matlab矩阵数组
- 格式:ppt
- 大小:360.50 KB
- 文档页数:43
Matlab中的矩阵操作技巧指南在科学计算和数据处理中,矩阵操作是一个非常重要的环节。
Matlab作为一种功能强大的计算工具,提供了丰富的矩阵操作函数和技巧,帮助用户更高效地处理数据。
本文将为大家介绍一些在Matlab中常用的矩阵操作技巧,希望对广大Matlab用户有所帮助。
一、矩阵的创建和赋值在Matlab中,创建矩阵有多种方式。
可以使用数组、函数、特殊值或其他操作创建矩阵。
下面是一些常见的创建矩阵的方法。
1.1 使用数组创建矩阵使用数组创建矩阵是一种简单直观的方式。
可以通过一维或多维数组来创建矩阵。
```matlabA = [1, 2, 3; 4, 5, 6; 7, 8, 9] % 创建一个3x3的矩阵B = [1, 2, 3; 4, 5, 6] % 创建一个2x3的矩阵```1.2 使用函数创建矩阵除了使用数组,还可以使用Matlab提供的函数来创建矩阵。
常用的函数有zeros, ones, eye等。
```matlabC = zeros(3, 3) % 创建一个3x3的全零矩阵D = ones(2, 4) % 创建一个2x4的全一矩阵E = eye(5) % 创建一个5x5的单位矩阵```1.3 特殊值的矩阵Matlab中还提供了一些特殊值的矩阵,如全1矩阵、全0矩阵等。
```matlabF = ones(3, 3) % 创建一个3x3的全1矩阵G = zeros(2, 4) % 创建一个2x4的全0矩阵```二、矩阵的索引和切片在Matlab中,可以使用索引和切片操作来获取矩阵的元素或对矩阵进行切片操作。
2.1 矩阵的索引可以使用单个索引、行索引或列索引来获取矩阵的元素。
```matlabA = magic(3) % 创建一个3x3的魔方矩阵element = A(2, 3) % 获取第2行第3列的元素row = A(1, :) % 获取第1行的所有元素column = A(:, 2) % 获取第2列的所有元素```2.2 矩阵的切片可以使用切片操作来获取矩阵的子矩阵。
Matlab——数组与矩阵1 一维数组(向量)的创建1.1 直接输入法从键盘直接输入元素,列与列之间的数据用逗号或空格分隔,行与行之间的数据用分号分隔。
a=[1;2;3] 生成列向量b=[1,2,3] 生成行向量c=[1 2 3] 生成行向量说明:在一行中写多条语句时,逗号和分号可作为语句间的分隔符。
如果用分号,则命令窗不显示运行结果。
1.2 冒号生成法用于产生递增或递减的等差数列。
格式:初值:步长:终值说明:步长为1时可以省略。
a=1:2:6b=1:61.3 定数线性采样法用于产生起止于两点之间的n 个数据点。
格式:x = linspace(a,b,n)b= linspace(1,6,6) b=1:6说明:n 的默认值是100。
1.4 拼接法利用已有的一维数组创建新的一维数组。
将两个行向量或列向量拼接为一个行向量或列向量,也可以利用冒号抽取其中的部分数据生成新的一维数组。
行向量拼接:用方括号和逗号a3= [a1,a2]列向量拼接:用方括号和分号b3= [b1;b2]向量的抽取:用冒号a4= a3(1:2:end)抽取a3 中的奇数位置的元素组成新的数组例1 创建两个不同的一维行向量和列向量,并利用这两个向量拼接成一个新的行向量和列向量,然后再由新向量中的奇数位置元素组成新的向量。
x1= 1:3x2= linspace(5,20,4)x= [x1,x2]y1=[1:3]’y2= linspace(5,20,4)’y= [y1;y2]x3= x ( 1:2:end)y3= y ( 1:2:end)2 一维数组中元素的提取利用圆括号和索引号。
A= [1 2 3 4 5]a3=A(3)提取第3个元素3 二维数组(矩阵)的创建3.1 直接输入法从键盘直接输入元素。
输入规则如下:(1)矩阵元素必须在方括号内;(2)同行元素之间用空格或逗号隔开;(3)行与行之间用分号或回车符隔开;(4)元素可以是数值、变量、表达式或函数;(5)矩阵的维数不必预先定义。
在MATLAB中使用矩阵和数组MATLAB(Matrix Laboratory)是一种流行的数值计算软件,广泛用于科学和工程领域。
它具有强大的功能,可以进行各种数学运算和数据分析。
在MATLAB 中,矩阵和数组是基本的数据结构,它们用于存储和处理数据。
一、矩阵和数组的定义和基本操作在MATLAB中,矩阵和数组都可以用来存储和操作多个数据。
矩阵是一个二维的数值数组,而数组可以有多个维度。
在定义矩阵或数组时,我们可以直接输入数据,也可以使用内置的函数来生成。
例如,我们可以用以下方式定义一个矩阵A:A = [1 2 3;4 5 6;7 8 9]这个矩阵A是一个3×3的矩阵,它的元素分别为1到9。
我们可以使用分号来表示矩阵的不同行,并用空格或制表符来分隔不同列。
同样地,在MATLAB中,我们可以使用以下方式定义一个数组B:B = [1, 2, 3, 4]这个数组B是一个包含4个元素的一维数组。
在定义数组时,元素之间通常使用逗号来进行分隔。
一旦定义了矩阵或数组,我们就可以对其进行各种操作。
在MATLAB中,我们可以使用运算符对矩阵和数组进行加、减、乘、除等数学运算。
例如,我们可以使用加法运算符来计算两个矩阵的和:C = A + A这里,C是一个3×3的矩阵,它的元素是矩阵A的对应元素和。
同样地,我们可以使用减法、乘法和除法运算符来进行相应的运算。
此外,MATLAB还提供了许多其他的函数和工具箱,用于矩阵和数组的操作。
例如,我们可以使用sum函数来计算矩阵的和:D = sum(A)这里,D是一个包含3个元素的一维数组,它的元素分别是矩阵A每一列的和。
二、矩阵和数组的索引和切片在MATLAB中,我们可以使用索引和切片操作来访问矩阵和数组中的元素。
索引用来指定元素在矩阵或数组中的位置,而切片则可以选择矩阵或数组的一个子集。
例如,我们可以使用索引获取矩阵A中的某个元素:a = A(2, 3)这里,a的值为6,它是矩阵A的第2行第3列的元素。
matlab矩阵变数组
在MATLAB中,矩阵可以被转换为数组。
数组是一种更通用的数据结构,可以包含不同类型的元素,而矩阵则通常用于存储数学运算中的矩阵和向量数据。
要将矩阵转换为数组,可以使用MATLAB中的`reshape`函数或者将矩阵转置。
下面我将从两个角度来解释如何实现这一转换。
首先,使用`reshape`函数可以将矩阵转换为数组。
该函数可以重新塑造矩阵的维度,从而将其转换为数组。
例如,如果有一个
2x3的矩阵A,我们可以使用`reshape(A, 1, 6)`来将其转换为一个1x6的数组。
这样就可以将原始矩阵重新排列成一个更长的数组。
其次,可以通过将矩阵转置来实现矩阵到数组的转换。
矩阵转置操作可以通过在矩阵变量后面加上一个撇(')来完成。
例如,如果有一个3x2的矩阵B,可以通过B'来得到一个2x3的转置矩阵,然后将其转换为一个数组。
这种方法在某些情况下可以更方便地将矩阵转换为数组。
总的来说,MATLAB中的矩阵可以通过`reshape`函数或者转置操作来转换为数组。
这样可以更灵活地处理数据,并在不同的数学
运算和数据处理中使用。
希望这些解释能够帮助你理解如何在MATLAB中进行矩阵到数组的转换。
数值计算功能向量及其运算1、向量生成(1)、直接输入向量元素用“ [ ]”括起来,用空格或逗号生成行向量,用分号生成列向量a1=[11 14 17 18]a2=[11,14,17,18]a2=[11;14;17;18]%列向量用“ ’”能够进行向量转置a1=[11 14 17 18]a4=a1'%a1 行向量,a4 列向量也能够用组合方法:A=[1 2 3];B=[7 8 9];C=[A 4 ones(1,2) B](2)、等差元素向量生成冒号生成法:Vec=Vec0:n:Vecn,此中Vec表示生成地向量,Vec0表示第一个元素,n表示步长,Vecn 表示最后一个元素使用 linespace 函数: Vec=linespace(Vec0,n,Vecn),此中 Vec 表示生成地向量 ,Vec0 表示第一个元素 ,n 表示生成向量元素个数(默认 n=100) ,Vecn 表示最后一个元素vec1=10:5:50vec2=50:-5:10vec3=linspace(10,50,6)2、向量地基本运算(1)、向量与数地四则运算向量中每个元素与数地加减乘除运算(除法运算时,向量只好作为被除数,数只好作为除数)vec1=linspace(10,50,6)vec1+100vec2=logspace(0,10,6) %对数平分向量vec2/100(2)、向量与向量之间地加减运算向量中地每个元素与另一个向量中相对应地元素地加减运算vec1=linspace(10,50,6)vec2=logspace(0,2,6)vec3=vec1+vec2(3)、点积、叉积和混淆机点积: dot 函数 ,注意愿量维数地一致性x1=[11 22 33 44]x2=[1 2 3 4]sum(x1.*x2) %还能够采纳sum 函数计算向量地址积叉积: cross 函数 ,注意愿量维数地一致性(由几何意义可知,向量维数只好为3)x1=[11 22 33 44]x2=[1 2 3 4]x3=cross(x1,x2)%报错 ,维数只好为3x1=[11 22 33]x2=[1 2 3]x3=cross(x1,x2)混淆积:结果为一个数,先求 cross,再求 dota=[1 2 3]b=[2 4 3]c=[5 2 1]v=dot(a,cross(b,c))v=cross(a,dot(b,c)) %报错矩阵及其运算MATLAB地基本单位是矩阵,逗号或空格划分同一行不一样元,分号划分不一样行素1、矩阵地生成4 种方法:在command window直接输入;经过语句和函数产生;M 文件中成立;外面数据文件中导入(1)、直接输入:把矩阵元素直接摆列到方括号中 ,每行元素用逗号或空格相隔 ,行与行之间用分号相隔martix=[1 1 1 1;2,2,2,2;3,3,3,3;4 4 4 4]冒号用法:A=[1 1 1;1 2 3;1 3 6]B=A(1:2,:)(2)文件导入:*.mat*.txt*.datload 文件名参数直接导入: File—Import Data2、矩阵地基本数值运算(1)、矩阵与是常数地四则运算(除法时,常数只好作为除数)matrix=[1 1 1 1;2,2,2,2;3,3,3,3;4 4 4 4]m1=100+matrixm2=100-matrixm3=100*matrixm4=matrix/2(2)、矩阵之间地四则运算加减法:矩阵各个元素之间地加减法,一定是同型矩阵matrix=[1 1 1 1;2,2,2,2;3,3,3,3;4 4 4 4]m2=m1+matrixm3=[11 22 33;1 2 3;4 5 6]m4=matrix-m1m5=m3+m1 %报错 ,非同型矩阵乘法:用 *, 左矩阵地列数需等于右矩阵地行数A=[1111;2222;3333;4444]B=[1592;6357;2589;4563]C=A*BD=[1 5 9;6 3 5;2 5 8]3*3矩阵相乘E=A*D% 报错 ,4*4 矩阵不可以与除法:左除( AX=B 则 X=A\B,相当于 X=inv(A)*B, 可是左除稳固性好)右除 / ( XA=B 则 X=B/A,相当于 X=B*inv(A))个人认为:左除相当于逆矩阵左乘,右除相当于逆矩阵右乘%解方程组XA=B地解 ,本列中 A=[2 1 -1; 2 1 0;1 -1 1] ;B=[1 -1 3;4 3 2] A=[2 1 -1; 2 1 0;1 -1 1]B=[1 -1 3;4 3 2]X=B/A矩阵能够使用比较运算符:结果矩阵地对应地点为0 或1数据变换:floorceilroundfixrem[n,d]=rat(A): A 表示为两个整数阵对应元素相除地形式A=n./d 3、矩阵地特点参数运算(1)、乘方与开方乘方: A^p 计算 A 地 p 次方p>0: A 地 p 次方p<0: A 逆矩阵地abs(p)次方A=[1234;4567;4567;891011]B=A^10开方:如有X*X=A,则有sqrtm(A)=XA=magic(5)B=sqrtm(A)B^2 %考证正确性(2)、指数与对数指数: expm(X)=V*diag(exp(diag(D)))/V ( [V,D]=eig(X))对数: L=logm(A),与指数运算互逆X=rand(4)Y=expm(X)A=randn(4)(3)、逆运算inv函数 ,充要条件:矩阵地队列式不为0A=[1000;1200;2130;1214]B=inv(A)广义逆矩阵(伪逆):pinv(A)非奇怪矩阵地pinv 与inv 相同(4)、队列式det函数A=[1000;1200;2130;1214]B=inv(A)x=det(A)y=det(B)i=x*y(5)、特点值E=eig(X):生成由X 地特点值构成地列向量[V,D]=eig(X): V 是以 X 地特点向量为列向量地矩阵,D 是由矩阵X 地特点值构成地对角阵D=eigs(X):生成由X 地特点值构成地列向量(eigs 函数使用迭代法求解矩阵地特点值和特点向量 ,X 一定是方阵,最好是大型稀少矩阵)[V,D]=eig(X): V 是以X 地特点向量为列向量地矩阵,D 是由矩阵X 地特点值构成地对角阵X=magic(3)A=[1 0 0;0 0 3;0 9 0]E=eig(X)[V D]=eig(X)D=eigs(A)[V D]=eigs(A)(6)、矩阵(向量)地范数norm(X) : 2-范数norm(X,2) : 2-范数norm(X,1) : 1-范数norm(X,inf) :无量范数norm(X,’fro ’): Frobenius 范数normest(X) :只好计算2-范数 ,而且是 2-范数地预计值,用于计算norm(X) 比较费时地状况X=hilb(4)norm(4)norm(X)norm(X,2)norm(X,1)norm(X,inf)norm(X,'fro')normest(X)(7)、矩阵地条件数运算矩阵地条件数是判断矩阵“病态”成都地一个胸怀,矩阵 A 地条件数越大,表示 A 越病态 ,反之 ,表示 A 越良态 ,Hilbert矩阵就是闻名地病态矩阵cond(X):返回对于矩阵X 地 2-范数地条件数cond(X,P):对于矩阵X 地 P-范数地条件数(P 为 1、 2、 inf rcond(X):计算矩阵条件数地倒数值,该值越靠近0 就越病态condest(X):计算对于矩阵X 地 1-范数地条件数地预计值M=magic(3);H=hilb(4);c1=cond(M)c2=cond(M,1)c3=rcond(M)c4=condest(M)h1=cond(H)h2=cond(H,inf)h3=rcond(H)h4=condest(H)或’fro’),越靠近 1 就越良态由以上结果能够看出,魔术矩阵比较良态,Hilbert矩阵是病态地(8)、秩rank 函数T=rand(6)rank(T) %6,满秩矩阵T1=[1 1 1;2 2 3]r=rank(T1)%r=2,行满秩矩阵(9)、迹trace 函数 ,主对角线上全部元素地和,也是特点值之和M=magic(5)T=trace(M)T1=eig(M)T2=sum(T1)4、矩阵地分解运算(1)、三角分解(lu)非奇怪矩阵 A( n*n ),假如其次序主子式均不为 0,则存在独一地单位下三角 L 和上三角阵 U, 进而使得 A=LU[L,U]=lu(X):产生一个上三角矩阵U 和一个下三角矩阵L,使得 X=LU,X能够不为方阵[L,U,P]=lu(X):产生一个单位下三角矩阵L、一个上三角矩阵U 和互换矩阵P,PX=LUY=lu(X):假如 X 是满矩阵 ,将产生一个lapack’s地 dgetrf 和 zgetrf 地输出常式矩阵Y;假如 X 是稀少矩阵 ,产生地矩阵Y 将包含严格地下三角矩阵L 和上三角矩阵U,这两种状况下,都不会有互换矩阵PX=[6 2 1 -1;2 4 1 0;1 1 4 -1;-1 0 -1 3][L U]=lu(X)[L U P]=lu(X)Y=lu(X)(2)、正交分解(qr )对于矩阵 A( n*n ),假如 A 非奇怪 ,则存在正交矩阵 Q 和上三角矩阵 R,使得 A 知足关系式 A=QR, 而且当 R 地对角元都为正时 ,QR 分解是独一地[Q,R]=qr(A) :产生一个与 A 维数相同地上三角矩阵R 和一个正交矩阵Q,使得知足A=QR[Q,R,E]=qr(A):产生一个互换矩阵E、一个上三角矩阵R 和正交阵[Q,R]=qr(A,0) :对矩阵 A 进行有选择地QR分解 ,当矩阵 A 为 m*n 前 n 列地正交矩阵QR=qr(A):只产生矩阵R,而且知足R=chol(A’*A)Q,这三者知足 AE=QR 且m>n, 那么只会产生拥有A=[17 3 4;3 1 12;4 12 8] [Q R]=qr(A)[Q R E]=qr(A)[Q R]=qr(A,0)R=qr(A)[Q,R]=qrdelete(A,j):去除第[Q,R]=qrdelete(A,j,x):在第j 列求 QR分解j 列插入 x 后求QR分解(3)、特点值分解(eig)[V,D]=eig(X):V 是以矩阵X 地特点向量作为列向量构成地矩阵,D 是矩阵X 地特点值构成地对角阵 ,知足XV=VD[V,D]=eig(A,B):对矩阵 A、B 做广义特点值分解 ,使得 AV=BVDA=magic(4)[V D]=eig(A)Z=A*V-V*DB=[17 3 4 2;3 1 12 6;4 12 8 7;1 2 3 4][V D]=eig(A,B)Z=A*V-B*V*D(4)、 Chollesky 分解( chol)当矩阵A( n*n )对称正准时,则存在独一地对角元素为正地上三角矩阵R,使得 A=R’*R,当限定 R 地对角元素为正地时候 ,该分解是独一地当矩阵 A 为非正定阵时 ,会提示犯错A=[4 -1 1;-1 4.25 2.75;1 2.75 3.5]R=chol(A)R'*R %=AA=[0 4 0;3 0 1;0 1 3]R=chol(A) %报错 ,A 为非正定阵(5)奇怪值分解(svd)[U,S,V]=svd(X):与矩阵 X 维数相同地对角阵 S、正交矩阵 U 和正交矩阵 V,使得知足 X=USV’[U,S,V]=svd(X,0):X 为 M*N 矩阵 ,当 M>N 时 ,生成地矩阵 U 只有前 N 列元素被计算出来 ,而且 S为 N*N 矩阵X=[1 2 3;4 5 6;7 8 9][U S V]=svd(X)X=[1 2 3;4 5 6;7 8 9;10 11 12][U S V]=svd(X)X=[1 2 3;4 5 6;7 8 9;10 11 12ckl[U S V]=svd(X,0)Schur分解(正交阵和schur阵)[U,T]=schur(A): A=UTU’schur阵是主对角线元素为特点值地三角阵5、矩地一些特别理size(A):求矩 A 地行数、列数diag(A):求出矩 A 地角元素repmat(A):将矩 A 作位 ,成 m*n 矩 ,此中每个元素都是cat(k,A,B): k=1 归并后形如 [A;B]( A,B 列数相等); k=1 归并后形如(1)、矩地A 矩[A,B]( A,B 行数相等)reshape(X,M,N) :将矩X 地全部元素分派到一个M*N地新矩,当矩X 地元素不是M*N ,返回reshape(X,M,N,P,⋯):返回由矩X 地元素成地M*N*P*⋯多矩,若果M*N*P*⋯与X 地元素数不一样 ,将返回reshape(X,[M,N,P,⋯]) :与上一条相同A=rand(4,2)reshape(A,2,4)reshape(A,[2,2,2])用冒号:A=[1 2 3 4;5 6 7 8;9 10 11 12];B=ones(2,6);B(:)=A(:)(2)、矩地向rot90(A) : A 按逆旋rot90(A,K) : A 按逆旋filpud(X) :将 X 上下翻90 度90*K度fliplr(X) :将X 左右翻flipdim(X,DIM) :将 X 地第 DIM 翻X=[1 4;2 5;3 6]rot90(X)rot90(X,-1)flipud(X)fliplr(X)flipdim(X,2)%左右翻6、特别矩地生成(1)、零矩和全 1 矩地生成A=zeros(M,N):生成 M*N 地零矩A=zeros(size(B)):生成与 B 同型地零矩A=zeros(N):生成 N 零矩仿真全 1 矩地生成与零矩地生成似,使用ones 函数A=zeros(4,5)B=[12345;23456;98765;87654]A=zeros(size(B))A=zeros(5)C=ones(5,6)C=ones(3)(2)、角矩地生成A=diag(V,K): V 某个向量 ,K 向量 V 偏离主角地列数,K=0 表示 V 主角 ,K>00 表示 V 在主对角线以上,K<0 表示 V 在主对角线以下A=diag(V):相当于K=0v=[1 9 8 1 6]diag(v,1)diag(v)(3)、随机矩阵地生成rand(N) :生成 N*N 地随机矩阵 ,元素值在 (0.0,1.0) 之间rand(M,N)randn(N) :生成 N*N 地随机矩阵 ,元素之听从正态散布N(0,1)randn(M,N)rand(5)randn(5)(4)、范德蒙德矩阵地生成A=vander(V):有 A(I,j)=v(i)n-jv=[1 3 5 7 9]A=vander(v)(5)、魔术矩阵地生成它是一个方阵 ,方阵地每一行,每一列以及每条主对角线地元素之和都相同( 2 阶方阵除外)magic(N):生成N 阶魔术矩阵 ,使得矩阵地每一行,每一列以及每条主对角线元素和相等,N>0(N=2 除外)magic(2)magic(3)magic(4)(6)、 Hilbert 矩阵和反Hilbert 矩阵地生成Hilbert 矩阵地第i 行、第 j 列地元素值为1/(i+j-1), 反 Hilbert 矩阵是 Hilbert 矩阵地逆矩阵hilb(N) :生成 N 阶地 Hilbert 矩阵invhilb(N) :生成 N 阶地反 Hilbert 矩阵A=hilb(5)B=invhilb(5)C=A*Brandpem(n):随机摆列hess(A): hess矩阵pascal(n): Pascal矩阵hankel(c): Hankel 矩阵wilkinson(n): wilkinson 特点值测试矩阵blkdiag(a,b,c,d):产生以输入元素为对角线元素地矩阵注: diag 函数地输入参数只好有一个(能够为向量)compan(u):友矩阵hadamard(n): hadamard 矩阵toeplitz(c,r):托布列兹阵数组及其运算1、数组寻址和排序(1)、数组地寻址A=randn(1,10)A(4) %接见 A 地第 4 个元素A(2:6)%接见 A 地第 2 到 6 个元素A(6:-2:1)A([1 3 7 4])%接见 A 中 1、3、 7 和 4 号元素A(4:end) %end 参数表示数组地结尾(2)、数组地排序sort(X):将数组X 中地元素按升序排序X 是多维数组时 ,sort(X)命令将 X 中地各列元素按升序排序X 是复数时 ,sort(X)命令将 X 中地各个元素地模abs(X)按升序排序X 是一个字符型单元数组,sort(X)命令将 X 中地各列元素按ASCII码升序排序Y=sort(X,DIM,MODE):DIM 选择用于摆列地维,MODE 决定了排序地方式(’ascend’升序 ,’descend’降序) ,该命令生成地数组Y与 X 是同型地X=[3 7 5;0 4 2]sort(X,1) %纵向升序排序sort(X,2) %横向升序排序sort(2)2、数组地基本数值运算(1)、加减法(与矩阵加减法相同)X=[1 4 7]Y=[2 5 8]Z=X-YV=X+Y(2)、数组地乘除法乘法用“ .* ”: X、 Y 有相同维数 ,X.*Y 表示 X 和 Y 中单个元素之间地对应乘积除法用“ ./ ”:注意“ ./ ”和“ ”完整不一样X=[10 52 96 12 56]Y=[2 26 3 4 8]Z=[10 52 96 12 56 42]Z1=X.*YZ2=X.*Z%报错 ,维数问题Z3=X./Y%Z3=5,2,32,3,7Z4=X.\Y %Z4=0.2,0.5,0.0313,0.3333,0.1429Z5=X.\Z%报错 ,维数问题(3)、数组地乘方两个数组之间地乘方X=[1 4 7]Y=[2 5 8]Z=X.^Y乘方运算时指数为标量X=[3 6 9]Z=X.^3乘方运算时底数为标量X=[456789]Z=3.^X数组和矩阵也能够进行exp、 log、 sqrt 等运算 ,是对每个对应元素进行运算3、数组地关系运算小于( <),小于等于( <=) ,大于( >),大于等于( >=) ,等于( ==) ,不等于( ~=) ,结果为 1, 则关系式为真 ,结果为 0,则关系式为假%rem(X,n),求余函数 ,X 为被除数 ,n 为除数M=magic(7)N=(rem(M,3))N=(rem(M,3)<=1)N=(rem(M,3)==1)N=(rem(M,3)>=1)4、数组地逻辑运算,非运与( &),或( | ),非( ~),此中与、或能够比较两个标量或许两个同阶数组(或矩阵)算时针对数组(或矩阵中地每一个元素),当逻辑为真则返回1,当逻辑为假则返回0M=[1 1 0;0 1 0;1 0 0]N=[1 0 1;1 1 1;0 0 0]M|NM&N~Ncat:串接flipdimfliplrflipudkron:积数组permute:重组repmatreshaperot90稀少型矩阵1、稀少矩阵地生成(1)、 speye 函数:生成单位稀少矩阵speye(size(A))speye(M,N) :维数为M 和N 中较小地一个speye(N)A=eye(10)speye(size(A))speye(7,6)speye(5)(2)、 sprand 函数:生成随机稀少矩阵(元素听从0-1 之间地随机散布)R=sprand(S):产生与稀少矩阵S 构造相同地稀少矩阵,但它地元素都是0-1 上地随机数Rsprand(M,N,D) :产生一个M*N 地随机稀少矩阵R,它地非您元素地个数近似为M*N*D, 注意D 地值在 0-1 之间且不要过大v=[3 5 6 2 1 9 6 5 5 6]S=diag(v)R=sprand(S)R=sprand(10,10,0.08)(3)、 sparse 函数S=sparse(X):将矩阵 X 转变为稀少矩阵SS=sparse(I,j,s,m,n,nzm):生成 m*n 地稀少矩阵 S,向量 s 地元素散布在以向量i 地对应值和向量 j 地对应值为坐标地地点上 ,此中 nzm=length(s)S=sparse(I,j,s):生成 m*n 地稀少矩阵S,向量 s 地元素散布在以向量i 地对应值和向量 j 地对应值为坐标地地点上,此中 m=max(i),n=max(j)S=sparse(m,n):是 sparse([],[],[],m,n,0)地简化形式i=[6 2 7 7 4 1 2 5]j=[1 3 2 7 2 8 3 2]s=[8 3 7 7 1 7 0 2]X=diag(s,-2)S=sparse(X)S1=sparse(i,j,s,10,10,7)%报错 ,nzmax=length(s)S1=sparse(i,j,s,10,10,8)S2=sparse(i,j,s,10,9)%默认 nzmax=length(s)S2=sparse(i,j,s)%m=max(i),n=max(j)2、稀少矩阵地操作(1)、 nnz 函数:用于求非零元素地个数nz=nnz(S):返回 S总非零元素个数D=nnz(S)/prod(size(S)):表示稀少矩阵S 中非零元素地密度v=[6 2 7 7 4 1 3 5]S=diag(v,-1)nz=nnz(S)D=nnz(S)/prod(size(S))(2)、 sponse 函数R=sponse(S):生成一个与稀少矩阵 S 构造相同地稀少矩阵 R,可是在矩阵 S 中地非零元素地地点上用元素 1 替代S=sprandsym(10,0.05)R=spones(S)(3)、 spalloc 函数S=spalloc(m,n,nzm):生成一个全部元素都为0 地m*n阶稀少矩阵,计算机利用这些空间来存储 nzm 个非零元素n=3;v=sprand(n,1,0.33) s=spalloc(n,n,1*n)%生成%分派3*13*3地稀少列向量地空间 ,最后能够储存 3 个非零元素for j=1:ns(:,j)=(v)%v 为含有一个非零元素地稀少列向量end(4)、 full 函数S=full(X):将稀少矩阵(三元组表示)变换为满矩阵(矩阵表示)s(6,1)=8;s(4,2)=1;s(5,3)=60;s(6,2)=57;s(1,7)=25;s(3,8)=37;full(s)(5)、 find函数I=find(X):返回矩阵X 地非零元素地地点,如 I=find(X>100) 返回X 中大于100 地元素地地点[I,J]=find(X) :返回 X 中非零元素所在地行I 和列 J 地详细数据[I,J,V]=find(X):除了返回I 和 J,还返回矩阵中非零元素地值V注:find(X) 和 find(X~=0)会产生相同地I 和 J,可是后者会生成一个包含全部非零元素地点地向量S(10,50)=82;S(32,14)=82;S(251,396)=25;I=find(S)[I J]=find(S)[I J V]=find(S)(6)、 issparse 函数issparse(S):返回值为 1 说明矩阵S 是一个稀少矩阵,返回值为0 时说明矩阵S 不为稀少矩阵v=[6 2 7 7 4 1 3 5]S=diag(v,2)R=sparse(S)N=issparse(S) %返回 0,不为稀少矩阵Y=issparse(R) %返回 1,为稀少矩阵。
matlab矩阵的数组全文共四篇示例,供读者参考第一篇示例:MATLAB是一款非常强大的数学软件,它在科学计算和工程领域得到了广泛应用。
在MATLAB中,矩阵和数组是非常重要的概念,它们可以用来储存和处理各种数据。
矩阵和数组之间有一些区别,但在很多情况下可以混用。
本文将重点介绍MATLAB中矩阵和数组的基本概念和使用方法。
让我们来看看MATLAB中的数组。
数组是MATLAB中的基本数据类型,可以用来表示一维、二维或者多维的数据。
在MATLAB中,用方括号“[]”来表示数组,元素之间用逗号分隔。
下面是一个一维数组:```matlabA = [1, 2, 3, 4, 5];```上面的代码定义了一个名为A的一维数组,包含了5个元素。
我们也可以定义一个二维数组,例如:上面的代码定义了一个名为B的二维数组,包含了3行3列共9个元素。
在MATLAB中,数组可以有不同的数据类型,包括整数、浮点数、逻辑值等。
除了使用方括号来定义数组,MATLAB中还有一些快捷方式来生成数组。
我们可以使用冒号操作符“:”来生成一定范围内的数组。
下面是一些例子:```matlabC = 1:5; % 生成1到5的一维数组D = 0:0.5:2; % 生成0到2的步长为0.5的一维数组E = linspace(0, 1, 5); % 生成0到1之间5个均匀间隔的一维数组```除了基本的数组操作外,MATLAB还提供了丰富的函数和工具来处理数组。
我们可以使用MATLAB内置的函数来对数组进行排序、求和、平均值等操作。
MATLAB还支持向量化运算,这意味着我们可以直接对整个数组进行操作,而不需要使用循环。
这样不仅可以提高运算速度,还能使代码更简洁易懂。
接下来,让我们来看看MATLAB中的矩阵。
矩阵是二维数组的特例,它在数学和工程计算中有着重要的地位。
在MATLAB中,矩阵和数组的区别在于,矩阵必须是二维的,而且只能包含数值类型的元素。
看论文时,经常看到矩阵,但在记忆里又看到数组。
那么问题来了,矩阵和数组分别是什么?二者有什么区别?看论文时,经常看到矩阵,但在记忆里又看到数组。
那么问题来了,矩阵和数组分别是什么?二者有什么区别?在数学上,定义m×n个数(i=1, 2…, m ; j=1, 2,…n)排成的m行n列的数表示为m行n列的矩阵,并且用大写加粗黑色字母表示。
只有一行的矩阵:,也称之为行向量;只有一列的矩阵,也称之为列向量。
矩阵最早来自于方程组的系数即常数所构成的方阵,这一个概念有19世纪英国数学家凯利首先提出。
数组是在程序设计中,为了处理方便,把具有相同类型的若干变量按有序的形式组织起来的一种形式。
这些按序排列的同类数据元素的集合称之为数组。
在Matlab中,一个数组可以分解为多个数组元素,这些数组元素可以是基本数据类型或是构造类型。
因此按数组元素的类型不同,数组又可以分为数值数组、字符数组、单元数组、结构数组等各种类别。
看完上面的内容,矩阵和数组的区别似乎懂了一点。
矩阵和数组在Matlab中存在很多方面的区别:(1)矩阵是数学的概念,而数组是计算机程序设计领域的概念;(2)作为一种变换或映射算符的体现,矩阵运算有着明确而严格的数学规则。
而数组运算是Matlab软件定义的规则,其目的是为了使数据管理方便,操作简单,命令形式自然,执行计算有效。
二者联系主要体现在:在Matlab中,矩阵是以数组的形式存在的。
因此,一维数组相当于向量;二维数组相当于矩阵。
所以矩阵是数组的子集。
对矩阵的基本操作,主要有矩阵的构建、矩阵维度和矩阵大小的改变、矩阵的索引、矩阵的属性信息的获取、矩阵结构的改变等。
对于这些操作,Matlab中都有固定的指令或者相应的库函数与之相对应。
在程序用到的时候,每次都要上网查,网上的很散。
这里,我对我经常用的做了总结。
以后用到可以查阅。
1、矩阵下表引用下面将常用的几个举例说明:例如:A=[1 2 3 4 5;12 12 14 56 657;23 46 34 67 56 ];(1)将二维矩阵A转化成一维矩阵(列向量):Matlab 默认将其转化成列向量,需要行向量转置即可。
matlab清零矩阵或数组-概述说明以及解释1.引言1.1 概述概述:清零矩阵或数组是指将矩阵或数组中的所有元素值都设置为零的操作。
在Matlab中,清零矩阵或数组是一种常见而有用的操作,它可以用于多种应用场景,如数据处理、图像处理、数值计算等。
本文将深入探讨清零矩阵的概念、应用场景、实现方法以及操作技巧,以帮助读者更加灵活地运用清零矩阵或数组的功能。
在清零矩阵的概念部分,我们将介绍清零矩阵的定义及其特点,以及其与其他类型矩阵的区别。
在应用场景部分,我们将列举清零矩阵在各种领域的实际应用,例如在数据分析中的数据预处理、在图像处理中的背景去除等。
在实现方法部分,我们将详细介绍如何使用Matlab提供的函数和技巧来实现清零矩阵的操作。
在操作技巧部分,我们将分享一些常用的清零数组的技巧,例如如何通过迭代或递归方式完成清零操作以及如何利用向量化操作提高清零效率。
此外,我们还将讨论清零矩阵的优势和局限性,并展望其未来发展方向。
通过全面的论述和比较分析,读者将更好地理解清零矩阵或数组的优点和限制,并能够合理选择和应用清零矩阵或数组在实际问题中。
总结起来,本文将介绍清零矩阵或数组的基本概念、广泛应用的场景、实现方法和操作技巧。
通过阅读本文,读者将获得更深入的理解和掌握清零矩阵或数组的能力,并能够在实践中灵活运用清零矩阵或数组的功能。
1.2 文章结构文章结构部分的内容可以参考以下内容:文章结构部分旨在介绍整篇文章的组织方式和逻辑结构,帮助读者更好地理解和阅读文章的各个部分。
首先,本文将分为引言、正文和结论三个部分。
在引言部分,将介绍本文的背景和目的,以及总结本文的主要内容。
正文部分将详细介绍清零矩阵的概念、应用场景以及实现方法,同时还会探讨清零数组的操作技巧。
最后,在结论部分将对清零矩阵的优势和局限性进行总结,并展望其未来的发展方向。
具体而言,在引言部分的1.1小节中,将对清零矩阵的概述进行阐述,包括对清零矩阵的定义和作用进行解释。
matlab 中数组与矩阵的联系与区别概述说明1. 引言1.1 概述在编程领域中,数组和矩阵是经常被使用的数据结构。
它们是存储和处理大量数据的重要工具。
而MATLAB作为一种数值计算和科学绘图的高级编程语言,也提供了强大的数组和矩阵操作功能。
本文将从概述、结构和目的三个方面对数组与矩阵之间的联系与区别进行详细说明。
通过对这两种数据结构进行全面比较和分析,我们可以更好地理解它们在MATLAB中的应用,并为相关领域的研究人员提供参考。
1.2 文章结构本文主要分为五个部分来探讨数组与矩阵之间的联系与区别。
首先,在引言部分,我们会对整篇文章做一个简单介绍,说明文章涉及到的内容以及目标。
然后,在第二部分,我们将深入探讨数组和矩阵的概念,并对它们之间的联系与区别进行详细描述。
接着,在第三部分,我们将介绍几种特殊类型的数组和矩阵,并探讨它们在MATLAB中的应用情况。
在第四部分,我们将比较数组和矩阵操作方法的差异,并分析它们对常用运算符的影响。
最后,在结论部分,我们将总结数组与矩阵之间的联系与区别,并说明它们在不同领域中的应用情况。
1.3 目的本文的目标是详细介绍和阐述MATLAB中数组和矩阵之间的联系与区别。
通过全面比较和分析这两种数据结构,我们旨在为读者提供更清晰的认识和理解。
同时,我们还希望通过具体实例和应用场景说明这些概念在实践中的重要性。
无论是初学者还是专业人士,都可以通过本文更好地理解并运用数组和矩阵相关的操作方法。
以上就是“1. 引言”部分内容,给出了文章整体概述、结构和目标。
2. 数组与矩阵的联系与区别2.1 数组概述数组是一种数据结构,可以用来存储相同类型的多个元素。
在Matlab中,数组可以有多个维度,也可以是多维的。
每个元素在数组中都有一个唯一的位置,该位置称为索引。
2.2 矩阵概述矩阵是特定类型的数组,其中包含行和列两个维度。
因此,矩阵是一个二维数组。
在Matlab中,矩阵可以用于表示线性方程组、向量空间以及其他数学和科学问题。
MATLAB中矩阵与数组得区别,点运算符得运用一维数组相当于向量,二维数组相当于矩阵、所以矩阵就是数组得子集数组运算就是指数组对应元素之间得运算,也称点运算、矩阵得乘法、乘方与除法有特殊得数学含义,并不就是数组对应元素得运算,所以数组乘法、乘方与除法得运算符前特别加了一个点。
矩阵就是一个二维数组,所以矩阵得加、减、数乘等运算与数组运算就是一致得。
但有两点要注意:(1)对于乘法、乘方与除法等三种运算,矩阵运算与数组运算得运算符及含义都不同:矩阵运算按线性变换定义,使用通常符号;数组运算按对应元素运算定义,使用点运算符;(2)数与矩阵加减、矩阵除法在数学就是没有意义得,在MATLAB中为简便起见,定义了这两类运算数组运算:转置A、' 非共轭转置,相当于(conj(A'))数组加与减A+B与A-B 对应元素之间加减数乘数组k、*A或A、*k k乘A得每个元素数与数组加减k+A与k-A k加(减)A得每个元素数组乘数组A、*B数组乘方A、^k A得每个元素进行k次方运算k、^A 以k底得,分别以A得元素为指数求幂值数除以数组k、/A与A、\k k分别被B得元素除数组除法左除A、\B右除B、/A矩阵运算:矩阵转置A' 共轭转置加减A+B A-B数乘矩阵k*A或A*k 上三项同数组运算矩阵乘法A*B 按数学定义得矩阵乘法规则矩阵乘方A^k k个矩阵A相乘数与矩阵加减k+A与k-A 等价于k*ones(size(A))+-A矩阵除法左除A\B,右除B/A 分别为AX=B与XA=B得解例:A=[1 2;3 4];B=[4 3;2 1];r1=100+Ar1 =101 102103 104r2_1=A*B,r2_2=A、*Br2_1 =8 520 13r2_2 =4 66 4r3_1=A\B,r3_2=A、\B r3_1 =-6、0000 -5、00005、0000 4、0000 r3_2 =4、0000 1、50000、6667 0、2500 r4_1=B/A,r4_2=B、/A r4_1 =-3、5000 2、5000 -2、5000 1、5000 r4_2 =4、0000 1、50000、6667 0、2500 r5_1=A、^2,r5_2=A^2 r5_1 =1 49 16r5_2 =7 1015 22r6_1=2、^A r6_1 =2 48 16。
matlab 矩阵数组Matlab矩阵数组是Matlab中最常用的数据类型之一,可以对其进行各种数值计算、矩阵运算、线性代数操作等。
Matlab提供了丰富的矩阵操作函数和语法,使其在科研、工程和数学等领域应用广泛。
一、定义并初始化矩阵数组Matlab中定义矩阵数组可以使用以下语法:a = [1 2 3; 4 5 6]b = [2; 3; 4]c = [1,2;3,4]d = [1 2 3; zeros(2,3); 4 5 6]其中a、c、d是二维矩阵(也可称为数组),b是列向量。
Matlab还支持三维及以上的高维矩阵。
二、矩阵运算Matlab中的矩阵运算包括加减乘除、转置、逆置、求秩、行列式、特征值、特征向量、矩阵分解、矩阵拼接、分块矩阵等,具体可参考Matlab帮助文档。
以下列举常用的矩阵运算:1.矩阵加减a = [1 2 3; 4 5 6]b = [2 3 4; 5 5 5]c = a + b %矩阵加法d = a - b %矩阵减法2.矩阵乘法a = [1 2 3; 4 5 6]b = [2; 3; 4]c = a * b %矩阵乘法3.矩阵转置a = [1 2 3; 4 5 6]b = a' %矩阵转置4.矩阵逆置a = [1 2 3; 4 5 6]b = inv(a) %矩阵逆置5.矩阵求秩a = [1 2 3; 4 5 6]b = rank(a) %矩阵求秩6.矩阵行列式a = [1 2; 3 4]b = det(a) %矩阵行列式7.矩阵特征值和特征向量a = [1 2; 3 4][eigvec,eigval] = eig(a) %矩阵特征值、特征向量8.矩阵分解a = [1 2 3; 4 5 6; 7 8 9][L,U,P] = lu(a) %LU分解[Q,R] = qr(a) %QR分解9.矩阵拼接和分块矩阵a = [1 2; 3 4]b = [5 6; 7 8]c = [a b] %矩阵拼接d = [a; b] %矩阵拼接e = blkdiag(a,b) %分块矩阵三、矩阵索引和切片Matlab中可以使用索引和切片来访问矩阵数组的元素。
matlab计算矩阵数组表示的区域的中心矩阵是线性代数中的重要概念,它在各个领域中都有广泛的应用。
而对于矩阵表示的区域,我们常常需要计算其中心点的位置,这在计算机视觉、图像处理等领域中尤为重要。
本文将介绍如何利用MATLAB来计算矩阵数组表示的区域的中心。
我们需要明确矩阵数组表示的区域是什么。
在MATLAB中,矩阵是由行和列组成的二维数组。
而矩阵数组表示的区域,则是指由矩阵中的一些元素组成的连续区域。
我们可以通过指定行和列的范围来表示区域,例如矩阵A的第2行到第4行、第3列到第5列的区域可以表示为A(2:4, 3:5)。
要计算矩阵数组表示的区域的中心,我们需要先找到区域的行和列的范围,并计算其行和列的中心点。
假设矩阵A的大小为m×n,区域的行范围为r1到r2,列范围为c1到c2,则区域的中心点的行坐标可以计算为(r1+r2)/2,列坐标可以计算为(c1+c2)/2。
现在,让我们通过一个具体的例子来演示如何使用MATLAB计算矩阵数组表示的区域的中心。
假设我们有一个3×4的矩阵A,我们希望计算其中第2行到第3行、第2列到第4列的区域的中心。
我们需要指定区域的行和列的范围。
根据题目要求,我们知道区域的行范围为2到3,列范围为2到4。
然后,我们可以使用MATLAB的切片操作来获取区域的子矩阵,即A(2:3, 2:4)。
接下来,我们需要计算区域的中心点的行和列坐标。
根据前面的公式,我们可以得到中心点的行坐标为(2+3)/2=2.5,列坐标为(2+4)/2=3。
注意,这里的行和列坐标都是浮点数,因为我们的矩阵大小是奇数,无法得到整数的中心点。
通过MATLAB的计算,我们可以得到矩阵数组表示的区域的中心点的位置为(2.5, 3)。
这个结果告诉我们,区域的中心点位于矩阵A的第2行和第3行的中间,第2列和第4列的中间。
在实际应用中,计算矩阵数组表示的区域的中心点的位置可以帮助我们更好地理解和处理图像、数据等信息。