四选一数据选择器
- 格式:docx
- 大小:11.91 KB
- 文档页数:2
电学实验报告模板实验原理数据选择器的功能类似一个单刀多掷开关,如图1所示。
数据选择器在地址码的控制下,从多路数据输入中选择其中一个并将其送到一个公共的输出端。
图1 数据选择器示意图1. 4选1数据选择器图2 4选1数据选择器及其逻辑图2所示为4选1数据选择器及其逻辑。
该电路有4路输入数据和为地址输入。
为使能控制端,当时,数据选择器正常工作;当时,数据选择器的输出被锁定在“0”,不能选择。
由图2(b)可以得到该数据选择器的逻辑函数式为(1)2. 用4选1数据选择器扩展成8选1数据选择器8选1数据选择器有8路数据输入,3位地址输入。
如果用4选1数据选择器实现8选1,需要2片4选1数据选择器,如图所示。
其中,是通过4选1数据选择器的使能控制端接入的。
由图5并根据式(1),可以得到显然实现了8选1的逻辑功能。
图5 用4选1数据选择器扩展成8选1数据选择器实验仪器实验内容及步骤1. 测试和验证74HC153的逻辑功能(1)集成电路芯片74HC153引脚图74HC153是双4选1数据选择器,芯片内部包含两个独立的、完全相同的4选1数据选择器。
图7-5所示为引脚图。
每一个4选1数据选择器都设置了一个使能控制端。
两个4选1数据选择器共享地址输入端。
图6 74HC151引脚图(2)测试和验证74HC153的逻辑功能按图7连接电路。
实验数据记录在表7-1。
验证74HC153的逻辑功能。
图7 测试74HC151的逻辑功能实验电路表1(3)用一片74HC153扩展成8选1数据选择器图8 74HC153扩展成8选1数据选择器实验电路按图8连接电路。
实验数据记录在表2。
验证电路的逻辑功能。
表2实验结果及分析1.实验结果2.分析该实验结果表明74HC153元件实现了4选1的数据选择功能74HC153与74LS00两个4选1数据选择器拓展实现了8选1的逻辑功能实验结论1.74HC153具有4选1逻辑功能,能够实现数据选择,其有4路输入数据D0、D1、D2、D3,A0、A1为地址输入,为使能控制端,当时,数据选择器正常工作;当时,数据选择器的输出被锁定在“0”,不能选择。
图所示的是四选一数据选择器的原理图。
图中的D0、D1、D2、D3是四个数据输入端,Y为输出端,A1、A0是地址输入端。
从表中可见,利用指定A1A0的代码,能够从D0、D1、D2、D3这四个输入数据中选出任何一个并送到输出端。
因此,用数据选择器可以实现数据的多路分时传送。
此外,数据选择器还广泛用于产生任意一种组合逻辑函数。
在图示电路中,若将Y看成是A0、A1及D0、D1、D2、D3的函数,则可写成
如果把A1、A0视为两个输入逻辑变量,同时把D0、D1、D2和D3取为第三个输入逻辑变量A2的不同状态(即A2、/A2、1或0),便可产生所需要的任何一种三变量A2、A1、A0的组合逻辑函数。
可见,利用具有n位地址输入的数据选择器可以产生任何一种输入变量数不大于n +1的组合逻辑函数。
一、数据选择器
1、释义:
数据选择器(data selector) 根据给定的输入地址代码,从一组输入信号中选出指定的一个送至输出端的组合逻辑电路。
有时也把它叫做多路选择器或多路调制器(multiplexer)。
在多路数据传送过程中,能够根据需要将其中任意一路选出来的电路,叫做数据选择器,也称多路选择器或多路开关。
2、工作方式:
工作原理:给A1A0一组信号10,相当于一个2进制数字2,等于选通了D2这个输入端,输出Y 输出的就是D2的信号。
3、逻辑功能:
数据选择器(MUX)的逻辑功能是在地址选择信号的控制下,从多路数据中选择一路数据作为输出信号。
4、分类:
有2选1,4选1、8选1和16选1等类型的数据选择器,又叫"多路开关"。
verilog4选一数据选择器原理(一)Verilog中的4选1数据选择器简介在数字电路中,数据选择器是一种常见的电路组件,用于从多个数据输入中选择一个输出。
Verilog是一种硬件描述语言,广泛用于数字电路的设计和仿真。
本文将介绍Verilog中的4选1数据选择器的原理和实现方法。
原理4选1数据选择器有4个输入和1个输出。
根据选择信号,从4个输入中选择一个输入作为输出。
选择信号是2位的二进制数,共有4种可能的状态,每种状态对应一个输入。
当选择信号为00时,输出为第一个输入;当选择信号为01时,输出为第二个输入;当选择信号为10时,输出为第三个输入;当选择信号为11时,输出为第四个输入。
逻辑电路图以下是4选1数据选择器的逻辑电路图:______S0 ----| || |S1 ----| |----- Y|______|Verilog实现下面是实现4选1数据选择器的Verilog代码示例:module mux4to1 (input [3:0] D, input [1:0] S, outpu t Y);assign Y = (S[1] & S[0] & D[3]) | (S[1] & ~S[0] & D [2])| (~S[1] & S[0] & D[1]) | (~S[1] & ~S[0] & D[0]);endmodule在上面的代码中,D是4个输入的信号线,S是选择信号线,Y是输出信号线。
根据选择信号的不同状态,使用逻辑运算符进行输入的选取,然后将结果输出到输出信号线Y上。
仿真测试为了验证4选1数据选择器的正确性,可以进行仿真测试。
以下是一个简单的测试示例:module test_mux4to1;// Declare signalsreg [3:0] D;reg [1:0] S;wire Y;// Instantiate the modulemux4to1 mux (D, S, Y);// Stimulusinitial begin// Test case 1D = 4'b0001; S = 2'b00; // Expect Y to be 0 #10;// Test case 2D = 4'b0001; S = 2'b01; // Expect Y to be 0 #10;// Test case 3D = 4'b0001; S = 2'b10; // Expect Y to be 0 #10;// Test case 4D = 4'b0001; S = 2'b11; // Expect Y to be 1 #10;$finish;endendmodule上述代码中,D和S是输入信号,Y是输出信号。
实验七 4选1和8选1数据选择器的设计一、实验目的3. 掌握电路设计和仿真测试的方法。
二、实验原理数据选择器是一种数字电路,用于从多个输入信号中选择一个输出信号。
数据选择器根据控制信号的不同,可以实现4选1或8选1的选择功能。
4选1数据选择器的原理如下:输入端有4个数据输入,一个选择输入S(S=0时选择输入1,S=1时选择输入2,S=2时选择输入3,S=3时选择输入4),根据S的不同,输出端输出选择的输入信号。
8选1数据选择器的原理与4选1相似,只是输入端有8个数据输入,选择输入S的取值范围为0~7。
三、实验器材1. 计算机和仿真软件Multisim;2. 数字电路实验箱、数字电路元器件。
四、实验步骤2. 在Multisim中建立相应的电路,并进行仿真测试。
3. 分析仿真结果,验证电路是否符合设计要求,如果出现问题,及时查找原因并修改电路图。
4. 根据实验结果,总结设计和仿真方法,掌握数据选择器电路的设计和仿真测试技巧。
五、实验注意事项1. 在进行电路设计和仿真测试时,应仔细分析原理,并尽可能避免出现矛盾和异常。
2. 电路元器件的选用要合适,尤其是输入和输出端的电阻值和工作电压要一致。
3. 在进行仿真测试时,要保证仿真参数的准确性,特别是信号幅度和频率要符合预期。
4. 电路测试完成后,应及时记录实验结果,包括电路图、仿真参数、测试数据等信息。
六、实验结果分析经过设计和仿真测试,我们成功实现了4选1和8选1数据选择器电路的设计,并获得了合适的仿真结果。
在实验过程中,我们掌握了数据选择器电路的设计和仿真测试技巧,积累了一定的电路设计和测试经验。
综上所述,本次实验达到了预期目标,并为我们今后的电路设计和测试工作提供了一定的指导和参考。
四选一数据选择器11微电子黄跃1117426021【实验目的】1.四选一数据选择器,2.学习V erilog HDL文本文件进行逻辑设计输入;3.学习设计仿真工具modelsim的使用方法;【实验内容】1. 实现四选一数据选择器的“V erilog ”语言设计。
2. 设计仿真文件,进行验证。
【实验原理】数据选择器又称为多路转换器或多路开关,它是数字系统中常用的一种典型电路。
其主要功能是从多路数据中选择其中一路信号发送出去。
所以它是一个多输入、单输出的组合逻辑电路。
4选1数据选择器的元件符号如图一所示,其中D0、D1、D2、D3是4位数据输入端,A0和A0是控制输入端,Y是数据输出端。
当A1A0=00时,输出Y=D1;A1A0=01时,Y=D1;A1A0=10时,Y=D2;A1A0=11,Y=D3。
由真值表写出输出逻辑表达式301201101001)()()()(D A A D A A D A A D A A F +++=由逻辑表达式做出逻辑电路图。
【程序源代码】module mux4_1(sel,in,out);input [1:0] sel;input [3:0] in;output out;reg out;always@(sel or in) begincase ({sel[1],sel[0]})2'b00: out=in[0];2'b01: out=in[1];2'b10: out=in[2];2'b11: out=in[3];default: out=1'bx;endcaseendEndmodule测试程序代码如下:module test_mux4_1;reg [1:0] S;reg [3:0] IN;wire Y;mux4_1 M1(.sel(S),.in(IN),.out(Y));always #10 IN[0]=~IN[0];always #20 IN[1]=~IN[1];always #40 IN[2]=~IN[2];always #80 IN[3]=~IN[3];initialbegin S=1'b0;IN=4'h0;#100 $stop;endalways #10 S=S+1;endmodule【仿真和测试结果】【实验心得和体会】这次实验与上次相比有明显的进步,通过这次实验我对modelsim的应用更加得心应手,深切的体会到了verilog是一种描述性语言,这次实验总的来说是比较顺利的,但在实验过程中还是遇到了一些问题,比如端口的匹配问题,在写程序的时候误将位宽写在了变量名的后面,虽然程序能够运行但有警告,仿真波形是错误的,可见在写程序时警告有时也是致命的,这要求我们在学习的过程中思想一定要严谨!其次在做实验时一定要多想,例如在学习这门课时,书上说在模块外部输入可以是wire型或reg型,但在写程序时激励模块往往要初始化数据,所以编程时其类型往往声明为reg型,通过这个例子我明白了书上所说的有时往往是一个比较笼统的,而更多的需要我们自己去实践、探索、勤思考,只有这样我们才能把书本上的知识转化为属于我们自己的知识,才能在学习的道路上走的更远!原文已完。
EDA实验报告(四选⼀、四位⽐较器、加法器、计数器、巴克码发⽣器)实验1 4选1数据选择器的设计⼀、实验⽬的1.学习EDA软件的基本操作。
2.学习使⽤原理图进⾏设计输⼊。
3.初步掌握器件设计输⼊、编译、仿真和编程的过程。
4.学习实验开发系统的使⽤⽅法。
⼆、实验仪器与器材1.EDA开发软件⼀套2. 微机⼀台3. 实验开发系统⼀台4. 打印机⼀台三、实验说明本实验通过使⽤基本门电路完成4选1数据选择器的设汁,初步掌握EDA设计⽅法中的设汁输⼊、编译、综合、仿真和编程的过程。
实验结果可通过实验开发系统验证,在实验开发系统上选择⾼、低电平开关作为输⼊,选择发光⼆极管显⽰输出电平值。
本实验使⽤Quartus II软件作为设计⼯具,要求熟悉Quartus II软件的使⽤环境和基本操作,如设计输⼊、编译和适配的过程等。
实验中的设计⽂件要求⽤原理图⽅法输⼊,实验时,注意原理图编辑器的使⽤⽅法。
例如,元件、连线、⽹络爼的放巻⽅法和放⼤、缩⼩、存盘、退岀等命令的使⽤。
学会管脚锁定以及编程下载的⽅法等。
四、实验要求1.完成4选1数据选择器的原理图输⼊并进⾏编译;2.对设计的电路进⾏仿真验证:3.编程下载并在实验开发系统上验证设计结果。
五、实验结果管脚分配:N;如kne DteOwn LccatMi Pwecgj G【c^p I/ODo-l 2 GC6P I ifo Xfl-c t nk A Igt PHJ V21Bl NO AS-VLUTrifd2?B Irpjt PIW.VI DJ_W ^>VLVTTl(d 3? co1r(xt P1M IPS5a^Lumid 庐Cl Irpul P1W.KC654a>vivin(d 5* C213P1KLP2S M」JO a>vLum(d 6* C3Inpjt叽⼼:■? ^3-VLVTn(d I* GK incut PJWJtfH7B7JJ1 a>VLUTn(d8o v O J U X A7B7 M J S3-VLVTn(d9<wvx4fr?实验2 四位⽐较器⼀、实验⽬的1. 设计四位⼆进制码⽐较器,并在实验开发系统上验证。
根据给定的输入地址代码,数据选择器从一组输入信号中选择一个指定的,并将其发送到输出端的组合逻辑电路。
有时也称为多路复用器或多路复用器。
该图显示了四分之四数据选择器的示意图。
在图中,D0,D1,D2和D3是四个数据输入端子,Y是输出端子,而A1和A0是地址输入端子。
从表中可以看出,可以使用指定A1A0的代码选择四个输入数据D0,D1,D2和D3中的任何一个并将其发送到输出。
因此,数据选择器可以实现数据的多通道分时传输。
另外,数据选择器被广泛用于生成任何种类的组合逻辑功能。
在图中所示的电路中,如果将y视为A0,A1和D0,D1,D2和D3的函数,则可以写为。
如果将A1和A0视为两个输入逻辑变量,并且将D0,D1,D2和D3视为第三输入逻辑变量A2的不同状态(即A2,/ A2、1或0),则任何所需的组合逻辑函数可以生成三个变量A2,A1和A0。
可以看出,具有N位地址输入的数据选择器可以生成输入变量数量不大于n +1的任何组合逻辑函数。
实验步骤
1.打开莱迪思钻石并设置项目。
2.创建一个新的Verilog HDL设计文件,然后输入设计代码。
3.合成并分配引脚,将输入信号a和b分配给DIP开关,并将输出信号led0〜led3分配给板上的LED。
sel [0] / N14,sel [1] / M14,a / M7,b / M8,,c / M9,d / M10,led / N13
4.构建并输出编程文件,并将其刻录到FPGA的Flash中。
5.按下相应的键/拨动DIP开关并观察输出结果。