当前位置:文档之家› 细菌的遗传物质细菌染色体质粒

细菌的遗传物质细菌染色体质粒

细菌的遗传物质细菌染色体质粒
细菌的遗传物质细菌染色体质粒

一、细菌染色体

细菌作为原核型微生物,虽没有完整的核结构,但却有核区(或核质)。在电镜下观察,核区有盘旋堆积的DNA纤维。自大肠杆菌提取的DNA是一条完整的DNA链,分子量为2.4×109daltons,仅为人体胞DNA量的0.1%.细胞的DNA含量决定存在的基因数。如按每个基因由平均为1000个碱基对估计,大肠杆菌的DNA约为4×106个碱基对,因此约有4000个基因,可编码几千种多肽。细菌染色体DNA与其他生物相同,由互补的双链核苷酸组成。细菌的染色体与生物细胞染色体不同,前者不含有组蛋白,基因是连续的,无内含子。由于细菌核区DNA的功能与真核细胞染色体的功能相同,因此又称其为细菌染色体。

二、质粒

细菌的DNA除大部分集中于核质(染色体)内,尚有少部分(约1~2%)存在于染色体外,称为质粒。质粒与染色体的相似处为:质粒亦为双链环形DNA,不过其分子量远比染色体为小,仅为细菌染色体DNA的0.5~3%.质粒亦可携带遗传信息,可决定细菌的一些生物学特性。然而质粒却有一些与染色体DNA不同的特性。

1.质粒并非细菌生存所必不可少的遗传物质。细菌如失去染色体,则不能生存;然而细菌失去质粒后仍能生存。这是由于染色体DNA携带的基因所编码的产物,在细菌新陈代谢中是生存所必须者;而质粒携带的基因所编码的产物并非细菌的生存所必须者。因此质粒可以在细菌间传递与丢失。

2.质粒的传递(转移)是细菌遗传物质转移的一个重要方式。有些质粒本身即具有转移装置,如耐药性质粒(R质粒);而有些质粒本身无转移装置,需要通过媒介(如噬菌体)转移或随有转移装置的质粒一起转移。获得质粒的细菌可随之而获得一些生物学特性,如耐药性或产生细菌素的能力等。

3.质粒可自行失去或经人工处理而消失。在细菌培养传代过程中,有些质粒可自行从宿主细菌中失去。这种丢失不像染色体突变发生率很低,而是较易发生。用紫外线、吖啶类染料及其他可以作用于DNA的物理、化学因子处理后,可以使一部分质粒消失,称为消除。目前学者们感兴趣的是如何通过人工处理消除耐药质粒或与致病性有关的质粒。

4.质粒可以独立复制。质粒为DNA,有复制的能力,质粒的复制可不依赖于染色体,而在细菌胞浆内进行。这一特性在基因工程中需扩增质粒时很有用处,因可使细菌停止繁殖而质粒仍可继续复制,从而可获得大量的质粒。

5.可有几种质粒同时共存在于一个细菌内。因质粒可独立复制,又能转移入细菌和自然失去,因此就有机会出现几种质粒的共存。但是并非任何质粒均可共存,因发现在有些情况下,两种以上的质粒能稳定地共存于一个菌体内,而有些质粒则不能共存。医学教育网搜|索整理

目前已在很多种细菌中发现质粒。比较重要者有决定性菌毛的F因子,决定耐药性的R因子以及决定产大肠杆菌素的Col因子等。耐药性质粒的分子量相对较小,而与致性有关的质粒则为大质粒。革兰氏阴性菌一般都带有质粒。某些革兰氏阳性菌如葡萄球菌也有质粒。

三、噬菌体(Bacteriophage)

噬菌体是寄生于细菌的病毒,有宿主细胞的特异性,即某种菌的噬菌体仅能在该种菌内复制。在敏感菌中增殖并裂解细菌的噬菌体称为毒性噬菌体。另有一类称为温和噬菌体。这类噬菌体感染细菌后,有两种后果,即或裂解细菌或形成溶原状态(Lysogeny)。温和噬菌体裂解细菌的过程与毒性噬菌体相同,而形成溶原状态则为噬菌体的基因组整合于细菌的染色体上,并随细菌的繁殖传至子代。

带有噬菌体基因组的细菌称为溶原性细菌,而整合于细菌染色体上的噬菌体则称为前噬菌体(Prophage)。

有些温和噬菌体携带的基因在细菌染色体上,可相当于遗传物质,也能决定细菌的某些特性。由噬菌体基因决定细菌的某些生物学特性称为溶原性转移。例如,以β棒状杆菌噬菌体感染无毒的白喉杆菌后,可发生溶原性转换,形成产生外毒素的白喉杆菌。此外,溶血性链球菌产生红疹毒素的能力,以及沙门氏杆菌有特异性O抗原等,均通过溶原性转换获得。当各细菌失去相应噬菌体后,则失去产生毒素或表达特异抗原特性。

细菌的遗传物质细菌染色体质粒

一、细菌染色体 细菌作为原核型微生物,虽没有完整的核结构,但却有核区(或核质)。在电镜下观察,核区有盘旋堆积的DNA纤维。自大肠杆菌提取的DNA是一条完整的DNA链,分子量为2.4×109daltons,仅为人体胞DNA量的0.1%.细胞的DNA含量决定存在的基因数。如按每个基因由平均为1000个碱基对估计,大肠杆菌的DNA约为4×106个碱基对,因此约有4000个基因,可编码几千种多肽。细菌染色体DNA与其他生物相同,由互补的双链核苷酸组成。细菌的染色体与生物细胞染色体不同,前者不含有组蛋白,基因是连续的,无内含子。由于细菌核区DNA的功能与真核细胞染色体的功能相同,因此又称其为细菌染色体。 二、质粒 细菌的DNA除大部分集中于核质(染色体)内,尚有少部分(约1~2%)存在于染色体外,称为质粒。质粒与染色体的相似处为:质粒亦为双链环形DNA,不过其分子量远比染色体为小,仅为细菌染色体DNA的0.5~3%.质粒亦可携带遗传信息,可决定细菌的一些生物学特性。然而质粒却有一些与染色体DNA不同的特性。 1.质粒并非细菌生存所必不可少的遗传物质。细菌如失去染色体,则不能生存;然而细菌失去质粒后仍能生存。这是由于染色体DNA携带的基因所编码的产物,在细菌新陈代谢中是生存所必须者;而质粒携带的基因所编码的产物并非细菌的生存所必须者。因此质粒可以在细菌间传递与丢失。 2.质粒的传递(转移)是细菌遗传物质转移的一个重要方式。有些质粒本身即具有转移装置,如耐药性质粒(R质粒);而有些质粒本身无转移装置,需要通过媒介(如噬菌体)转移或随有转移装置的质粒一起转移。获得质粒的细菌可随之而获得一些生物学特性,如耐药性或产生细菌素的能力等。 3.质粒可自行失去或经人工处理而消失。在细菌培养传代过程中,有些质粒可自行从宿主细菌中失去。这种丢失不像染色体突变发生率很低,而是较易发生。用紫外线、吖啶类染料及其他可以作用于DNA的物理、化学因子处理后,可以使一部分质粒消失,称为消除。目前学者们感兴趣的是如何通过人工处理消除耐药质粒或与致病性有关的质粒。 4.质粒可以独立复制。质粒为DNA,有复制的能力,质粒的复制可不依赖于染色体,而在细菌胞浆内进行。这一特性在基因工程中需扩增质粒时很有用处,因可使细菌停止繁殖而质粒仍可继续复制,从而可获得大量的质粒。 5.可有几种质粒同时共存在于一个细菌内。因质粒可独立复制,又能转移入细菌和自然失去,因此就有机会出现几种质粒的共存。但是并非任何质粒均可共存,因发现在有些情况下,两种以上的质粒能稳定地共存于一个菌体内,而有些质粒则不能共存。医学教育网搜|索整理 目前已在很多种细菌中发现质粒。比较重要者有决定性菌毛的F因子,决定耐药性的R因子以及决定产大肠杆菌素的Col因子等。耐药性质粒的分子量相对较小,而与致性有关的质粒则为大质粒。革兰氏阴性菌一般都带有质粒。某些革兰氏阳性菌如葡萄球菌也有质粒。 三、噬菌体(Bacteriophage) 噬菌体是寄生于细菌的病毒,有宿主细胞的特异性,即某种菌的噬菌体仅能在该种菌内复制。在敏感菌中增殖并裂解细菌的噬菌体称为毒性噬菌体。另有一类称为温和噬菌体。这类噬菌体感染细菌后,有两种后果,即或裂解细菌或形成溶原状态(Lysogeny)。温和噬菌体裂解细菌的过程与毒性噬菌体相同,而形成溶原状态则为噬菌体的基因组整合于细菌的染色体上,并随细菌的繁殖传至子代。

遗传学实验报告

蚕豆微核设计实验 姓名:陈婷班级:生物技术0911 组别:第六组 一、实验目的 1)了解微核测试的原理和毒理遗传学在实际生活与工作中的应用范围及意义。 2)学习蚕豆根尖的微核测试技术。寻找新的测试系统或测定更多的环境因素。 二、实验原理 微核简称MCN,是真核生物细胞中的一种异常结构,往往是细胞经辐射或化学药物的作用而产生。在细胞间期微核呈圆形或椭圆形,游离于主核之外,大小应在主核1/3以下。 微核的折光率及细胞化学反应性质和主核一样。一般认为微核是由有丝分裂后期丧失着丝粒的断片产生的,但有些实验也证明整条的染色体或多条染色体也能形成微核。这些断片或染色体在细胞分裂末期被两个子细胞核所排斥便形成了第三核块。 已经证实微核率的大小是和用药的剂量或辐射积累效应呈正相关,这一点和染色体畸变情况一样,所以可用简易的间期微核数来代替繁杂的中期畸变染色体计数。 三、实验思路 1、香烟及其燃烧物中含有多种致癌物质和致癌前体物质,通过收集,这些致突变物主要存 在于水溶液中,流行病学和细胞遗传学都证实了这些物质可引起遗传物质损伤。蚕豆根尖细胞微核技术是目前证实遗传物质损伤的快速、有效的方法。因此,我们选择用烟头浸出液为诱变剂。据俄《消息报》报道,科研人员发现,制作发酵食品时所使用的乳酸菌能够释放出蛋白酶,分解部分诱变剂的特定蛋白。乳酸菌在发酵时会合成乳酸,这种物质可抑制多种诱变剂的活性。乳酸菌还能直接与部分诱变剂发生化学反应,使后者失去诱变能力。所以,我们选择了取材方便且富含乳酸菌的酸奶作为拮抗剂,来验证其功能。 四、实验材料 显微镜、载玻片、盖玻片、培养皿、固定液、改良苯酚品红、蚕豆、烟头浸出液(红山茶<焦油含量:12mg/根)、酸奶(味全<原味>) 五、实验步骤 1、将蚕豆放入盛有蒸馏水的烧杯中,25℃浸泡24h。种子吸涨后放入加有棉花的培养 基中催芽,24h左右。 2、将20根烟头处理后加至100ml蒸馏水于水浴锅60°处理1h,得20/100的浓度烟 头浸出液。再分别稀释后得到20/400,20/600,20/800,20/1000浓度的浸出液,每个浓度中投入三个长势相同蚕豆,培养箱中进行诱变6h。 3、另配三组20/600浓度的浸出液,分别滴加2滴,5滴,8滴酸奶作为拮抗组,同上 诉诱变组一同培养。另加一组空白对照。 4、将处理后的种子用蒸馏水浸洗三次,再将种子放入铺好棉花的培养皿中在25℃的 培养箱中恢复培养24h。 5、将恢复后的种子根尖切下,放入卡纳氏固定液中进行固定。 6、常规制片及镜检。 六、实验结果及图片(图片见附页)

病原微生物第5章 细菌的遗传与变异习题与答案

第5章细菌的遗传与变异 一、选择题 A型题 1.下列微生物中,不受噬菌体侵袭的是: A.真菌B.细菌C.支原体D.螺旋体E.立克次体 2.关于噬菌体的叙述,下列哪项是正确的? A.具有严格的宿主特异性B.可用细菌滤器除去C.含DNA和正RNA D.对理化因素的抵抗力比一般细菌弱E.能在无生命的人工培养基上生长 3.用来测量噬菌体大小的单位是: A.cm B.mm C.μm D.nm E.dm 4.噬菌体的生物学特性与下列哪种微生物相似? A.细菌 B.病毒 C.支原体 D.衣原体 E.立克次体 5.噬菌体所含的核酸是: A.DNA B.RNA C.DNA和RNA D.DNA或RNA E.DNA或RNA 6.溶原性细菌是指: A.带有前噬菌体基因组的细菌 B.带有毒性噬菌体的细菌 C.带有温和噬菌体的细菌 D.带有R质粒的细菌 E.带有F质粒的细菌 7.能与宿主菌染色体整合的噬菌体基因组称: A.毒性噬菌体 B.溶原性噬菌体 C.温和噬菌体 D.前噬菌体 E.以上都不是 8.既有溶原期又有裂解期的噬菌体是: A.毒性噬菌体 B.前噬菌体 C.温和噬菌体 D.β噬菌体 E.λ噬菌体 9.噬菌体感染的特异性取决于: A.噬菌体蛋白与宿主菌表面受体分子结构的互补性 B.其核酸组成与宿主菌是否相符C.噬菌体的形态D.细菌的种类E.噬菌体的核酸类型 10.毒性噬菌体感染细菌后导致细菌: A.快速繁殖B.停止繁殖C.产生毒素D.基因突变E.裂解 11.细菌的 H-O变异属于: A. 形态变异 B.毒力变异 C.鞭毛变异 D.菌落变异 E.耐药性变异 12.BCG 是有毒牛型结核杆菌经下列哪种变异形成的? A. 形态变异 B.毒力变异 C.抗原变异 D.耐药性变异 E.菌落变异 13.S-R 变异是指细菌的: A. 形态变异 B.结构变异 C.耐药性变异 D.抗原变异 E.菌落变异 14.细菌的遗传物质包括: A. 染色体、核糖体、前噬菌体 B.染色体、质粒、异染颗粒 C.核质、核糖体、质粒 D 核质、质粒、转位因子 E.染色体、质粒、中介体 15.编码细菌对抗菌药物耐药性的质粒是: A. F 质粒 B. R 质粒 C.Vi 质粒 D. Col 质粒 E. K质粒 16.关于质粒的叙述,下列哪项是错误的? A. 是细菌染色体以外的遗传物质 B.具有自我复制的能力 C. 可自行丢失或经理化因素处理后消除 D. 是细菌必备的结构 E. 带有遗传信息,赋予细菌某些形状特征 17.关于细菌的耐药性突变,下列叙述错误的是: A. 可以自然发生 B. 可经理化因素诱导发生 C. 细菌接触药物之前就已发生 D .细菌在药物环境中逐渐适应而变为耐药株 E. 药物仅起筛选耐药株的作用

遗传学自选小实验

普通人群及视力障碍人群中嗅阈的检测 一实验介绍 1.1 本学期的遗传学课上,有一次PTC尝味实验,通过对PTC尝味能力测试来进行人群体遗传的分析。考虑到PTC试剂的毒性,以及在实验室内品尝试剂的危险性,我们可以对实验方法进行修改,采用闻的方法,无毒无苦。 1.2 盲人虽然失去视力,但却往往有着超出常人的嗅觉与听觉——从小看的小说、电视中总是这么说的。那么事实真的是这样吗?通过对盲人、正常人的嗅阈进行测试,并将数据作统计学上的比较分析,或许可以得到比较可靠的结论。 二实验目的 2.1 通过对一定人群中若干嗅阈的测量与分析,学会人类群体遗传调查的基本方法,并以此进一步学习掌握Hardy-Weinberg定律。 2.2 通过对一定数量的视力障碍人群的嗅阈进行测试,并将得到的数据与普通人的数据进行分析比较,研究盲人的嗅觉与普通人相比是否存在显著性差异? 三实验原理 3.1嗅觉:嗅觉是一种由感官感受的知觉。它由两种感觉系统参与,即嗅神经系统和鼻三叉神经系统。嗅觉和味觉会整合和互相作用。嗅觉是外激素通讯实现的前提。嗅觉的感受器位于鼻腔上方的鼻黏膜上,其中包含了支持功能的皮膜细胞和特化的嗅细胞。嗅觉是一种远感,即是说它是通过长距离感受化学刺激的感觉。相比之下,味觉是

一种近感。 脊椎动物的嗅觉感受器通常位于鼻腔内由支持细胞、嗅细胞和基细胞组成的嗅上皮中。在嗅上皮中,嗅觉细胞的轴突形成嗅神经。嗅束膨大呈球状,位于每侧脑半球额叶的下面;嗅球和端脑是嗅觉中枢。1 3.2 在听觉、视觉损伤的情况下,嗅觉作为一种距离分析器具有重大意义。盲人、聋哑人运用嗅觉就象正常人运用视力和听力一样,他们常常根据气味来认识事物,了解周围环境,确定自己的行动方向。2 3.3嗅阈值浓度(threshold concentration):人的感觉器官能够嗅觉到的最低嗅觉浓度 计算方法:X=M/22.4×C×273/(273+T)×(Ba/101325) 3 X:浓度mg/m3 C:浓度ppm T:温度K Ba:压力Pa M:分子量 人对有害气体的平均嗅觉灵敏度为0.1,但不同人差异很大,低到0.5的人很多,眼和咽的刺激阈分别为0.5和0.6. 3.4 Hardy-Weinberg定律是群体遗传学中的基本定律又称遗传平衡定律该定律于1908年由英国数学家G. H. Hardy和德国医生W. Weinberg共同建立的。它的基本含义是指在一个大的随机交配的群

第十四章细菌的遗传与变异

第十四章细菌的遗传与变异 主要内容 (一)细菌变异现象 1.形态结构变异细菌的形态、大小及结构受外界环境的影响发生的变异。如细胞壁缺陷型(L型)变异即细菌在溶菌酶、青霉素等的影响下,失去细胞壁变成细菌的L型。有鞭毛的变形杆菌失去鞭毛发生H-O 变异。 2.毒力变异细菌的毒力变异包括毒力增强和毒力减弱。如卡介苗(BCG)是一株毒性低抗原性完整的变异株,用于结核病的预防。无毒的白喉棒状杆菌感染了β棒状杆菌噬菌体后变成能产生白喉毒素的强毒变异株。 3.菌落变异常见于肠道杆菌,由光滑型菌落变为粗糙型菌落,称S-R变异。 4.耐药性变异细菌对抗菌药物由敏感变成耐药的变异。如耐甲氧西林金黄色葡萄球菌(MRSA)逐年上升。 5.抗原性变异肠道杆菌的鞭毛抗原和菌体抗原常发生变异。如H抗原由Ⅰ相变为Ⅱ相,或由Ⅱ相变为Ⅰ相。 (二)细菌的遗传物质 1.细菌染色体细菌染色体是一条环状、双螺旋DNA长链,是细菌生命活动所必需的遗传物质。 2.染色体外的遗传物质 (1)质粒细菌染色体外的遗传物质,为双股环状闭合DNA,存在于细胞质中,具有自我复制能力。 1)质粒DNA的特性:①质粒具有自我复制能力;②质粒DNA编码的基因能赋予细菌某些特征,如致育性、耐药性、致病性等;③质粒的转移性;④质粒并非细菌生命活动不可缺少的遗传物质;⑤质粒具有相容性和不相容性,同类的两个质粒不能稳定共存于一个宿主体内,不同的质粒具有相容性。 2)医学相关重要质粒:①F质粒编码细菌性菌毛,决定细菌致育性;②Vi质粒编码肠道杆菌毒力;③Col 质粒编码大肠埃希菌产生细菌素;④耐药性质粒编码细菌对抗菌药物或重金属盐类的耐药性;⑤代谢质粒编码产生与代谢相关的酶类。 (2)噬菌体是一类侵袭细菌等微生物的病毒。分为毒性和温和噬菌体。①毒性噬菌体:是指能在宿主菌细胞内复制增殖,产生子代噬菌体,并裂解细菌噬菌体,即产生溶菌反应。②温和噬菌体:噬菌体基因与宿主菌染色体整合,不产生子代噬菌体,使噬菌体DNA能随细菌DNA复制而复制,并随细菌分裂而传代,即产生溶原性反应。 (3)转位因子存在于细菌染色体或质粒上的一段能改变自身位置的DNA序列。主要分为以下三种:①插入序列;②转座子;③转座噬菌体或前噬菌体。

细菌遗传转化与水平基因转移_谢志雄

第22卷第4期 中南民族大学学报(自然科学版) V ol.22No.4 2003年12月 Journal of South-Central University for Nationalities(Nat.Sci.Edition) Dec.2003 细菌遗传转化与水平基因转移 谢志雄 沈 萍* (武汉大学生命科学学院) 摘 要 介绍了细菌中水平基因转移、转移途径(转化、接合和转导)以及细菌遗传转化即自然条件中的转化、自然遗传转化及人工转化等研究进展,并且对细菌遗传转化在水平基因转移中的作用进行了探讨. 关键词 细菌;遗传转化;水平基因转移 中图分类号 Q933 文献标识码 A 文章编号 1672-4321(2003)04-0001-05 水平基因转移(ho rizontal g ene tra nsfer)在20世纪90年代后开始频繁出现在文献报道中.水平基因转移研究引人关注的主要原因是由于基因工程技术的发展,人工构建的转基因动植物和微生物越来越多,对其释放于环境后可能发生的基因转移及其深远影响还没有明确的认识.目前人们对于遗传工程生物的安全性问题的争论多集中在这个方面[1,2].笔者拟从水平基因转移的角度探讨细菌遗传转化现象及其在水平基因转移中的作用. 1 水平基因转移 水平基因转移有别于一般亲本和其后代之间遗传信息垂直的传递形式,是在生物个体之间进行的基因转移.对水平基因转移的研究不仅使我们能了解水平基因交换对生物进化历程的深刻影响,更重要的是可以作为对偶然或有意识向环境中释放遗传工程生物(genetically modified o rganisms,GMOs)的风险评估依据[3]. 通过对特定基因的核苷酸序列或由其推导出的蛋白质氨基酸序列的分析,发现在生物进化过程中普遍存在着基因的侧向传播,其中细菌处于中心环节.先后在植物与细菌间、人细胞与细菌间、植物与动物间、真菌与细菌间、古生菌与细菌间、原生生物与细菌间以及细胞器与细胞核之间发现存在水平基因转移现象[4,5]. 1.1 细菌中的水平基因转移 在细菌中,基因转移不是其生活周期中的必需部分,遗传物质从一个机体转移到另一个机体可产生深远的影响,如提高细菌致病能力或使其具有针对某种抗生素的抗性.此外,供体细胞的一些基因转移到受体细胞中,来源于2个不同细胞的基因(DN A)间的整合有助于保持群体的遗传多样性[6]. 通过对大肠杆菌(Esc herichia coli)M G1655菌株全序列的分析来评估水平基因转移对细菌基因组进化的全面影响,发现自E.coli从Salmonella中分离出来,至少发生了34起水平基因转移事件,其基因组4288个开放阅读框中的755个(共547.8kb)是通过水平基因转移而来,约占总数的17.6%.由于E.coli染色体长度是保守的,当通过水平转移获得新的序列后会通过缺失丢掉等长的其他序列,所以在E.c oli基因组中基因组成是动态的,使得基因组中具现实意义的基因得以引入并保留,替换非必需部分,整个染色体是镶嵌性的,通过这种方式可以有效地改变一种细菌的适应能力和致病特性[7,8]. 1.2 水平基因转移研究 水平基因转移的研究不仅有助于对生物进化、物种形成等生物学基本问题全面、深刻地认识,更为重要的是水平基因转移研究的现实紧迫性: (1)抗生素抗性问题.近年来,陆续发现不能被目前任何一种已知抗生素控制的病原菌的“超级细菌”变种.细菌除自发突变产生新的抗药性并遗传给后代外,多数情况下细菌通过从其它细菌接受抗药性基因,而获得对某种抗生素的抗药性[8,9].人类在与细菌性疾病的对抗中面临着新的挑战.利用水平基因转 ⒇收稿日期 2003-07-09 *通讯联系人 作者简介 谢志雄(1969-),男,博士后,研究方向:微生物遗传学,武汉430072 基金项目 国家自然科学基金资助项目(30370017)、武汉市青年科技晨光计划资助项目(20015005051)和武汉大学青年创新科技基金

[整理]06细菌的遗传分析

第六章细菌的遗传分析 教学目的和要求: 1.了解原核生物基因组的特点,掌握细菌染色体的遗传作图的方法;2.掌握细菌的遗传方式(转化、接合、性导、转导)与遗传作图。教学重点和难点: 【教学重点】细菌染色体的遗传作图。 【教学难点】细菌的转导和接合过程;细菌染色体的遗传作图。 教学内容 第一节细菌的细胞和基因组 第二节细菌的结合与染色体作图 一.大肠杆菌结合现象的发现 二.F因子与高频重组 三.细菌重组的特点 第三节中断杂交与重组作图 一.中断杂交实验原理 二.中断杂交作图 三.重组作图 第四节F’因子与性导一.F’因子 二.性导 第五节细菌的转化与转导作图一.细菌的转化与遗传作图 二.细菌的转导与遗传作图

第一节细菌的细胞和基因组 根据细菌形态的不同可将细菌分为(螺旋菌)、(杆菌)和(球菌)三类。 细菌一般进行无性繁殖。它是通过二分裂方式增加细胞的数目。在一般条件下,由二分裂形成大小相等的子细胞。其分裂可分4步:第一步是核复制,细胞延长;第二步是形成横隔膜;第三步是形成明显的细胞壁;第四步是细胞分裂,子细胞分离。球菌可沿一个平面或几个平面分裂,所以可以出现多种排列形态;杆菌一般沿横轴进行分裂。除无性繁殖外,已证明细菌存在着有性繁殖,不过频率很低。 以大肠杆菌为例,大肠杆菌是一种革兰氏阴性短杆菌,以而分裂的方式繁殖,遗传物质为DNA,复制是半保留复制,遵循碱基互补配对的原则,其具体过程如下:DNA的复制在大肠杆菌已被证明是双向复制,是一个边解旋边复制的过程。遵循环状DNA分子双向复制的原则,首先在复制点形成一个复制“泡”,随之沿着环的两个方向进行复制,泡逐渐扩大,形成像希腊字母“θ”的形状,故环状DNA的双向复制模式称为θ模型,最后由一个DNA环复制为两个子环。这样,复制结束后,新复制的DNA分子,通过细胞分裂分配到两个子细胞中去 但是值得注意的细菌的所谓的染色体就只是中间的环状DNA,这个环状DNA中不含有组蛋白,不能形成染色体的形态,DNA复制后就直接平均分配到两个子细胞当中。 细菌的核比较原始,无核膜、核仁,故称为核区或细菌染色体。研究发现核区实际上是一个巨大的环状双链DNA分子,例如E.coli的DNA双链长达1.1~1.4 mm,是菌体长度的1000倍,可以想象这样长的DNA链,在不到1μm3的核区空间内,一定是以十分精巧的空间构建盘绕在细胞内。一般每个细菌胞内只有一个核区,当细胞快速生长时,由于DNA复制次数与细胞分裂次数不同步,一个胞内可同时出现2个甚至4个核区。 大肠杆菌染色体基因组是研究最清楚的基因组。估计大肠杆菌基因组含有3500个基因,已被定位的有900个左右。在这900个基因中,有260个基因已查明具有操纵子结构,定位于75个操纵子中。在已知的基因中8%的序列具有调控作用。大肠杆菌染色体基因组中已知的基因多是编码一些酶类的基因,如氨基酸、嘌呤、嘧啶、脂肪酸和维生素合成代谢的一些酶类的基因,以及大多数碳、氮化合物分解代谢的酶类的基因。另外,核糖体大小亚基中50多种蛋白质的基因也已经鉴定了。 除了有些具有相关功能的基因在一个操纵子内由一个启动子转录外,大多数基因的相对位置可以说是随机分布的。如控制小分子合成和分解代谢的基因,大分子合成和组装的基因分布在大肠杆菌基因组的许多部位,而不是集中在一起。再如,有关糖酵解的酶类的基因分布在染色体基因组的各个部位。进一步发现,大肠杆菌和与其分类关系上相近的其他肠道菌如志贺氏杆菌属(Shigella)、沙门氏菌属(Salmonella)等具有相似的基因组结构。伤寒沙门氏杆菌(Salmonellatyphimurium)几乎与大肠杆菌的基因组结构相同,虽然有10%的基因

第二节 细菌的遗传物质

第二节细菌的遗传物质 一、细菌染色体 细菌作为原核型微生物,虽没有完整的核结构,但却有核区(或核质)。在电镜下观察,核区有盘旋堆积的DNA纤维。自大肠杆菌提取的DNA是一条完整的DNA链,分子量为2.4×109daltons,仅为人体胞DNA量的0.1%。细胞的DNA含量决定存在的基因数。如按每个基因由平均为1000个碱基对估计,大肠杆菌的DNA约为4×106个碱基对,因此约有4000个基因,可编码几千种多肽。细菌染色体DNA与其他生物相同,由互补的双链核苷酸组成。细菌的染色体与生物细胞染色体不同,前者不含有组蛋白,基因是连续的,无内含子。由于细菌核区DNA 的功能与真核细胞染色体的功能相同,因此又称其为细菌染色体。 二、质粒 细菌的DNA除大部分集中于核质(染色体)内,尚有少部分(约1~2%)存在于染色体外,称为质粒。质粒与染色体的相似处为:质粒亦为双链环形DNA,不过其分子量远比染色体为小,仅为细菌染色体DNA的0.5~3%。质粒亦可携带遗传信息,可决定细菌的一些生物学特性。然而质粒却有一些与染色体DNA不同的特性。 1.质粒并非细菌生存所必不可少的遗传物质。细菌如失去染色体,则不能生存;然而细菌失去质粒后仍能生存。这是由于染色体DNA携带的基因所编码的产物,在细菌新陈代谢中是生存所必须者;而质粒携带的基因所编码的产物并非细菌的生存所必须者。因此质粒可以在细菌间传递与丢失。 2.质粒的传递(转移)是细菌遗传物质转移的一个重要方式。有些质粒本身即具有转移装置,如耐药性质粒(R质粒);而有些质粒本身无转移装置,需要通过媒介(如噬菌体)转移或随有转移装置的质粒一起转移。获得质粒的细菌可随之而获得一些生物学特性,如耐药性或产生细菌素的能力等。 3.质粒可自行失去或经人工处理而消失。在细菌培养传代过程中,有些质粒可自行从宿主细菌中失去。这种丢失不像染色体突变发生率很低,而是较易发生。用紫外线、吖啶类染料及其他可以作用于DNA的物理、化学因子处理后,可以使一部分质粒消失,称为消除。目前学者们感兴趣的是如何通过人工处理消除耐药质粒或与致病性有关的质粒。 4.质粒可以独立复制。质粒为DNA,有复制的能力,质粒的复制可不依赖于染色体,而在细菌胞浆内进行。这一特性在基因工程中需扩增质粒时很有用处,因可使细菌停止繁殖而质粒仍可继续复制,从而可获得大量的质粒。 5.可有几种质粒同时共存在于一个细菌内。因质粒可独立复制,又能转移入细菌和自然失去,因此就有机会出现几种质粒的共存。但是并非任何质粒均可共存,因发现在有些情况下,两种以上的质粒能稳定地共存于一个菌体内,而有些质粒则不能共存。

细菌基因转移与重组的方式有哪些

细菌基因转移与重组的方式有哪些? 1.接合作用:当细菌与细菌相互接触时,质粒DNA就可从一个细菌转移到另一个细菌。 2.转化作用:由外源性DNA导入宿主细胞,并引起生物类型改变或使宿主细胞获得 新的遗传表型的过程,称为转化作用。 3.转导作用:当病毒从被感染的细胞释放出来,再次感染另一细胞时,发生在供体 细胞与受体细胞之间的DNA转移及基因重组称为转导作用。 4.转座(转位):转座是指一个或一组基因从一个位置转到基因组的另一个位置。可 分为插入序列转座和转座子转座。 5.基因重组:不同DNA分子间发生的共价连接称基因重组。有两种类型:位点特异 的重组和同源重组. 细菌从外源取得DNA,并与自身染色体DNA进行重组,引起细菌原有基因组的改变,导致细菌遗传性状的改变,称基因的转移与重组。基因转移与重组的四种方式是:(1)转化:受体菌直接摄取供体菌游离的DNA段,从而获得新的遗传性状,称为转化。(2)转导:以温和噬菌体为载体,将供体菌的遗传物质转移到受体菌中去,使受体菌获得新的遗传性状,称为转导。(3)接合:是指细菌通过性菌毛将遗传物质(主要为质粒)从供体菌转移给受体菌,使受体菌获得新的遗传性状。(4)溶原性转换:是由于温和噬菌体的DNA(前噬菌体)整合到宿主菌的染色体DNA后,使细菌的基因型发生改变,从而获得新的遗传性状,称为溶原性转换。5.原生质体融合是分别将两种细菌经处理失去细胞壁悬于高渗培养基中保持原生质体状态,然后将两种细菌的原生质体混合,滴加聚乙二醇促使原生质体融合。医`学教育网搜集整理融合后的双倍体细胞可以短期生存,在此期间染色体之间可以发生基因的交换和重组,获得多种不同表型的重组融合体。融合体经培养重新形成细胞壁,再按其遗传标志选择重组菌。 子座(Stroma):某些高等真菌菌丝体形成的一种组织体,是菌丝分化形成地垫状结构,或是菌丝体与寄主组织或基物结合而成地垫状结构物;

遗传学实验

实验一果蝇遗传性状的观察 背景知识 果蝇是在世界各地常见的昆虫,属于昆虫纲,双翅目,果蝇科,果蝇属(Drosophila)。果蝇属有3000多种,我国发现800多种,遗传学研究中通常用的是黑腹果蝇(D.melanogaster)。作为遗传学研究的材料,果蝇具有非常突出的优点。它形体小,生长迅速,繁殖率高,饲养方便;世代周期短(约12天即可繁殖一带);突变性状多;染色体数目少,基因组小;实验处理十分方便,容易重复实验,便于观察和分析。果蝇的遗传学研究广泛而深入,尤其在基因分离、连锁、互换等方面十分突出,为遗传学的发展做出了突出的贡献。目前果蝇仍然是遗传学、细胞生物学、分子生物学、发育生物学等研究中常用的模式生物。 一、实验目的 1.掌握果蝇的基本特征及鉴别雌、雄果蝇的方法,熟悉常见突变型。 2.了解果蝇生活周期特征及各阶段的形态变化。 二、实验材料 野生型和几种常见的突变型黑腹果蝇(Drosophila melanogaster)。 三、仪器设备 双筒立体解剖镜,培养瓶(粗平底试管或牛奶瓶)及麻醉瓶(与培养瓶一致的空瓶),白瓷板,毛笔。 四、药品试剂 乙醚,玉米粉,酵母粉,蔗糖,丙酸。 五、实验内容和步骤 (一)生活周期的观察 果蝇是完全变态昆虫,其完整的生活周期可分为4个明显的时期,即卵、幼虫、蛹和成虫(图1-1)用放大镜从培养瓶外即可观察到这4个时期,也可取出用立体解剖镜仔细观察。 果蝇的生活周期长短与温度关系很密切,低温使生活周期延长,生活力减低,高于30℃使果蝇不育甚至死亡。果蝇培养的最适温度为20~25℃,25℃培养条件下果蝇从受精卵到成虫约10天,其中卵和幼虫期5天,蛹4天。成虫果蝇在25℃时约成活15天。 卵:受精卵白色,椭圆型,腹面稍扁平,长约0.5mm,在前端背面伸出一触丝,他能使卵附着在事物上。 幼虫:受精卵经24h就可孵化成幼虫,幼虫经2次蜕皮到第3龄期体长可达4~5mm。肉眼观察可见幼虫一端稍尖为头部,上有一黑色沟状口器。 蛹:幼虫4天左右即开始化蛹。化蛹前3龄幼虫停止摄食,爬到相对干燥的表面(如培养瓶壁),渐次形成一个菱形的蛹,起初颜色淡黄、柔软,以后逐渐硬化变成深褐色,此时即将羽化。 成虫:刚从蛹壳中羽化出来的果蝇,虫体较肥大,翅还未展开,体表也未完全几丁质化,所以成半透明的乳白色。透过腹部体壁还可以观察到消化道和性

DNA是遗传物质的实验证据

DNA是遗传物质的实验证据 真题回放 1.(2019·江苏卷,3)赫尔希和蔡斯的T2噬菌体侵染大肠杆菌实验证实了DNA是遗传物质,下列关于该实验的叙述正确的是(C) A.实验中可用15N代替32P标记DNA B.噬菌体外壳蛋白是大肠杆菌编码的 C.噬菌体DNA的合成原料来自大肠杆菌 D.实验证明了大肠杆菌的遗传物质是DNA [解析]N在噬菌体外壳蛋白与DNA中都存在,本实验要标记DNA的特有元素,故不能用15N代替32P,A项错误。噬菌体外壳蛋白是由噬菌体的遗传物质编码的,B项错误。噬菌体侵染大肠杆菌后,以自身DNA为模板,以大肠杆菌中的4种脱氧核苷酸为原料,合成子代DNA,C项正确。本实验证明噬菌体的遗传物质是DNA,D项错误。 2.(2017·全国卷Ⅱ)在证明DNA是遗传物质的过程中,T2噬菌体侵染大肠杆菌的实验发挥了重要作用。下列与该噬菌体相关的叙述,正确的是(C) A.T2噬菌体也可以在肺炎双球菌中复制和增殖 B.T2噬菌体病毒颗粒内可以合成mRNA和蛋白质 C.培养基中的32P经宿主摄取后可出现在T2噬菌体的核酸中 D.人类免疫缺陷病毒与T2噬菌体的核酸类型和增殖过程相同 [解析]T2噬菌体的核酸是DNA,DNA的元素组成为C、H、O、N、P,培养基中的32P经宿主(大肠杆菌)摄取后可出现在T2噬菌体的核酸中,C项正确。T2噬菌体专门寄生在大肠杆菌中,不能寄生在肺炎双球菌中,A项错误;T2噬菌体的mRNA和蛋白质的合成只能发生在其宿主细胞中,不能发生于病毒颗粒中,B项错误;人类免疫缺陷病毒(HIV)的核酸是RNA,T2噬菌体的核酸是DNA,且二者的增殖过程不同,D项错误。 核心拓展 1.肺炎双球菌体外转化实验与噬菌体侵染细菌实验的比较 艾弗里实验噬菌体侵染细菌的实验 设计 思路 设法将_DNA与其他物质__分开,单独地、直接地研究它们各自不同的遗传功能 处理方法直接分离:分离S型菌的_DNA__、多 糖、蛋白质等,分别与R型菌混合培 养 同位素标记法:分别标记DNA和蛋白质 的特征元素(32P和35S) 结论①_DNA__是遗传物质,而蛋白质不是①DNA是遗传物质,但不能证明_蛋白质

遗传学实验1

实验一性染色质:人体X染色质观察(2)实验目的:掌握鉴别X-染色质的简易方法,识别其形态特征及所在部位。 实验原理: 1.概念:人们已知的基因确实有不可逆转的失活或丢失,受永久失活所调节的例子涉及到一个完整的染色体,即X-染色质,失活的染色质叫巴氏小体。在雌性哺乳动物中,包括人类,女性口腔粘膜细胞中约30%-50%(男性0-2%)的细胞中,XX染色体其中一条就是失活的(但在性细胞中这个染色体则不失活,如果也是失活的,那大家可以想象会发生什么样严重后果),表现为浓固缩状态。 2.发生的时期:这种现象发生在胚胎早期,染色体失活是随机的,某些细胞中是父性X-染色体失活,而有些细胞则是 母性X-染色体失活,这些细胞能产生同期相同X-染色体失活的细胞,这样一个正常女性就是具有两种X-染色体组织类型的嵌合体。巴氏小体在细胞周期中比有活性的X-染色体复制要晚。 3.形态表现:X-染色质的形态表现为,结构致密浓染小体,轮廓清楚,常附着于核膜边缘或靠近内侧,其形状有:微 凸形、三角形、卵形、短棒形及双球形等。 4.发现:Mary F.Lyon第一个发现巴氏小体是失活的X-染色质,所以在雌性哺乳动物中,一个X-染色体随机失活的 想法叫Lyon假说。雌性哺乳动物的这种失活似乎是一种获得剂量补偿的方法,因为她们有两倍于雄性哺乳动物的X 连锁等位基因,但现在还不清楚X-染色质是怎样失活的。 在某些时期的嵌合体细胞中,失活X-染色质的数量始终比总的X-染色体数要少.如一个特纳氏(Turner XO)综合症的雌性人没有失活的X-染色体。一个克兰费尔特氏(Klinefelter XXY)综合症的雄性人每个细胞有一个失活的X-染色体,而一个(XXX)的雌性人每个细胞中有两个失活的X-染色质。因此用这一方法可检测出一些遗传疾病。 实验方法: 1. 毛发根部细胞的观察:拔取一根带有毛根的毛发,自基部截取2cm左右置载玻片上,在毛根部加一滴50%醋 酸(,低倍镜下观察,待毛根鞘软化后,拔去毛干,吸去醋酸。 2.加一滴染液,加盖片,在酒精灯上轻微加热后,静置5分钟,加吸水纸,用手指轻压后镜检。 X-染色质的辨认:低倍镜下检出典型的可数细胞,其标准是:⑴核质是网状或细颗粒状分布。⑵核膜清晰,核无缺损。⑶染色适度。⑷周围无杂菌。 选定后的细胞,在高倍镜或油镜下进一步观察。X-染色质的形态表现为一结构致密浓染小体,轮廓清楚,常附着于核膜边缘或靠近内侧。 实验二人类染色体组型分析(2) 一、实验目的 1. 观察人的染色体组型,理解染色体在遗传上的重要作用。 2. 掌握染色体组型分析方法和有关数据处理。 二、实验原理 染色体的特征以有丝分裂中期最为显著,所以一般都分析中期染色体,此时期的染色体形成了纵向并列的两条染色单体,通过着丝粒联在一起。染色体的特征包括染色体的数目、长度、着丝粒的位置、随体与副缢痕的数目、大小和位置。所有这些染色体的特异性构成一个物种的染色体组型。

细菌遗传分析

第四章细菌和病毒的遗传 (一) 名词解释: 1.原养型:如果一种细菌能在基本培养基上生长,也就是它能合 成它所需要的各种有机化合物,如氨基酸、维生素及脂类,这种细菌称为原养型。 2.转化(transformation):指细菌细胞(或其他生物)将周围的供 体DNA,摄入到体内,并整合到自己染色体组的过程。 3.转导:以噬菌体为媒介,把一个细菌的基因导入另一个细菌的 过程。即细菌的一段染色体被错误地包装在噬菌体的蛋白质外壳内,通过感染转移到另一受体菌中。 4.性导(sexduction):细菌细胞在接合时,携带的外源DNA整合 到细菌染色体上的过程。 5.接合(coniugation):指遗传物质从供体—“雄性”转移到受体 —“雌性”的过程。 6.Hfr菌株:高频重组菌株,F因子通过配对交换,整合到细菌 染色体上。 7.共转导(并发转导)(cotransduction):两个基因一起被转导的 现象称。 8.普遍性转导:能够转导细菌染色体上的任何基因。 9.局限转导:由温和噬菌体(λ、)进行的转导称为特殊转导或 限制性转导。以λ噬菌体的转导,可被转导的只是λ噬菌体在细菌染色体上插入位点两侧的基因。 10.att位点:噬菌体和细菌染色体上彼此附着结合的位点,通过 噬菌体与细菌的重组,噬菌体便在这些位点处同细菌染色体整合或由此离开细菌染色体。 11.原噬菌体(prophage):某些温和噬菌体侵染细菌后,其DNA整 合到宿主细菌染色体中。处于整合状态的噬菌体DNA称为~~。 12.溶原性细菌:含有原噬菌体的细胞,也称溶原体。 13.F+菌株:带有F因子的菌株作供体,提供遗传物质。 (二) 是非题:

细菌基因转移与重组的方式有哪些

细菌基因转移与重组的 方式有哪些 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

?细菌基因转移与重组的方式有哪些? 1.接合作用:当细菌与细菌相互接触时,质粒DNA就可从一个细菌转移 到另一个细菌。2.转化作用:由外源性DNA导入宿主细胞,并引起生 物类型改变或使宿主细胞获得新的遗传表型的过程,称为转化作用。3. 转导作用:当病毒从被感染的细胞释放出来,再次感染另一细胞时,发 生在供体细胞与受体细胞之间的DNA转移及基因重组称为转导作用。4. 转座(转位):转座是指一个或一组基因从一个位置转到基因组的另一个 位置。可分为插入序列转座和转座子转座。5.基因重组:不同DNA分 子间发生的共价连接称基因重组。有两种类型:位点特异的重组和同源 重组. 细菌从外源取得DNA,并与自身染色体DNA进行重组,引起细菌原有基因组的改变,导致细菌遗传性状的改变,称基因的转移与重组。基因转移与重组的四种方式是:(1)转化:受体菌直接摄取供体菌游离的DNA段,从而获得新的遗传性状,称为转化。(2)转导:以温和噬菌体为载体,将供体菌的遗传物质转移到受体菌中去,使受体菌获得新的遗传性状,称为转导。(3)接合:是指细菌通过性菌毛将遗传物质(主要为质粒)从供体菌转移给受体菌,使受体菌获得新的遗传性状。(4)溶原性转换:是由于温和噬菌体的DNA(前噬菌体)整合到宿主菌的染色体DNA后,使细菌的基因型发生改变,从而获得新的遗传性状,称为溶原性转换。5.原生质体融合是分别将两种细菌经处理失去细胞壁悬于高渗培养基中保持原生质体状态,然后将两种细菌的原生质体混合,滴加聚乙二醇促使原生质体融合。 医`学教育网搜集整理融合后的双倍体细胞可以短期生存,在此期间染色体之间可以发生基因的交换和重组,获得多种不同表型的重组融合体。融合体经培养重新形成细胞壁,再按其遗传标志选择重组菌。

遗传学实验设计方案

实验名称:不同浓度的N a Cl溶液下植物根尖细胞毒性探究 一.实验目的 1、了解染色体畸变的类型原理。 2、了解微核检测的原理及其遗传学上的意义。 3、掌握豌豆根尖的微核检测技术。 二. 实验原理 微核(MCN),是真核类生物细胞中的一种异常结构,是染色体畸变在间期细胞中的一种表现形式。是有丝分裂后期丧失着丝粒的染色体拍片段,在间期细胞中形成的一个人或多个圆形或杏仁状结构。 许多理化因素,如化学药剂作用于分裂细胞而产生微核,形成微核的染色体断片或染色体在有分裂过程中行动滞后,在末期未进入主核,当子细胞进入下一次分裂间期,他们便形成主核之外的小 核,即微核。已证实可用简易微核计数来代替复杂中期畸变染色体数。用微核技术可了解化学药剂对植物体潜在的遗传危害。 三.实验材料 1、材料:豌豆(2n=14)实验室提供。 2、试剂:蒸馏水(空白对照)、0.5mol∕LNaCl、1.0mol∕LNaCl、2mol∕LNaCl、70%乙醇、卡宝品红,冰醋酸,6mol∕L盐酸。 3、器材:培养皿、镊子、移液管、滤纸、载玻片、盖玻片、显微镜、烧杯、离心管、刀片等。 四.实验方法步骤 1.浸种催芽将实验用的豌豆浸入盛有清水的烧杯中,浸泡1-2d,期间至少换水两次,种子吸胀后在 25。C温箱中催芽12-24h,待初生根长出1-2cm左右,选取根部发育良好的作为检测材料。 2.根尖处理选24粒初生根生长良好,根长一致的种子,每处理选6粒,分别放入盛有10ml0.5mol ∕LNaCl、1.0mol∕LNaCl、2mol∕LNaCl溶液和蒸馏水的培养皿中,蒸馏水处理作对照。根尖处理24h。 3.根尖细胞恢复培养处理后的种子用自来水浸洗3次,洗净后再置入铺有湿润滤纸的培养皿中,恢 复培养24h。 4.根尖细胞固定将恢复后的种子,从根尖顶端切下1cm长幼根,换入70%乙醇中置4。C冰箱中保存备用。 5.酸解用蒸馏水浸洗固定好的幼根两次,每次5min,加入6mol∕L盐酸,将幼根浸没,酸解10min,使幼根软化。 6.染色吸取盐酸。用蒸馏水清洗幼根3次,置于载玻片上,截下1-2mm长的根尖,滴一滴卡宝品 红染色8min,加盖玻片。 7.镜检在40倍镜显微镜下,凡小于主核1/3以下的,同主核有相同染色效果的,圆形、椭圆形或其 他类似的形状的染色物质都可以算作微核。

细菌的转导

细菌的传导 一、基本知识与原理 转导是以噬菌体为媒介将一个细胞的遗传物质转移给另一个细胞的过程。随着分子遗传学的发展,转身已成为基因精细结构分析的常用方法之一。 根据噬菌体转导供体菌基因的差异,转导可分为普遍性转导和局限性转导。这里以局限性转导为例说明转导的基本原理。局限性转导实验中常用的是大噬菌体,它能整合在大肠杆菌染色体DNA上的半乳糖基因(gAl)和生物素基因(bib)之间,因此,它能转导半乳糖基因(一)又能转导生物素基因(bio)。 本实验选用大肠杆菌E。oh K.2(A)为供体菌(即大噬菌体的DNA已整合在大肠杆菌的DNA上,我们称该大肠杆菌为溶源性大肠杆菌,’gAT””为带有半乳糖基因)。由于在此供体菌中噬菌体与半乳糖基因(匆”)紧密连锁,因此,当此供体菌受紫外线照射后会产生裂解反应,噬菌体被诱发释放,以一定的比例形成带有半乳糖基因的转导噬菌体。当这种转导噬菌体与受体菌ECo]i K;。s gAl-(此细菌不能利用半乳糖,‘’表示此细菌半乳糖基因发生突变)混合接触时,带有一基因的转导噬菌体能以一定的频率整合到受体首上,从而使不能利用半乳糖的gAl一受体菌转变成了能利用半乳糖的gAT”细菌。整个过程可用图12-’表示:l 二、实验目的和要求 以局限性转导为例来说明转导的基本原理,进一步验证是遗传物质,并初步掌握转导实验的基本方法。 三、实验器材 (1)实验材料:供体菌受体菌 (2)实验试剂:肉汤液体培养基、肉汤固体培养基、ZE 肉汤液体培养基、半固体琼脂培养基、半乳糖Emb培养基、灭菌生理盐水(或磷酸缓冲液) D(3)实验设备:培养皿(9厘米)、三角烧瓶(50毫升)、试管、离心管,离心机,移液管,涂棒,水浴锅,离心机,紫外照射箱、温箱 四、实验方法与步骤 1 噬菌体的诱导和裂解液的制备

普通遗传学实验试题

一、名词解释(每小题1分,共10分)。 1、联会复合体( ): 2、同源染色体(): 3、性连锁( ): 4、染色体畸变: 5、结构杂合体: 6、结构纯合体: 7、平衡易位:

8、常染色质: 9、异染色质: 10、孟德尔群体: 二、选择题(每小题1分,共10分)。 1、减数分裂是一种特殊方式的细胞分裂,仅在配子形成过程中发生。与这一过程有关的是() A、同源染色体在第二次分裂中分开 B、分裂后拥有亲本整套的遗传物质 C、分裂的结果是形成四个具有独立发育能力细胞 D、遗传物质减少一半 2、在果蝇的系列实验中,处女蝇的收集尤为重要,由蛹羽化为果蝇后,哪个时间段收集处女蝇为宜。() A、6~15小时 B、12~13小时 C、8~12小时 D、13~16小时 3、某一种植物210,在中期I,每个细胞含有多少条染色单体( )。

A、10 B、5 C、20 D、40 4、杂合体所产生的同一花粉中的两个精核,其基因型有一种可能是( )。 A、和; B、和; C、和; D、和。 5、玉米体细胞220条染色体,经过第一次减数分裂后形成的两个子细胞中的染色单体数为()。 A、20条 B、10条 C、5条 D、40条 6、一个大孢子母细胞减数分裂后形成四个大孢子,最后形成()。 A、四个雌配子 B、两个雌配子 C、一个雌配子 D、三个雌配子 7、在一条染色体上存在两对完全连锁的基因(A B)/(a b),而C基因是在另一染色体上,相互独立,杂种与三隐性个体杂交,后代可能出现() A、8种表现型比例相等 B、8种表现型中每四种比例相等 C、4种表现型每两种比例相等 D、4种表现型比例相等 8、在果蝇中,红眼(W)对白眼(w)是显性,这基因在X染色体上。果蝇的性决定是型。纯合的红眼雌蝇与白眼雄蝇交配,在它们的子代中可期望出现这样的后代() A、♀红,♂红 B、♀红,♂白 C、♀白,♂红 D、♀白,♂白 9、一色盲女人与一正常男人结婚, 其子女表现为()。

相关主题
文本预览
相关文档 最新文档