发与先后出发的相遇问题,正确地列出相应的方程。
3.进一步体会方程模型的作用,提高应用方程解应用题的意识。
教学重点:1.借助“线段图”分析复杂问题中的数量关系。
从而建立方程,解决实际问题。
2.熟悉路程问题中的速度、路程、时间之间的关系,从而实现从文字语言到图形语言,从图形语言到符号语言的转化。
教学难点:用“线段图”或列表分析复杂问题中的等量关系。
从而建立方程。
教学方法:学案、多媒体辅助教学学生独立思考,合作交流。
教学设计:一、提出问题,引入新课我们知道,用方程能解决生活中的一系列问题,今天我们继续学习应用方程寻找生活中的答案。
这一节课我们一起来讨论追及与相遇问题。
请同学们做一做:1.若小明每分钟走80米,那么他5分钟能走____米.(路程=速度*时间)2.小明用4分钟绕学校操场跑了两圈(每圈400米),那么他的速度为_____米/分. (速度=路程/时间)3.已知小明家距离火车站1200米,他以4米/秒的速度骑车到达车站需要- 1 - / 4_____分钟. (时间=路程/速度)(通过练习,先让同学们熟悉速度、路程、时间之间的关系)二、讲授新课:例题:小明每天早上要在7:50之前赶到距家1000米的学校上学。
一天小明以80米/分的速度出发5分后,小明的爸爸发现他忘了带语文书。
于是他爸爸立即以180米/分的速度去追小明,并且在途中追上了他。
(1)爸爸追小明用了多长时间?(2)追上小明时,距离学校还有多远?请问:以你的经验你准备用什么方式找出题目中的相等关系,从而列出方程解答此题?请把你的想法说出来。
分析:(1)这个问题中涉及了哪一个数量关系?(2)你如何理顺这个问题中涉及的量?80☓5180x通过例题的学习,应学会用线段图或列表去寻找相等关系,从而建立模型——方程,使问题解决。
5. 6应用一元一次方程--能追上小明吗•教学目标(一)教学知识点1进一步掌握列方程解应用题的步骤.2•能充分利用行程中的速度、路程、时间之间的关系列方程解应用题.(二)能力训练要求1借助“线段图”分析复杂问题中的数量关系,从而建立方程,解决实际问题,发展分析问题、解决问题的能力.2 •进一步体会方程模型的作用,提高应用数学的意识.3•培养学生文字语言、图形语言、符号语言这三种语言的转换的能力.(三)情感与价值观要求通过开放性的问题,为学生提供思维的空间,从而培养学生的创新意识,团队精神和克服困难的勇气.•教学重点1借助“线段图”分析复杂问题中的数量关系•从而建立方程,解决实际问题.用“线段图”分析复杂问题中的等量关系,从而建立方程.•教学方法教师启发与学生自主探索相结合.教师先从简单问题出发,启发诱导学生用“线段图”去寻找路程问题中的等量关系,从而学生在教师的启发诱导下自主探索复杂问题的解决过程,建立数学模型.•教具准备投影片三张第一张:(记作§ 5 • 6A)填空第二张:(记作§ 5 • 6B)想一想、试一试第三张:(记作§ 5 • 6C)议一议•教学过程I •提出问题,弓I入新课出示投影片(§ 5. 6A)[师]上面3个小题都是关于路程、速度、时间的问题,那么它们之间有何关系呢?[生]路程=速度X时间.知道这三个量中的两个就可以求出另一个.[师]很棒•那么我们就用这个同学所说的关系来解答上面的三个小问题.[生](1)已知速度、时间,求路程.所以小明5秒能跑4米/秒X 5秒=20米.(2) 已知时间、路程求速度.所以小明的速度为400米十4分=100米/分.(3) 已知路程、速度求时间.所以小明骑车到车站需要1500米十4米/秒=375秒=6. 25分.[师]下面我们就来根据路程、速度、时间之间的关系来讨论几个较为复杂的问题.n.讲授新课出示投影片(§ 5. 6B)[师生共析]已知小彬和小明的速度分别为4米/秒,6米/秒.(1)两人从百米跑道的两端同时相向起跑,相遇时,两人所跑的路程的和是100米.所以要解决这个问题,必须抓住这个等量关系.我们画出线段图,可以使他们的关系更加直观,等量关系更加清晰.如下图所以等量关系为:小明所跑的路程+小彬所跑的路程=100米.接下来我们只要把这个等量关系用数学符号一一方程表示出来即可.设两人x秒后可相遇,则小明跑的路程就为6x 米,小彬跑的路程为4x米,由此得到方程4x+6x=100.(2)如果小明站在百米跑道的起点处,而小彬在他前面10米处,当小明追上小彬时,小彬比小明少跑10米.在解决此问题时,只要抓住这个等量关系便可.为了使问题更直观,我们不妨也用线段图来表示,使等量关系更清晰.如下图:苻环帮--------- 10W ------- ------------------ »羽牡小険的路程一>__________________备一<1朗所跑的路程—追及所以等量关系为:小明跑的路程-小彬跑的路程=10米.如果设小明x秒可追上小彬, 则小明跑的路程为6x,小彬跑的路程为4x,则得到方程6x-4x=10.(由学生根据分析写出解答过程)解:(1)设小明和小彬x秒后相遇,根据题意得6x+4x=100,解,得x=10所以经过10秒两人相遇.⑵设小明x秒追上小彬,根据题意,得6x-4x=10解,得x=5所以小明5秒就追上了小彬.[师]由例1我们可以看到,在审题的过程中,如果能把文字语言变成图形语言一一线段图,可以使题中的等量关系“浮”出水面,最后我们只需设出未知数,把等量关系用符号语言表示出来,便得到了方程.在我们的生活中,一些同学养成一种很不好的习惯一一丢三落四. 常害得父母亲操心.小明今天就犯了这样的错误:小明每天早上要在7: 50之前赶到距家1000米的学校上学•一天,小明以80米/分的速度出发.5分钟后,小明的爸爸发现他忘了带语文书•于是,小明的爸爸立即为180米/分的速度去追小明,并且在途中追上了他•问:(1)爸爸追上小明用了多长时间?(2)追上小明时,距离学校还有多远?同学们可仿照例1的方法,画出线段图去分析题目中的等量关系.[生]我认为小明的爸爸追上小明时,他们父子二人所行驶的路程是相等的.[师]你能到黑板上画出这个问题的线段图吗?[生]可以•如果设爸爸追上小明用了x分钟,则可画得线段图:(黑板上板演)爸莒幵妬追小明到追上哺小明5输行驶路程■►烂时■小册驶『所以,根据题意,小明5分钟行驶的路程为:80X5米;爸爸开始追小明到追上,小明行驶的路程为80x米;小明的爸爸追上小明行驶的路程180x米•相等关系为:小明行驶的路程=爸爸行驶的路程即80X 5+80x=180x •[师]下面同学们在自己的练习本上完整地写出解答过程.[生]解:(1)设爸爸追上小明用了x分.根据题意,得180x=80x+80X5化简,得100x=400x=4所以小明的爸爸用了4分钟追上小明.(2)因为爸爸追上小明行驶的路程为180X 4=720米,1000-720=280米.所以,追上小明时,距离学校还有280米.[师]通过做上面这个题,除了要学会用线段图去寻找相等关系,从而建立模型一一方程,使问题得到解决外•更重要的是有丢三落四的毛病的同学,要吸取小明的教训,自己的事自己处理好,免得父母操心.川.议一议出示投影片(§ 5. 6C)力明爸爸追小明行驶路程队派一名联络员骑自行车在两队之间不断地来回进行联络,他骑车的速度为根据上面的事实提出问题并尝试解答.(这是一个开放性问题,教师应鼓励学生交流、讨论,然后大胆地提出问题,并试着利用方程去解决,并与同伴交流自己的问题和解决问题的过程)[生]我提出的问题是:后队用多长时间可以追上前队?[生]这个问题可用方程来解,只要找到这个问题等量关系即可. 根据题意画线段图如下:如果设后队x小时可追上前队,那么后队行驶的路程为6x千米,前队行驶的路程为(4 X 1+4X)千米•根据线段图可知:前队行驶路程=后队行驶的路程,由此可得方程6x=4X 1+4 x.[师]这位同学分析得很到位•下面请一位同学完整地写出过程.[生]解:设前队被后队追上用了x小时,根据题意,得6x=4X 1+4x解,得x=2所以前队被后队追上需2小时.[生]后队在追前队时,后队派了一名联络员骑自行车不停地在两队之间来回进行联络,那么这位联络员行了多少千米的路程.[师]这个问题提得非常好. 如何解决呢?同学们可以先讨论一下,也许解决起来不困难.[生]我们认为这个问题从整体上考虑较易. 因为联络员的速度是12千米/时,而且联络员是后队出发时,派他在两队之间不间断地来回进行联络,由此我们知道联络员用去的时间恰好就是后队追上前队的时间即2小时,所以联络员行驶的路程为12X 2=24千米.[师]你真棒!我们祝贺你,在困难面前,你是一个胜利者.大家应该向你学习.老师相信,我们每一位同学在遇到复杂的问题时,一定能树立信心,树立克服困难的勇气.[生]我还可以提出一个问题吗?[师]完全可以.我们欢迎他提出问题.[生]当联络员第一次追上前队后,往回返,当他和后队相遇时,后队离出发地有多远?[师]同学们可以讨论,并相互交流一下自己的想法.[生]我觉得这个问题要分两步完成:第一步:设联络员x小时后可追上前队,画线段图如下:* -------------- 12^丰米--------------- ** --- 仟米/---------------- -------- ►根据题意,可得12x=4X 1+4x12千米/时.后队所行驶的路程1分>42分.因此单靠汽车来回接送无法使 8人赶上火车.解,得X= —21所以联络员第一次追上前队用了丄小时.211第二步:这时,后队离出发点6千米/时X —小时=3千米•离前队有(1+ ) X4 -3=3千2 2米•设y 小时后,联络员又碰上了后队,画线段图如下:11 根据题意,可得 6y +12y =4X (1+)- 6X - 2 21解,得y =•61 1 所以此时后队离开出发点 6X +6X 丄=4千米.26[师]看来,同学们已能面对复杂问题•祝贺你们•关于这个题还能提出好多问题,同 学们若有兴趣,课余时间可继续发现,相信你们会有很大的收获.W.课时小结我们这节课学会了用线段图来形象直观地表达题意,找到等量关系.更可喜的是,我们面对开放性的问题,能够积极思维,大胆创新,这节课将是一节很难忘的课.课后作业1.习题5. 9.2 •继续合作完成 P 173议一议,大胆尝试着去提出问题,解决问题.活动与探究8个人分别乘两辆小汽车赶往火车站,其中一辆小汽车在距离火车站15千米的地方出了故障,此时离火车站停止检票的时间还有 42分钟,这时惟一可以利用的交通工具只有一辆小汽车,连司机在内限乘 5人,这辆小汽车的平均速度为60千米/时•这8个人能赶上火车吗?过程:这是开放性的问题,为学生提供了思维的空间•可以分多种情形讨论. 第一种情形:小汽车分 2批送8个人•如果第2批人在原地不动.第二种情形:如果在汽车送第一批人的同时,其他人先步行,可节省一点时间. 第三种情形:如果这辆汽车行驶到途中一定位置放下第一批人, 然后掉头再接另一批人使得两批人同时到达火车站,比较省时.1分>42分.因此单靠汽车来回接送无法使8人赶上火车.3结果:第一种情形:小汽车需来回走15X 3=45(千米),所需时间为45十60=(小时)=454第二种情形:如果设这些步行的速度为 5千米/时,汽车送完第1批人后,用了 x 小时二批人到达火车站要用 1+2X H=35小时<42分•因此不计其他时间的话,这8人能赶上452 52火车.第三种情形:如果这辆汽车行驶到途中, 一定位置放下第一批人, 然后掉头再接另一批 人,使得两批人同时到达火车站,那么比较省时,需要37分.•备课资料(一)学会解开放题随着素质教育的不断深入,考查学生灵活运用的综合能力成为热点.而开放性问题有利于培养学生灵活运用能力和创造性思维能力.[例1]按要求运用数字135和25%编一道应用题,要求:(1)要联系市场经济,其解符 合实际.(2)数25%要用两次.(3)列出的方程是一元一次方程,写出这道应用题的整个解的 过程.解:依据题目要求可编出应用题: 某个体商店同时出售两件衣服,每件售价都是135元,按进价核算,其中一件盈利25%另一件亏本25%试问在这次销售中,商店是亏还是赚?解这道应用题,设其中一件进价x 元,另一件进价y 元,由题意,得x (1+25%)=135,则 x =108; y (1-25%)=135,则 y =180.••• 2X 135-( x +y )=-18因此是亏,亏了 18元.根据题目要求还可编出一道应用题:某商店降价25%后,又提价25%该商品现价为135元,问该商品原价多少元? 解:设该商品原价x 元,则(1-25%)(1+25) x =135.解,得x =144所以该商品原价是 144 元.与第二批人相遇,根据题意有:1511 5x +60x =15-X 5,解得 x =- 6052,从汽车出故障开始,第[例2]下面是工厂各部门提供的信息:人事部:明年生产工人不多于800 人,每年每人工时按2400 工时计算;市场部:预测明年的产品销量是10000~12000 件;技术部:该产品平均每件需用120 工时,每件需要装4 个某种主要部件;供应部:今年年终库存某种主要部件6000 个,明年可采购到这种部件60000 个.请判断:(1) 工厂明年的生产量至多为多少件?(2)为减少积压,至多裁减多少人用于开发其他新产品.解:(1) 据人事部、技术部、供应部的信息,明年生产量为x 件,则4x=6000+60000,解得x=16500120x=800X 2400,解得x=16000受工时限制x 应取16000.(2) 据市场部信息,设应裁减y 人,则2400(800- y)=12000X 120解,得y=200.应裁减200人.(二)参考练习列方程解应用题1 .甲、乙两人骑自行车,同时从相距65 千米的两地相向而行,甲的速度为17. 5 千米/ 时,乙的速度为15 千米/ 时,经过几小时两人相距32. 5 千米?2•在一直的长河中有甲、乙两船,现同时由A地顺流而下,乙船到B地时接到通知需立即返回到C地执行任务,甲船继续顺流航行,已知甲、乙两船在静水中的速度都是每小时7. 5千米,水流速度为每小时2. 5千米,A、C两地间的距离为10千米•如果乙船由A地经B地再到达C地共用了4小时,问乙船从B地到达C地时,甲船驶离B地有多远?答案:1 .解:(1) 相遇前经过x 小时,甲、乙二人相距32.5 千米,根据题意,得:(17.5+15)x+32.5=65x=1(2) 相遇后甲乙继续前进,设从出发到相遇后经过x 小时相距32.5 千米,根据题意, 得(17.5+15)x-32 .5=65x=3所以经过1 小时或3小时甲、乙两人相距32.5千米.2•解:设乙船由B地航行到C地用了x小时,那么甲、乙两船由A地航行到B地都用了(4- x) 小时.(1)若C地在A B两地之间,有(4- x)(7 .5+2.5)- x(7 .5-2 .5)=10解,得x=210X 2=20 千米(2)若C 地不在A 、B 两地之间,有x (7 . 5-2 . 5)-(4- x )(7 . 5+2. 5)=1010解,得x=±3所以乙船从B 地到达C 地时甲船驶离B 地有20千米或千米.310X巴=100 3千米.。