Matlab矩阵和数组的操作解读
- 格式:ppt
- 大小:743.50 KB
- 文档页数:1
Matlab——数组与矩阵1 一维数组(向量)的创建1.1 直接输入法从键盘直接输入元素,列与列之间的数据用逗号或空格分隔,行与行之间的数据用分号分隔。
a=[1;2;3] 生成列向量b=[1,2,3] 生成行向量c=[1 2 3] 生成行向量说明:在一行中写多条语句时,逗号和分号可作为语句间的分隔符。
如果用分号,则命令窗不显示运行结果。
1.2 冒号生成法用于产生递增或递减的等差数列。
格式:初值:步长:终值说明:步长为1时可以省略。
a=1:2:6b=1:61.3 定数线性采样法用于产生起止于两点之间的n 个数据点。
格式:x = linspace(a,b,n)b= linspace(1,6,6) b=1:6说明:n 的默认值是100。
1.4 拼接法利用已有的一维数组创建新的一维数组。
将两个行向量或列向量拼接为一个行向量或列向量,也可以利用冒号抽取其中的部分数据生成新的一维数组。
行向量拼接:用方括号和逗号a3= [a1,a2]列向量拼接:用方括号和分号b3= [b1;b2]向量的抽取:用冒号a4= a3(1:2:end)抽取a3 中的奇数位置的元素组成新的数组例1 创建两个不同的一维行向量和列向量,并利用这两个向量拼接成一个新的行向量和列向量,然后再由新向量中的奇数位置元素组成新的向量。
x1= 1:3x2= linspace(5,20,4)x= [x1,x2]y1=[1:3]’y2= linspace(5,20,4)’y= [y1;y2]x3= x ( 1:2:end)y3= y ( 1:2:end)2 一维数组中元素的提取利用圆括号和索引号。
A= [1 2 3 4 5]a3=A(3)提取第3个元素3 二维数组(矩阵)的创建3.1 直接输入法从键盘直接输入元素。
输入规则如下:(1)矩阵元素必须在方括号内;(2)同行元素之间用空格或逗号隔开;(3)行与行之间用分号或回车符隔开;(4)元素可以是数值、变量、表达式或函数;(5)矩阵的维数不必预先定义。
matlab中的矩阵运算和数组运算方法MATLAB 具有两种不同类型的算术运算:数组运算和矩阵运算。
您可以使用这些算术运算来执行数值计算,例如两数相加、计算数组元素的给定次幂或两个矩阵相乘。
矩阵运算遵循线性代数的法则。
数组运算则是执行逐元素运算并支持多维数组。
句点字符(.) 将数组运算与矩阵运算区别开来。
但是,由于矩阵运算和数组运算在加法和减法的运算上相同,因此没有必要使用字符组合 .+ 和 .-。
数值运算加法,例如A+B,+B减法,例如A-B,-B按元素乘法。
点乘,A.*B 表示 A 和 B 的逐元素乘积。
按元素求幂,A.^B 表示包含元素 A(i,j) 的 B(i,j) 次幂的矩阵。
数组右除,A./B 表示包含元素 A(i,j)/B(i,j) 的矩阵。
数组左除,A.\B 表示包含元素 B(i,j)/A(i,j) 的矩阵。
数组转置,A.' 表示 A 的数组转置。
对于复矩阵,这不涉及共轭。
矩阵运算矩阵乘法,C = A*B 表示矩阵 A 和 B 的线性代数乘积。
A 的列数必须与 B 的行数相等。
矩阵左除,x = A\B 是方程 Ax = B 的解。
矩阵 A 和 B 必须拥有相同的行数。
A\B = inv(A)*B矩阵右除,x = B/A 是方程 xA = B 的解。
矩阵 A 和 B 必须拥有相同的列数。
有B/A = (A'\B')'。
矩阵幂,A^B 表示 A 的 B 次幂(如果 B 为标量)。
对于 B 的其他值,计算包含特征值和特征向量。
转置,A' 表示 A 的线性代数转置。
对于复矩阵,这是复共轭转置。
逆矩阵,inv(A)或者A^(-1),A必须是方矩阵,也就是需要行列数相等。
行列式值,det(A)说明当方程形式是Ax=B时,则x=A\B=inv(A)*B;当方程形式是xA=B时,则x=B/A=B*inv(A);其中inv()是求逆矩阵。
Matlab实验报告(二)矩阵和数组操作一、实验目的1.掌握矩阵和数组的一般操作,包括创建、保存、修改和调用等。
2.学习矩阵和数组的加减运算与乘法。
3.掌握对数组中元素的寻访与赋值,会对数组进行一般的操作。
二、预备知识1.常用的产生特殊矩阵的函数?eye(m,n) 单位阵?rand(m,n) 随机矩阵?randn(m,n) 正态分布的随机矩阵?zeros(m,n) 零矩阵?ones(m,n) 全部元素都为1的矩阵?compan(A) 矩阵A的伴随矩阵?bankel(m,n) n维Hankel矩阵?invhilb(n) n维逆Hilbert矩阵?magic(n) n维Magic矩阵?toeplitz(m,n) Toeplitz矩阵?wilkinson(n) n维Wilkinson特征值测试矩阵?handamard(n) n 维Handamard矩阵?hilb(n) n维Hilbert矩阵?kron(A,B) Kronecker 张量积?pascal(n) n维Pascal矩阵?vander(A) 由矩阵A产生Vandermonde矩阵2.通过矩阵的结构变换,获得新矩阵表2 矩阵结构变化产生新矩阵L=tril(A) L=tril(A,k) 0 U=triu(A) U主对角线及以上的元素取矩阵A的元素,其余为0 L主对角线及以下元素取矩阵A 的元素,其余为0 L及第k条对角线及以下元素取矩阵A的元素,其余为U=triu(A,k) 0 B=rot90(A) B=rot90(A,k) B=fliplr(A) B=flipud(A) B=reshape(A,m,n) U 第k条对角线及以上的元素取矩阵A的元素,其余为矩阵A逆时针旋转90°得到B 矩阵A逆时针旋转k*90°得到B 矩阵A左右翻转得到B 矩阵A上下翻转得到B 将矩阵A的元素重新排列,得到m*n的新矩阵(m*n就等于A的行列式之积。
在MATLAB中使用矩阵和数组MATLAB(Matrix Laboratory)是一种流行的数值计算软件,广泛用于科学和工程领域。
它具有强大的功能,可以进行各种数学运算和数据分析。
在MATLAB 中,矩阵和数组是基本的数据结构,它们用于存储和处理数据。
一、矩阵和数组的定义和基本操作在MATLAB中,矩阵和数组都可以用来存储和操作多个数据。
矩阵是一个二维的数值数组,而数组可以有多个维度。
在定义矩阵或数组时,我们可以直接输入数据,也可以使用内置的函数来生成。
例如,我们可以用以下方式定义一个矩阵A:A = [1 2 3;4 5 6;7 8 9]这个矩阵A是一个3×3的矩阵,它的元素分别为1到9。
我们可以使用分号来表示矩阵的不同行,并用空格或制表符来分隔不同列。
同样地,在MATLAB中,我们可以使用以下方式定义一个数组B:B = [1, 2, 3, 4]这个数组B是一个包含4个元素的一维数组。
在定义数组时,元素之间通常使用逗号来进行分隔。
一旦定义了矩阵或数组,我们就可以对其进行各种操作。
在MATLAB中,我们可以使用运算符对矩阵和数组进行加、减、乘、除等数学运算。
例如,我们可以使用加法运算符来计算两个矩阵的和:C = A + A这里,C是一个3×3的矩阵,它的元素是矩阵A的对应元素和。
同样地,我们可以使用减法、乘法和除法运算符来进行相应的运算。
此外,MATLAB还提供了许多其他的函数和工具箱,用于矩阵和数组的操作。
例如,我们可以使用sum函数来计算矩阵的和:D = sum(A)这里,D是一个包含3个元素的一维数组,它的元素分别是矩阵A每一列的和。
二、矩阵和数组的索引和切片在MATLAB中,我们可以使用索引和切片操作来访问矩阵和数组中的元素。
索引用来指定元素在矩阵或数组中的位置,而切片则可以选择矩阵或数组的一个子集。
例如,我们可以使用索引获取矩阵A中的某个元素:a = A(2, 3)这里,a的值为6,它是矩阵A的第2行第3列的元素。
MATLAB 矩阵与数组:定义、用法及应用案例MATLAB 矩阵与数组:定义、用法及应用案例 .................................................................... 目录11.2. 3. 数组(Array )..........................................................................................................21.1 数组的定义........................................................................................................21.2 数组的基本用法................................................................................................2数组的逻辑运算.......................................................................................................34.4.3 矩阵运算和操作................................................................................................64.4 矩阵索引和切片................................................................................................64.5 应用案例............................................................................................................三维数组...................................................................................................................4矩阵(Matrix )........................................................................................................64.1 矩阵的定义........................................................................................................64.2 矩阵的创建........................................................................................................675.数组和矩阵的区别...................................................................................................75.1 维度....................................................................................................................75.2 操作....................................................................................................................75.3 创建....................................................................................................................85.4 索引和切片........................................................................................................85.5 应用.. (8)在MATLAB中,矩阵和数组是基础的数据结构,用于存储和处理多维数值数据。
Matlab数组、数组运算和矩阵运算1、数值数组matlab中数组不需要声明。
(1)对一维数值数组赋初值逐个元素输入:x=[1 2 pi/2]冒号生成:x=1:0.1:4定数线性采样法:x=linspace (a,b,n)%相当于第一个数为a,最后一个数为b,以n为采样点数等间距采样。
x=logspace(a,b,n)%相当于第一个数为10a,最后一个数为10b,以n为采样点数等间距采样。
(2)对一维数值数组的寻访x(3) %寻访第三个元素x([1 2 3]) %寻访第1,2,3个元素x(1:3) %寻访第1到3个元素x(3:-1:1) %由前三个元素倒排成子数组x(find(x>0.5)) %由大于0.5的元素构成的子数组(3)对二维数值数组赋初值逐个赋值:x=[1,2,3; 3,4,6; 7,8,9]%“;”为二维数组“行”的分隔符号,而“,”和空格为同一行元素的分隔符。
整列赋值:x(:,[4,5])=4 %第4、5列赋值为4元素重排:A=reshape(1:9,3,3)%将1到9重新排列成一个(3*3)矩阵,注意matlab是列“优先”,即先排第一列再排第二列,而不是按行来排。
(4)二维数组元素的标识和寻访“全下标”标识:A(3,5) %第3行第5列元素“单下标”标识:对于一个(m*n)维数组A中第r行第c列元素,其“单下标”表示为:A(l) %这里l=(c-1)*m+r2、数组运算和矩阵运算(1)数组运算指令含义A.'相当于conj(A'),conj的作用help一下吧……A=s把标量s赋给A的每个元素s+B标量s分别与B元素之和s-B,B-s标量s分别与B元素之差s.*A标量s分别与A元素之积s./B,B.\ss分别被B的元素除A.^nA的每个元素自乘n次A.^p对A的各个元素分别求非整数幂p.^A以p为底,分别以A的元素为指数求幂A+B对应元素相加A-B对应元素相减A.*B对应元素相乘A./BA的元素被B的对应元素除B.\A同上exp(A)以e为底,分别以A的元素为指数求幂log(A)对A的各个元素求对数sqrt(A)对A的各个元素求平方根f(A)求A各个元素的函数值A#B对应元素的关系运算,#代表关系运算符A@B对应元素的逻辑运算,@代表逻辑运算符(2)矩阵运算含义A'共轭转置s*A标量s分别与A元素之积S*inv(B)B阵的逆乘sA^nA阵为方阵时,自乘n次A^p方阵A的非整数乘方p^AA阵为方阵时,标量的矩阵乘方A+B矩阵相加A-B矩阵相减A*B矩阵相乘A/BA右除BB\AA左除Bexpm(A)A的矩阵指数函数logm(A)A的矩阵对数函数sqrtm(A)A的矩阵平方根函数funm(A,'FN')一般矩阵函数3、逻辑数组看例子就明白了:A=zeros(2,5); %预生成一个(2*5)全零数组A(:)=-4:5; %运用“全元素”方法向A赋值L=abs(A)>3 %产生一个与A同维的“0 -1”逻辑值数组islogical(L) %判断L是否逻辑值数组。
看论文时,经常看到矩阵,但在记忆里又看到数组。
那么问题来了,矩阵和数组分别是什么?二者有什么区别?看论文时,经常看到矩阵,但在记忆里又看到数组。
那么问题来了,矩阵和数组分别是什么?二者有什么区别?在数学上,定义m×n个数(i=1, 2…, m ; j=1, 2,…n)排成的m行n列的数表示为m行n列的矩阵,并且用大写加粗黑色字母表示。
只有一行的矩阵:,也称之为行向量;只有一列的矩阵,也称之为列向量。
矩阵最早来自于方程组的系数即常数所构成的方阵,这一个概念有19世纪英国数学家凯利首先提出。
数组是在程序设计中,为了处理方便,把具有相同类型的若干变量按有序的形式组织起来的一种形式。
这些按序排列的同类数据元素的集合称之为数组。
在Matlab中,一个数组可以分解为多个数组元素,这些数组元素可以是基本数据类型或是构造类型。
因此按数组元素的类型不同,数组又可以分为数值数组、字符数组、单元数组、结构数组等各种类别。
看完上面的内容,矩阵和数组的区别似乎懂了一点。
矩阵和数组在Matlab中存在很多方面的区别:(1)矩阵是数学的概念,而数组是计算机程序设计领域的概念;(2)作为一种变换或映射算符的体现,矩阵运算有着明确而严格的数学规则。
而数组运算是Matlab软件定义的规则,其目的是为了使数据管理方便,操作简单,命令形式自然,执行计算有效。
二者联系主要体现在:在Matlab中,矩阵是以数组的形式存在的。
因此,一维数组相当于向量;二维数组相当于矩阵。
所以矩阵是数组的子集。
对矩阵的基本操作,主要有矩阵的构建、矩阵维度和矩阵大小的改变、矩阵的索引、矩阵的属性信息的获取、矩阵结构的改变等。
对于这些操作,Matlab中都有固定的指令或者相应的库函数与之相对应。
在程序用到的时候,每次都要上网查,网上的很散。
这里,我对我经常用的做了总结。
以后用到可以查阅。
1、矩阵下表引用下面将常用的几个举例说明:例如:A=[1 2 3 4 5;12 12 14 56 657;23 46 34 67 56 ];(1)将二维矩阵A转化成一维矩阵(列向量):Matlab 默认将其转化成列向量,需要行向量转置即可。
matlab 中数组与矩阵的联系与区别概述说明1. 引言1.1 概述在编程领域中,数组和矩阵是经常被使用的数据结构。
它们是存储和处理大量数据的重要工具。
而MATLAB作为一种数值计算和科学绘图的高级编程语言,也提供了强大的数组和矩阵操作功能。
本文将从概述、结构和目的三个方面对数组与矩阵之间的联系与区别进行详细说明。
通过对这两种数据结构进行全面比较和分析,我们可以更好地理解它们在MATLAB中的应用,并为相关领域的研究人员提供参考。
1.2 文章结构本文主要分为五个部分来探讨数组与矩阵之间的联系与区别。
首先,在引言部分,我们会对整篇文章做一个简单介绍,说明文章涉及到的内容以及目标。
然后,在第二部分,我们将深入探讨数组和矩阵的概念,并对它们之间的联系与区别进行详细描述。
接着,在第三部分,我们将介绍几种特殊类型的数组和矩阵,并探讨它们在MATLAB中的应用情况。
在第四部分,我们将比较数组和矩阵操作方法的差异,并分析它们对常用运算符的影响。
最后,在结论部分,我们将总结数组与矩阵之间的联系与区别,并说明它们在不同领域中的应用情况。
1.3 目的本文的目标是详细介绍和阐述MATLAB中数组和矩阵之间的联系与区别。
通过全面比较和分析这两种数据结构,我们旨在为读者提供更清晰的认识和理解。
同时,我们还希望通过具体实例和应用场景说明这些概念在实践中的重要性。
无论是初学者还是专业人士,都可以通过本文更好地理解并运用数组和矩阵相关的操作方法。
以上就是“1. 引言”部分内容,给出了文章整体概述、结构和目标。
2. 数组与矩阵的联系与区别2.1 数组概述数组是一种数据结构,可以用来存储相同类型的多个元素。
在Matlab中,数组可以有多个维度,也可以是多维的。
每个元素在数组中都有一个唯一的位置,该位置称为索引。
2.2 矩阵概述矩阵是特定类型的数组,其中包含行和列两个维度。
因此,矩阵是一个二维数组。
在Matlab中,矩阵可以用于表示线性方程组、向量空间以及其他数学和科学问题。
matlabmatlab 数组运算和矩阵运算的各个要求-回复标题:Matlab中的数组运算和矩阵运算详解在Matlab中,数组和矩阵是两种基本的数据结构,它们在数值计算、科学计算、工程问题等领域有着广泛的应用。
理解和掌握Matlab中的数组运算和矩阵运算对于提升编程效率和解决实际问题具有重要意义。
以下将详细解析Matlab中数组运算和矩阵运算的各项要求和步骤。
一、Matlab中的数组运算1. 数组的定义与创建在Matlab中,可以通过直接赋值或者使用特定函数来创建数组。
例如,我们可以直接定义一个一维数组:matlaba = [1, 2, 3, 4, 5];或者使用`ones`, `zeros`, `linspace`, `rand`等函数创建特定类型的数组:matlabb = ones(1, 5); 创建全为1的一维数组c = linspace(0, 10, 5); 创建从0到10均匀分布的5个数的一维数组d = rand(1, 5); 创建包含5个0-1之间随机数的一维数组2. 数组的索引和切片在Matlab中,可以使用索引来访问和修改数组元素。
索引从1开始,例如:matlaba = [1, 2, 3, 4, 5];a(3) 返回数组a的第三个元素,即3a(3) = 6; 修改数组a的第三个元素为6同时,Matlab还支持数组的切片操作,通过冒号(:)可以获取数组的一部分:matlaba(2:4) 返回数组a的第二个到第四个元素,即[2, 3, 4]3. 数组运算Matlab支持多种数组运算,包括算术运算、逻辑运算、比较运算等。
- 算术运算:加(+)、减(-)、乘(*)、除(/)、乘方(^)等。
这些运算符既可以用于数组间的运算,也可以用于数组和标量间的运算。
matlaba = [1, 2, 3];b = [4, 5, 6];c = a + b; c = [5, 7, 9]d = a * 2; d = [2, 4, 6]- 逻辑运算:与(&)、或()、非(~)等。
matlabmatlab 数组运算和矩阵运算的各个要求-回复数组运算和矩阵运算是Matlab 中非常重要的概念。
本文将分别介绍数组运算和矩阵运算,并详细介绍它们的各个要求。
一、数组运算要求1. 数组维度相等:在进行数组运算时,要求参与运算的数组维度必须相等。
如果参与运算的数组维度不相等,那么Matlab 将无法进行运算并将抛出错误信息。
例如,假设有两个数组A 和B,如果想要对它们进行相加操作,那么A 和B 的维度必须完全相同。
2. 数组大小一致:在进行数组运算时,要求参与运算的数组大小必须一致。
数组大小指的是数组中每个维度的元素个数。
例如,假设有两个数组C 和D,如果想要对它们进行相乘操作,那么C 和D 的大小必须一致。
3. 数组类型兼容:在进行数组运算时,要求参与运算的数组类型必须兼容。
数组的类型包括数值型、字符型、逻辑型等。
例如,假设有一个数值型数组E 和一个字符型数组F,如果想要对它们进行相加操作,那么E 和F 的类型不兼容,将无法进行相加。
4. 数组运算符合运算规则:在进行数组运算时,要求所使用的运算符符合运算规则。
例如,加法运算要求两个数组进行对应元素相加,而乘法运算要求两个数组进行对应元素相乘。
例如,对于数组G 和H,如果想要对它们进行相加操作,那么G 和H 的大小和维度必须相同,并且元素相加后的结果将分别填充到相应位置上。
二、矩阵运算要求1. 矩阵维度兼容:在进行矩阵运算时,要求参与运算的矩阵维度必须兼容。
矩阵维度兼容指的是两个矩阵的列数和行数必须满足一定的条件。
例如,假设有两个矩阵M 和N,如果想要对它们进行矩阵乘法操作,那么M 的列数必须等于N 的行数。
2. 矩阵大小一致:在进行矩阵运算时,要求参与运算的矩阵大小必须一致。
矩阵大小指的是矩阵中每个维度的元素个数。
例如,假设有两个矩阵P 和Q,如果想要对它们进行矩阵加法操作,那么P 和Q 的大小必须完全一致。
3. 矩阵类型兼容:在进行矩阵运算时,要求参与运算的矩阵类型必须兼容。
MATLAB中矩阵与数组的区别,点运算符的运用正如matlab(矩阵实验室)这个名字一样,matlab的数据结构只有矩阵(array)一种形式(可细分为普通矩阵和稀疏矩阵)。
单个的数就是1*1的矩阵;数组或向量就是1*n或n*1的矩阵。
事实上对于matlab来说数、数组或向量和二维矩阵在本质上没有任何区别,他们的维数都是2,一切都是以矩阵的形式保存的。
**************************************************************************************** ***一维数组相当于向量,二维数组相当于矩阵,所以矩阵是数组的子集。
1.数组的运算是指数组对应元素之间的运算,也称点运算.2.矩阵是一个二维数组,所以矩阵的加、减、数乘等运算与数组运算是一致的。
3.矩阵的乘法、乘方和除法有特殊的数学含义,并不是数组对应元素的运算.但有两点要注意:(1)对于乘法、乘方和除法等三种运算,矩阵运算与数组运算的运算符及含义都不同:矩阵运算按线性变换定义,使用通常符号;数组运算按对应元素运算定义,使用点运算符;(2)数与矩阵加减、矩阵除法在数学是没有意义的,在MATLAB中为简便起见,定义了这两类运算。
**************************************************************************************** 数组中的元素可以是字符等;矩阵中的只能是数;这是二者最直观的区别。
因为矩阵是一个数学概念(线性代数里的),数组是个计算机上的概念。
《精通MATLAB6.5版》(张志涌编著,北京航空航天大学出版社)中说:从外观形状和数据结构上看,二维数组和数学中的矩阵没有区别。
但是矩阵作为一种变换或映射算子的体现,矩阵运算有着明确而严格的数学规则。
而数组运算是Matlab软件所定义的规则,其目的是为了数据管理方便、操作简单、指令形式自然和执行计算的有效。