34-37求最大公因数、最小公倍数、约分、通分练习题(原创) (1)
- 格式:doc
- 大小:118.50 KB
- 文档页数:4
在教“求两个数的最大公因数及最小公倍数”的一点做法“因数与倍数”的知识,一直是小学数学教材中的重要内容。
也是小学数学教学的难点。
今年,我所带的学生升入五年级,我也就随着介入了五年级数学的教学中,进而在教学中涉及到了“因数与倍数”的问题。
教学最大公因数和最小公倍数时遇到了困惑。
第一单元“倍数与因数”时,学生学习了利用乘法算式找因数,在第三单元教学最大公因数和最小公倍数时求公因数时课本给出的方法是列举法。
以找12和18的公因数为例,先用想乘法算式的方式分别找12和18的因数,列举出来,再找出公有的因数和最大公因数。
在此基础上,引出公因数与最大公因数的概念。
教材设定的教学目标为:1、探索找两个数的公因数的方法,会用列举法找出两个数的公因数和最大公因数。
2.经历找两个数的公因数的过程,理解公因数和最大公因数的意义。
根据课标要求,我这样安排教学,先让学生分别找出12和18的因数,并交流找因数的方法。
再让学生将这些因数填入两个相交的集合。
引导学生重点思考的问题是:两个集合相交的部分填哪些因数?教师组织学生展开讨论,引导学生理解“两个数公有的因数是它们的公因数,其中最大的一个是它们的最大公因数”。
通过两个习题的尝试,学生初步感知并逐渐理解了如何找公因数的方法以及怎样找到最大公因数。
但是,问题是一:用时太长,二:部分学生在列举因数时有遗漏,还有的在找公因数时有遗漏。
课本在课后的“你知道吗?” 展示了“短除法”作为一个补充知识,简单进行介绍并不要求学生掌握。
这样,找最大公因数和最小公倍数不仅很耗时间而且准确率不高,怎么办?作为教师,应该怎样去教这一部分内容呢?记得以往的教材中,安排的求最大公因数和最小公倍数的首选方法就是短除法,那么,到底要不要教给学生短除法呢?从相关的教育书刊中,我了解到一线的教师都有这样的疑惑,关于到底是否教短除法,众说纷纭。
也为进一步了解短除法,解决学生的问题,我翻阅资料,关于短除法有这样的介绍。
求最大公因数和最小公倍数的四种方法汇总今天说说求最大公因数和最小公倍数的四种方法。
求最大公因数和最小公倍数四种方法分别是:列举法、筛选法、分解质因数法和短除法(具体过程见图片,对比去学),后两种方法在解题中使用广泛,尤其是短除法,简单、方便、快捷,建议掌握。
为什么要求两个数或多个数的最大公因数和最小公倍数呢?计算是应用之一,求最大公因数可以用来约分,将计算结果约成最简分数。
求最小公倍数可以用来通分,将异分母分数加减法转化为同分母分数加减法,所以分数的加减法计算和最大公因数、最小公倍数有千丝万缕的关系,那么要学好这一块的计算,首先就要学会求两个数的最大公因数和最小公倍数。
解决问题是应用之二,很多解决问题从题目文字表面表达中丝毫看不出是求最大公因数或最小公倍数,当你深入分析,归根结底就是求最大公因数或最小公倍数。
这一块,当然分析问题是重点,但你最终分析出来,还是必须依靠上面的四种方法来求,所以求最大公因数和最小公倍数是基础,四种方法至少会一种(建议重点弄清短除法)。
最大公因数与最小公倍数应用题1、假设这些糖果最少有x个,那么x既能被8整除,又能被10整除,因此x是8和10的最小公倍数,即x=40.2、假设这包糖最少有y块,那么y既能被8整除,又能被10整除,因此y是8和10的最小公倍数,即y=40.3、这个数是4的倍数,因为4除以4余数是0,所以这个数必须被4整除。
这个数是6的倍数,因为6除以6余数是0,所以这个数必须被6整除。
这个数比6的倍数多1,因此这个数必须是6的倍数加1.因此这个数是24+1=25.4、这个人数是30~50的倍数,且是3、4、6、8的公倍数。
这个人数是120的倍数,且小于等于50,因此这个人数是120.5、每个正方形由6块瓷砖组成,因此正方形的面积等于6的倍数。
正方形的边长等于瓷砖的公因数,因此正方形的面积最小是6×6=36.6、假设这堆苹果最少有x千克,那么x既能被8整除,又能被9整除,又能被10整除,因此x是8、9、10的最小公倍数加3,即x=89.7、假设合唱队至少有x人,那么x既能被7整除,又能被8整除,因此x是7和8的最小公倍数加2,即x=54.8、假设最多有x个研究成绩优秀的同学,那么x既能被37和38整除,又要满足钢笔多出一支,书缺2本,因此x是37和38的最小公倍数加1,即x=703.9、这些水果的最大公因数是8,因此每个盘子里的水果数是8的倍数。
苹果和梨的总数是24+32=56,因此每个盘子里的水果数最多是56/2=28.每个盘子里苹果和梨的个数相同,因此每个盘子里苹果和梨各有14个。
10、这两路汽车同时发车的时间是它们发车时间的最小公倍数,即3×5=15分钟后。
11、这个年级的人数是6、8和9的公倍数,因此这个年级的人数是216.12、这个数是3的倍数,因为3除以3余数是0,所以这个数必须被3整除。
这个数是4的倍数,因为4除以4余数是0,所以这个数必须被4整除。
这个数比4的倍数多2,因此这个数必须是4的倍数加2.这个数是5的倍数,因为5除以5余数是0,所以这个数必须被5整除。
约分和通分板块一:知识点归纳:1、公因数与最大公因数:几个数共有的因数叫做这几个数的公因数,其中最大的一个叫做这几个数的最大公因数。
2、求两个数的最大公因数的方法:(1)短除法如:求18和27的最大公因数(用短除法)(2)分解质因数的方法:先将这两个数分解质因数,再从分解的质因数中找出这两个数共有的质因数,共有的质因数相乘就是这两个数的最大公因数。
如:27=3×3×3 36=3×3×4 ,则27和36的最大公因数是()。
3、互质数的意义和判断方法:公因数只有1的两个数叫做互质数。
注意:并不是两个质数才叫互质数,合数和合数也可能成为互质数,判断两个数是否是互质数,就要看他们是不是公因数只有1。
4、互质数的特殊情况:(1)1和任何非0的自然数都是互质数(2)2和任何奇数都是互质数(3)相邻的另个自然数是互质数(4)相邻的两个奇数都是互质数(5)不相同的两个质数都是互质数5、求两个数的最大公因数都特殊情况当两个数成倍数关系时,较小数就是两个数的最大公因数当公因数只有1的两个数(互质数)的最大公因数是1。
6、约分:把一个分数化成和他相等,但是分子和分母都比较小的分数叫做约分。
7、最简分数:分子和分母只有公因数1的分数叫做最简分数。
8、公倍数与最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。
9、求最小公倍数的方法:(1)分解质因数法:A=2×3×7,B=2×5×3,则A和B的最小公倍数是( 210 )。
(2)短除法10、两个数的最小公倍数的特殊情况:(1)如果两个数种较大的数是较小数的倍数,那么较大数就是这两个数的最小公倍数。
如求13和52的最小公倍数。
(2)如果两个数都是质数,那么这两个数的积就是这两个数的最小公倍数。
如:求11和12的最小公倍数。
11、分母相同及分子相同的分数大小比较方法:(1)分母相同的两个分数大小比较方法:分母相同,分子越大,分数越大(2)分子相同的两个分数大小比较方法:分子相同,分母越小,分数越大。
第九周 约分、通分及拓展训练1、约分:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。
如:2430 =452、通分:把异分母分数分别化成和原来相等的同分母分数,叫做通分。
如:25 和14 可以化成 820 和5203、分数和小数的互化(1)小数化为分数:数小数位数。
一位小数,分母是10;两位小数,分母是100……如:0.3=310 0.03=3100 0.003=31000(2)分数化为小数:方法一:把分数化为分母是10、100、1000……如:310 =0.3 35 =610 =0.6 14 =25100=0.25 方法二:用分子÷分母如:34=3÷4=0.75 (3)带分数化为小数:先把整数后的分数化为小数,再加上整数如:2310=2+0.3=2.3 4、比分数的大小: 分母相同,分子大,分数就大; 分子相同,分母小,分数才大。
分数比较大小的一般方法: 同分母比较;同分子比较;通分后比较;化成小数比较;仿通分比较5、分数化简包括两步:一是约分;二是把假分数化成整数或带分数。
一些常见的分数与小数的转化12 =0.5 14 =0.25 34 =0.75 15 =0.2 25=0.4 35 =0.6 45 =0.8 18 =0.125 38 =0.375 58=0.625 78 =0.875 116 =0.0625 120 =0.05 125 =0.04 150=0.02 6、两个数互质的特殊判断方法:① 1和任何大于1的自然数互质。
② 2和任何奇数都是互质数。
③相邻的两个自然数是互质数。
④相邻的两个奇数互质。
⑤不相同的两个质数互质。
⑥当一个数是合数,另一个数是质数时(除了合数是质数的倍数情况下),一般情况下这两个数也都是互质数。
7、求最大公因数的方法:①倍数关系:最大公因数就是较小数。
②互质关系:最大公因数就是1③一般关系:从大到小看较小数的因数是否是较大数的因数。
(完整版)最大公因数与最小公倍数应用题练习1、有一些糖果,分给8个人或分给10个人,正好分完,这些糖果最少有多少粒?解:【8,10】=402、有一包糖,不论分给8个人,还是分给10个人,都能正好分完。
这包糖至少有多少块?解:【8,10】=40(人)3、一个数被2除余1,被3除余2,被4除余4,被6除余5,此数最小是几?解:【2,3,4,6】=12 12-1=114、五年级学生参加植树活动,人数在30~50之间。
如果分成3人一组,4人一组,6人一组或者8人一组,都恰好分完。
五年级参加植树活动的学生有多少人?解:【3,4,6,8】=24(人)24×2=48(人)5、利用每一小块长6公分,宽4公分的长方形彩色瓷砖在墙壁上贴成正方形的图案。
问:拼成的正方形的面积最小是多少?解:【6,4】=12(公分)12×12=144(CM2)6、有一堆苹果,每8千克一份,9千克一份,或10千克一份,都会多出3千克,这堆苹果至少有多少千克?解:【8,9,10】=360 360+3=363kg7、学校合唱队排练时,如果7人一排就差2人,8人一排也差2人,合唱队至少有多少人?解:【7,8】=56(人) 56-2=54(人)8、把37支钢笔和38本书,平均奖给几个学习成绩优秀的学生,结果钢笔多出一支,书还缺2本,最多有几个学习成绩优秀的同学?解:37-1=36(本) 38+2=40(本)(36,40)=4(人)9、有24个苹果,32个梨,要分装在盘子里,每盘的苹果和梨的相同,最多可以装多少盘?每个盘子里苹果和梨各多少?解:(24,32)=8(盘)24÷8=3(个)32÷8=4(个)10、阜沙市场是20路和21路汽车的起点站。
20路汽车每3分钟发车一次,21路汽车每5分钟发车一次。
这两路汽车同时发车以后,至少再过多少分钟又同时发车?解:【3,5】=15(分钟)11、中心小学五年级学生,分为6人一组,8人一组或9人一组排队做早操,都刚好分完。
最⼤公因数与最⼩公倍数综合应⽤题练习及答案④最⼤公因数与最⼩公倍数综合应⽤练习及答案(四)1、有⼀些糖果,分给8个⼈或分给10 个⼈,正好分完,这些糖果最少有多少粒?2、有⼀包糖,不论分给8 个⼈,还是分给10 个⼈,都能正好分完。
这包糖⾄少有多少块?3、⼀个数被2除余1,被3除余2,被4除余4,被6除余5,此数最⼩是⼏?4、五年级学⽣参加植树活动,⼈数在30~50之间。
如果分成3⼈⼀组,4⼈⼀组,6⼈⼀组或者8⼈⼀组,都恰好分完。
五年级参加植树活动的学⽣有多少⼈?5、利⽤每⼀⼩块长6 公分,宽4 公分的长⽅形彩⾊瓷砖在墙壁上贴成正⽅形的图案。
问:拼成的正⽅形的⾯积最⼩是多少?6、有⼀堆苹果,每8千克⼀份,9千克⼀份,或10 千克⼀份,都会多出3千克,这堆苹果⾄少有多少千克?7、学校合唱队排练时,如果7 ⼈⼀排就差2 ⼈,8⼈⼀排也差2⼈,合唱队⾄少有多少⼈?8、把37⽀钢笔和38 本书,平均奖给⼏个学习成绩优秀的学⽣,结果钢笔多出⼀⽀,书还缺2本,最多有⼏个学习成绩优秀的同学?9、有24 个苹果,32 个梨,要分装在盘⼦⾥,每盘的苹果和梨的个数相同,最多可以装多少盘?每个盘⼦⾥苹果和梨各多少?10、⾩沙市场是20 路和21 路汽车的起点站。
20 路汽车每3 分钟发车⼀次,21 路汽车每5 分钟发车⼀次。
这两路汽车同时发车以后,⾄少再过多少分钟⼜同时发车?11、中⼼⼩学五年级学⽣,分为 6 ⼈⼀组,8 ⼈⼀组或9 ⼈⼀组排队做早操,都刚好分完。
这个年级⾄少有学⽣多少⼈?12、有⼀盘⽔果,3个3个地数余2个,4个4个数余3,5个5个数余4个,问个盘⼦⾥最少有多少个⽔果?13、有⼀个电⼦表,每⾛9 分钟亮⼀次灯,每到整点响⼀次铃,中午12 点整,电⼦表既响铃⼜亮灯,请问下⼀次既响铃⼜亮灯的是⼏点钟?14、数学兴趣⼩组有24 个男同学,20 个⼥同学,现要分成⼩组,每个⼩组男、⼥同学⼈数分别相同,最多可以分成多少个⼩组?每组⾄少有多少个男同学?多少个⼥同学?15、有38 ⽀铅笔和41 本练习本平均奖给若⼲个好少年,结果铅笔多出 3 ⽀,练习本还缺1 本。
最大公因数与最小公倍数综合应用练习及答案(四)1、有一些糖果,分给8个人或分给10个人,正好分完,这些糖果最少有多少粒?2、有一包糖,不论分给8个人,还是分给10个人,都能正好分完。
这包糖至少有多少块?3、一个数被2除余1,被3除余2,被4除余4,被6除余5,此数最小是几?4、五年级学生参加植树活动,人数在30~50之间。
如果分成3人一组,4人一组,6人一组或者8人一组,都恰好分完。
五年级参加植树活动的学生有多少人?5、利用每一小块长6公分,宽4公分的长方形彩色瓷砖在墙壁上贴成正方形的图案。
问:拼成的正方形的面积最小是多少?6、有一堆苹果,每8千克一份,9千克一份,或10千克一份,都会多出3千克,这堆苹果至少有多少千克?7、学校合唱队排练时,如果7人一排就差2人,8人一排也差2人,合唱队至少有多少人?8、把37支钢笔和38本书,平均奖给几个学习成绩优秀的学生,结果钢笔多出一支,书还缺2本,最多有几个学习成绩优秀的同学?9、有24个苹果,32个梨,要分装在盘子里,每盘的苹果和梨的个数相同,最多可以装多少盘?每个盘子里苹果和梨各多少?10、阜沙市场是20路和21路汽车的起点站。
20路汽车每3分钟发车一次,21路汽车每5分钟发车一次。
这两路汽车同时发车以后,至少再过多少分钟又同时发车?11、中心小学五年级学生,分为6人一组,8人一组或9人一组排队做早操,都刚好分完。
这个年级至少有学生多少人?12、有一盘水果,3个3个地数余2个,4个4个数余3,5个5个数余4个,问个盘子里最少有多少个水果?13、有一个电子表,每走9分钟亮一次灯,每到整点响一次铃,中午12点整,电子表既响铃又亮灯,请问下一次既响铃又亮灯的是几点钟?14、数学兴趣小组有24个男同学,20个女同学,现要分成小组,每个小组男、女同学人数分别相同,最多可以分成多少个小组?每组至少有多少个男同学?多少个女同学?15、有38支铅笔和41本练习本平均奖给若干个好少年,结果铅笔多出3支,练习本还缺1本。
人教版五年级下册数学最大公因数与最小公倍数总结习题一、求几个数的最大公因数12、30、24:它们的最大公因数是6.39、78、84:它们的最大公因数是39.36、60、45:它们的最大公因数是3.45、75、60:它们的最大公因数是15.42、105、62、36、48:它们的最大公因数是6.二、给下面的分数约分24:约分为12.36:约分为18.45/18:约分为5/2.75/27:约分为25/9.35:无法约分。
8:无法约分。
20:无法约分。
16/17:无法约分。
80/51:无法约分。
10:无法约分。
三、求几个数的最小公倍数。
25、30、39:它们的最小公倍数是1950.60、84、18:它们的最小公倍数是420.126、45、75:它们的最小公倍数是450.12、45、60:它们的最小公倍数是180.76、36、27、72:它们的最小公倍数是2052.42、105、62、36、48:它们的最小公倍数是1512.四、将下列各组分数通分。
5/6和7/3:通分后为35/18和XXX。
2/4和5/7:通分后为14/28和20/28.1/2和5/9:通分后为9/18和10/18.5/7和3/5:通分后为25/35和21/35.15/35和9/6:通分后为18/42和105/42.六、用短除法求几个数的最大公因数与最小公倍数。
45和60:它们的最大公因数是15,最小公倍数是180. 36和60:它们的最大公因数是12,最小公倍数是180.27和76:它们的最大公因数是1,最小公倍数是2052.12和47:它们的最大公因数是1,最小公倍数是564.21和498:它们的最大公因数是3,最小公倍数是6986.12和36:它们的最大公因数是12,最小公倍数是36.七.填空题。
1.都是自然数,如果a=10,的最大公约数是(2),最小公倍数是(30)。
2.甲=2×3×3,乙=2×3×5,甲和乙的最大公约数是(2×3)=6,甲和乙的最小公倍数是(2×3×3×5)=90.3.所有自然数的公约数为1.4.如果m和n是互质数,那么它们的最大公约数是1,最小公倍数是m×n。
《最大公因数》讲义一、什么是最大公因数在数学的世界里,最大公因数就像是两个或多个数字之间的一个特殊“纽带”。
当我们谈到最大公因数时,它指的是能够同时整除一组数的最大整数。
比如说,对于数字 12 和 18,它们的因数分别有:12 的因数是 1、2、3、4、6、12;18 的因数是 1、2、3、6、9、18。
可以看到,它们共有的因数是1、2、3、6,其中最大的那个就是6,所以 12 和 18 的最大公因数就是 6。
为了更清晰地理解这个概念,我们可以想象有一堆相同大小的积木要分别放进几个盒子里,而最大公因数就是能够整除这几个盒子里积木数量的最大数。
二、如何找最大公因数(一)列举法这是最直接也是最基础的方法。
就像前面提到的 12 和 18,我们分别把它们的因数一一列举出来,然后找出共同的因数,再从中确定最大的那个。
这种方法对于较小的数字比较好用,但当数字较大时,列举因数就会变得繁琐且容易出错。
(二)分解质因数法我们把一个数分解成几个质数相乘的形式,比如 12 = 2×2×3,18 = 2×3×3。
然后找出它们公有的质因数,将这些公有的质因数相乘,得到的积就是最大公因数。
对于 12 和 18,公有的质因数是 2 和 3,所以最大公因数就是 2×3 = 6。
(三)短除法短除法是一种比较高效的方法。
我们用这组数除以它们的一个公因数,然后将除数和商继续除以公因数,直到所得的商互质为止。
最后把所有的除数相乘,得到的就是最大公因数。
例如,求 24 和 36 的最大公因数,先用 24 和 36 同时除以 2,得到12 和 18;再除以 2,得到 6 和 9;接着除以 3,得到 2 和 3,此时 2 和3 互质。
所以 24 和 36 的最大公因数就是 2×2×3 = 12。
三、最大公因数的性质(一)两个数的最大公因数是它们公因数的倍数比如 12 和 18 的公因数有 1、2、3、6,而最大公因数 6 恰好是这些公因数的倍数。
约分【知识归纳】1.公因数和最大公因数的意义:几个数公有的因数叫做这几个数的公因数,其中最大的一个叫做它们的最大公因数。
2.求两个数的最大公因数的方法:(1)列举法;(2)先找出两个数中较小数的因数,再从中圈出另一个数的因数,找出最大公因数;(3)分解质因数法;(4)短除法3.求两个数的最大公因数的特殊方法:(1)当两个数成倍数关系时,较小数是这两个数的最大公因数;(2)当两个数是互质数时,这两个数的最大公因数是1。
4.约分的意义:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分5.最简分数的意义:分子和分母只有公因数1的分数6.约分的方法:(1)逐步约分法;(2)一次约分法。
【重难点点拨】1.把一个分数的分子、分母同时除以公因数,分数的值不变,这个过程叫作约分;像4这样,不能再约分了,叫作最简分数。
2.倍数关系的两个数,最大公因数是较小的数;互质关系的两个数,最大公因数是1.【精典例题】例1、18和27的最大公因数是多少?例2、把2418化简。
专题训练【基础知识】1.求出下面每组数的最大公因数2和6 13和26 1和7 8和92.你能很快说出下列各组数的最大公因数吗?并对每组数的公因数的特点进行总结。
6和12 13和7 1和14 8和9 2和9【能力提高】3.把下列分数化成分母是36的分数(分数的大小不变)43 7212 654.把下列分数化成分子是28的分数(分数的大小不变)6314 41 725.把下面分数约分成最简分数2612 4030 4816123 5511 45256.把43的分子扩大到原来的3倍分母应该怎样变化才能使分数的大小不变?变化后的分数是多少?7.有两根铁丝,一根长12米,另一根长30米,现在要把它们截成相等的小段每根不许有剩余每小段最长多少米?一共可以截成多少段?8.把长是12厘米宽是8厘米的纸板裁成面积相等,最大的正方形而且没有剩余,可以裁成多少块?9.一个分数用3约分了一次,用4约分了两次得52,原来这个分数是多少?通分【知识归纳】1、公倍数和最小公倍数的意义:几个数公有的倍数叫做这几个数的公倍数,其中最小的个数叫做它们的最小公倍数。
2021-2022学年五年级数学下册典型例题系列之第四单元约分和通分专项练习(原卷版)1.把下面的分数化成最简分数。
4 14102518242.把下面各数先约分再化成整数或带分数。
32 18=6817=7015=4012=3.把下面的分数约分,是假分数的要化成带分数或整数。
36 48=2012=14028=4.把下面的分数化成最简分数。
12 20154227815.约分。
4 16=2460=2015=6.把下面的分数约分成最简分数。
3 6147121522557.把下列分数化为最简分数。
15 35=1656=5075=34102=48 20=8127=11121=1995=8.把下面的各分数约分。
85 34=3280=54180=6525=9.把下面各分数约分,是假分数的要化为带分数或整数。
45 135=7224=8115=15 27=1012=321=10.能约分的先约分,再把假分数化成带分数或整数。
15 101861612792011.先通分,再比较大小。
7 15和121118和712824和9301372和111812.把下面每组中的两个分数通分。
3 5和3456和4958和72413.先通分,再比较大小。
5 7和23712和5814.比较下列分数的大小。
7 9和561017和4578和51256、23和7815.通分并比较大小。
4 15和1378和51235和5716.将下面各组分数通分。
7 8和561124和38712和6717.通分。
4 5和3823和14512、78和111618.先约分,再比较大小。
14 35和10203560和3072981和23619.用自己的方法比较每组中两个分数的大小。
(1)34和13(2)45和34(3)516和712(4)417和52120.先通分,再比较每组中分数的大小。
3 5和14251112和91656、78和11122021-2022学年五年级数学下册典型例题系列之第四单元约分和通分专项练习(解析版)1.把下面的分数化成最简分数。
最大公因数与最小公倍数综合应用练习及答案(四)1、有一些糖果,分给8个人或分给10个人,正好分完,这些糖果最少有多少粒2、有一包糖,不论分给8个人,还是分给10个人,都能正好分完。
这包糖至少有多少块3、一个数被2除余1,被3除余2,被4除余4,被6除余5,此数最小是几4、五年级学生参加植树活动,人数在30~50之间。
如果分成3人一组,4人一组,6人一组或者8人一组,都恰好分完。
五年级参加植树活动的学生有多少人5、利用每一小块长6公分,宽4公分的长方形彩色瓷砖在墙壁上贴成正方形的图案。
问:拼成的正方形的面积最小是多少*6、有一堆苹果,每8千克一份,9千克一份,或10千克一份,都会多出3千克,这堆苹果至少有多少千克7、学校合唱队排练时,如果7人一排就差2人,8人一排也差2人,合唱队至少有多少人8、把37支钢笔和38本书,平均奖给几个学习成绩优秀的学生,结果钢笔多出一支,书还缺2本,最多有几个学习成绩优秀的同学9、有24个苹果,32个梨,要分装在盘子里,每盘的苹果和梨的个数相同,最多可以装多少盘每个盘子里苹果和梨各多少10、阜沙市场是20路和21路汽车的起点站。
20路汽车每3分钟发车一次,21路汽车每5分钟发车一次。
这两路汽车同时发车以后,至少再过多少分钟又同时发车】11、中心小学五年级学生,分为6人一组,8人一组或9人一组排队做早操,都刚好分完。
这个年级至少有学生多少人12、有一盘水果,3个3个地数余2个,4个4个数余3,5个5个数余4个,问个盘子里最少有多少个水果13、有一个电子表,每走9分钟亮一次灯,每到整点响一次铃,中午12点整,电子表既响铃又亮灯,请问下一次既响铃又亮灯的是几点钟14、数学兴趣小组有24个男同学,20个女同学,现要分成小组,每个小组男、女同学人数分别相同,最多可以分成多少个小组每组至少有多少个男同学多少个女同学15、有38支铅笔和41本练习本平均奖给若干个好少年,结果铅笔多出3支,练习本还缺1本。
公因数的知识点总结公因数是指一个或多个数的因数中同时为这些数所拥有的因数,也就是能够同时整除多个数的因数。
在数论中,公因数是一个重要的概念,它在整数的因数分解、最大公因数、最小公倍数等问题中起着重要作用。
下面我们来系统地总结一下公因数的知识点。
一、公因数的概念1.1 公因数的定义公因数是指两个或多个数的公有因数。
如果整数a和b的公因数包括正整数d,则称d是a和b的公因数,记作d|a,d|b。
1.2 公因数的性质(1)公因数的最小值两个数的公因数中最小的一个是它们的最大公因数。
例如,两个数6和8的公因数是1,2,它们的最大公因数是2。
(2)公因数的性质如果正整数a和b的公因数为d,则a和b分别除以d的商m和n都分别是整数。
1.3 公因数的判定方法(1)列举法通过列举两个数的所有因数,找出它们的公有因数。
例如,求36和48的公因数,先分别列出36和48的所有因数,再找出它们的公有因数。
(2)分解法通过分解两个数,找出它们的公有因数。
例如,求36和48的公因数,先分解36=2²×3²,48=2⁴×3,再找出它们的公有因数。
1.4 公因数的应用(1)公因数在因数分解中的应用利用两个数的公因数,可以将它们的分解式约去共有因数,得到它们的最大公因数或最小公倍数。
(2)公因数在最大公因数和最小公倍数中的应用最大公因数和最小公倍数都与公因数有关,通过公因数可以求得两个数的最大公因数和最小公倍数。
二、公因数的计算2.1 公因数的查找通过列举法或分解法可以查找两个数的公因数。
首先列举两个数的所有因数,然后逐个比较两个数的因数,找出它们的公有因数。
例如,求24和36的公因数,先分别列出24和36的所有因数,再找出它们的公有因数。
2.2 公因数的性质公因数有一些性质,如最大公因数、最小公倍数等。
2.3 公因数的算法(1)最大公因数的求法最大公因数是两个或多个数的公有因数中最大的一个。
约分与通分【约分】知识点一:最大公因数(1)几个数的因数叫做这几个数的公因数。
其中最大的一个叫做这几个数的。
(2)当两个数成倍数关系时,就是它们的最大公因数。
(3)当两个数的公因数只有1时,它们的最大公因数就是。
(4)叫做互质数。
知识点二:求两个数的最大公因数的方法(1)列举法:先分别找出两个数的因数,从中找出公因数,再找出公因数中最大的一个。
(2)筛选法:先找出两个数中较小数的因数,从中圈出较大数的因数,再看哪一个因数最大。
(3)分解质因数法:先将这两个数分别分解质因数,再从分解的质因数中找出这个两个数公有的质因数,公有的质因数相乘所得的积就是这两个数的最大公因数(4)短除法:先把这两个数公有的质因数按从小到大的的顺序依次作为除数,连续去除这两个数,直到得出的两个商只有公因数1为止,再把所有的除数相乘,所得的积就是这两个数的最大公因数。
知识点三:约分(1)约分的定义:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。
(2)约分的方法:1.逐次约分法:用分数的分子和分母的公因数逐次去除分子和分母,直到约成最简分数2.一次约分法:用分数和分子和分母的最大公因数去除分子和分母,能直接约成最简分数。
(3)最简分数的定义:分子和分母只有只有公因数1的分数叫做最简分数。
知识点一:最小公倍数一.叫做它们的公倍数,其中最小的一个叫做它们的。
知识点二:求两个数的最小公倍数的方法(1)列举法:先分别写出两个数各自的倍数,再从中找出公倍数和最小公倍数。
(2)筛选法:先写出两个数中较大数(或较小数)的倍数,然后从这组数中按从小到大的顺序圈出较小数(或较大数)的倍数,第一个圈出的数就是它们的最小公倍数。
(3)分解质因数法:分别把两个数分解质因数,公有的质因数对齐写,各自特有的质因数单独写,然后有的质因数取一个,各自特有的质因数都取出来,把它们连乘,所得的积就是它们的最小公倍数。
(4)短除法:用连个数公有的质因数按从小达到的顺序依次作为除数连续去除这两个数,一直除到所得的商只有公因数1为止,然后把所有的除数和最后所得的商连乘,所得的积就是它们的最小公倍数。
求最大公因数、最小公倍数、约分、通分练习题一、求几个数的最大公因数12和30 24和3639和78 72和8436和60 45和6045和75 45和6042、105和56 24、36和48二、给下面的分数约分3624 75452718 2416 2035 80165117 108三、求几个数的最小公倍数。
25和30 24和30 39和7860和84 18和20126和60 45和7512和24 45和6076和80 36和60 27和7242、105和56 24、36和48四、将下列各组分数通分。
12785和352143和6597和95153913和5432和六、用短除法求几个数的最大公因数与最小公倍数。
45和60 36和60 27和72 76和80 6、12和24 7、21和49 8、12和36七. 填空题。
1. 都是自然数,如果b a =10 , 的最大公约数是( ),最小公倍数是( )。
2. 甲=2×3×3 ,乙=2×3×5 ,甲和乙的最大公约数是( )×( )=( ),甲和乙的最小公倍数是( )×( )×( )×( )=( )。
3. 所有自然数的公约数为( )。
4. 如果m 和n 是互质数,那么它们的最大公约数是( ),最小公倍数是( )。
5. 在4、9、10和16这四个数中,( )和( )是互质数,( )和( )是互质数,( )和( )是互质数。
277185和3310229和15752和21472和5110172和3241和97103和5432和。
最小公倍数和最大公因数的符号
一、啥是最小公倍数和最大公因数
嘿,同学们!咱们来聊聊数学里的最小公倍数和最大公因数。
这俩家伙可是很有趣的哟!
最大公因数呢,就是几个数公有的因数里最大的那个。
比如说 12 和 18,它们的公因数有 1、2、3、6,这里面最大的就是 6,所以 6 就是 12 和 18 的最大公因数啦。
而最小公倍数呢,就是几个数公有的倍数里最小的那个。
还是拿12 和 18 举例,它们的公倍数有 36、72、108……这里面最小的就是36,所以 36 就是 12 和 18 的最小公倍数。
二、咋求最小公倍数和最大公因数
求最大公因数和最小公倍数的方法有好几种呢!
先来说说求最大公因数,咱们可以用列举法,把每个数的因数都写出来,然后找相同的,再找出最大的那个。
还有分解质因数法,把数分解成几个质因数相乘的形式,然后找出相同的质因数,相乘就是最大公因数啦。
求最小公倍数也有列举法,把每个数的倍数都写出来,找到相同的最小的那个。
还有短除法,这个方法可好用啦,通过不断地除以公因数,最后把除数和最后的商相乘,就是最小公倍数咯。
三、最小公倍数和最大公因数的用处
这俩家伙在数学里用处可大啦!
比如说在分数的通分和约分里,就得先求出最大公因数和最小公倍数。
还有在解决一些实际问题的时候,比如安排工作、分配物品啥的,也经常会用到它们。
最小公倍数和最大公因数是数学里很重要的概念,咱们可得好好掌握哟!。
求最大公因数、最小公倍数、约分、通分练习题
一、用短除法求几个数的最大公因数
(1) 12和30 (2) 24和36 (3)39和78 (4)72和84 (5)15和25
(6)45和60 (7)45和75 (8)45和60 (9)36和60 (10)42、105和56
二、给下面的分数约分
36
24
2035
80
16
75
45 27
18
108 2416
51
17
三、用短除法求几个数的最小公倍数。
(1) 25和30 (2) 24和30 (3) 39和78 (4) 60和84 (5) 126和60 (6) 45和75
⑺12和24 ⑻12和14 ⑼18和20 ⑽45和60 ⑾36和60 ⑿27和72
⒀76和80 ⒁42、105和56 ⒂24、36和48 (16)12、18和24
四、将下列各组分数通分。
85和127 143和352 185 和 277
97 和 65 95
153913和 229和3310 52和157 103 和 97
21
4
72和 172和 5110
32和
5
4
41和32
五、写出下列各数的最大公因数和最小公倍数
(1) 15和5的最大公因数是 ;最小公倍数是 ; (2) 9和3的最大公因数是 ;最小公倍数是 ; (3) 9和18的最大公因数是 ;最小公倍数是 ; (4) 11和44的最大公因数是 ;最小公倍数是 ; (5)30和60 的最大公因数是 ;最小公倍数是 ; (6)13和91 的最大公因数是 ;最小公倍数是 ; ⑺7和12的最大公因数是 ;最小公倍数是 ; ⑻8和11的最大公因数是 ;最小公倍数是 ; ⑼1和9的最大公因数是 ;最小公倍数是 ; ⑽8和10的最大公因数是 ;最小公倍数是 ; ⑾6和9的最大公因数是 ;最小公倍数是 ; ⑿8和6的最大公因数是 ;最小公倍数是 ; ⒀10和15的最大公因数是 ;最小公倍数是 ; ⒁4和6的最大公因数是 ;最小公倍数是 ; ⒂16、32和64的最大公因数是 ;最小公倍数是 ;
约分和通分的练习
1、把下面的分数约分成最简分数。
= = = =
= = = =
2、把下面每组中的两个分数通分。
和 和 和
3、先约分,再比较每组中两个分数的大小。
和 和
4、先通分,再比较每组中个分数的大小。
和 和
和 和
5、把下列分数从大到小排列
( )>( )>( )>( )>( )
4 6 10 1
5 6
9
8 10 14
21
18 30
70
105
66 88
1 4 5 6 7
9 2 3 9 10 5
6
24 32 3
12
30 70 18
48
7 15 9
20
7 18 5
12
5 9 8 15
4 5 11 13
3 5 7 10 3
4
5
6 13 15 5 8
3 4 2 3 5 6 1 8 7 12
作业设计 37 姓名 成绩
1、有甲、乙、丙三个射击运动员练习射击,三人各自射击了30、40、50发子弹,分别打中了靶子25、36、40次,请问谁的命中率比较高一些?
2、有3根小棒,它们的长分别是12厘米、18厘米、24厘米,要把它们截成同样长的小棒,不能有剩余,每根小棒最长是多少米?
3、一个分数用3约了一次,用2约了两次得6
5
,原来这个分数是多少?
4、有36枝铅笔和24本练习本,平均分给若干名同学,最多可以分给多少名同学?每人分得多少枝铅笔和多少本练习本?
5、五(3)班的学生不到50人,24人或16人站一排都没有剩余,这个班有多少人?
6、在50米的跑步比赛中,在相同的时间内小华跑了全程的54,小亮跑了全程的4
3
,谁跑得快?
7、工厂要生产一种烟囱管,长2.5米、宽4分米、高3分米,要生产45根,一共需要多少平方米的材料?。