第一章:核反应堆物理分析
- 格式:ppt
- 大小:2.55 MB
- 文档页数:65
E E r 第一章—核反响堆的核物理根底直接相互作用:入射中子直接与靶核内的某个核子碰撞,使其从核里放射出来,而中子却留在了靶核内的核反响。
中子的散射:散射是使中于慢化(即使中子的动能减小)的主要核反响过程。
非弹性散射:中子首先被靶核吸取而形成处于激发态的复合核,然后靶核通过放出中子并放射 γ 射线而返回基态。
弹性散射:分为共振弹性散射和势散射。
微观截面:一个中子和一个靶核发生反响的几率。
宏观截面:一个中子和单位体积靶核发生反响的几率。
平均自由程:中子在介质中运动时,与原子核连续两次相互作用之间穿行的平均距离叫作平均自由程。
核反响率:每秒每单位体积内的中子与介质原子核发生作用的总次数(统计平均值)。
中子通量密度:某点处中子密度与相应的中子速度的乘积,表示单位体积内全部中子在单位时间内穿行距离的总和。
多普勒效应:由于靶核的热运动随温度的增加而增加,所以这时共振峰的宽度将随着温度的上升而增加,同时峰值也渐渐减小,这种现象称为多普勒效应或多普勒展宽。
瞬发中子和缓发中子:裂变中,99%以上的中子是在裂变的瞬间(约 10-14s)放射出来的,把这些中子叫瞬发中子;裂变中子中,还有小于1%的中子是在裂变碎片衰变过程中放射出来的,把这些中子叫缓发中子。
其次章—中子慢化和慢化能谱慢化时间:裂变中子能量由裂变能慢化到热能所需要的平均时间。
集中时间:无限介质内热中子在自产生至被俘获以前所经过的平均时间。
平均寿命:在反响堆动力学计算中往往需要用到快中子自裂变产生到慢化成为热中子,直至最终被俘获的平均时间,称为中子的平均寿命。
慢化密度:在 r 处每秒每单位体积内慢化到能量E 以下的中子数。
分界能或缝合能:通常把某个分界能量 以下的中子称为热中子, 称为分界能或缝合能。
c c第三章—中子集中理论中子角密度:在 r 处单位体积内和能量为 E 的单位能量间隔内,运动方向为 的单位立体角内的中子数目。
慢化长度:中子从慢化成为热中子处到被吸取为止在介质中运动所穿行的直线距离。
核反应堆物理分析(上)核反应堆是一种利用核反应产生能量的设备。
核反应堆的原理是运用核反应的放能来加热液体或者气体,产生蒸汽,使蒸汽驱动轴类转子转动,从而使轴类转子带动发电机发电。
其中,核反应堆是由一系列核反应组成的,核反应会释放出大量的能量,能够加热冷却剂,从而驱动轴类转子转动,实现机械能转化为电能,供应给生活和工业用途。
核反应堆按照使用的核燃料分为热中子反应堆和快中子反应堆。
热中子反应堆是利用热中子与核燃料发生核反应来产生热能,因此核燃料应为小中子吸收截面大、熔点和密度适中的物质,如铀235和铀238。
快中子反应堆使用快中子来发生核反应来产生热能,核燃料应为小中子吸收截面小,熔点和密度大的物质,如氚。
核反应堆按照使用不同的冷却材料分为水冷反应堆和气冷反应堆。
水冷反应堆和气冷反应堆都是通过冷却剂将产生的高温热能带走,从而保证反应堆的稳定运行。
其中,水冷反应堆是使用水作为冷却剂,散热性好,但需要耗费大量水资源。
气冷反应堆使用气体作为冷却剂,无需消耗大量水资源,但由于气体散热性差,需要较大的排气系统。
核反应堆由反应堆堆芯和反应堆周边构成。
反应堆芯是核反应的核心部分,由燃料棒、控制杆、冷却剂以及结构材料等组成。
控制杆的作用是调节核反应的速率,保持反应堆稳定运行状态。
结构材料的作用是支持和固定反应堆芯的元件。
反应堆周边由反应堆罩、核反应堆容器、冷却剂循环系统等组成。
反应堆罩的作用是防止核辐射泄漏、防止反应堆失控。
核反应堆容器的作用是为反应堆芯提供密封保护,以避免辐射外泄。
冷却剂循环系统的作用是帮助反应堆芯和周边的结构材料散热。
核反应堆主要有两种核反应类型:裂变反应和聚变反应。
裂变反应是将重核分裂成两个轻核,同时释放出大量的能量。
核裂变产生的中子能够被稳定核吸收,产生新的能量,同时维持核反应的持续进行。
而聚变反应则是将轻核结合成重核,同样可以产生巨大的能量。
但是由于聚变反应需要极高的温度和压力,因此目前只有太阳和恒星能够维持聚变反应的进行。
核反应堆物理分析是核反应堆设计、建造和运行的关键。
核反应堆的反应率、安全性
和经济性等特性都取决于其物理分析的结果。
核反应堆物理分析是一个复杂的系统,它包
括核反应堆热工特性分析、核反应堆稳定性分析、核反应堆安全适当性分析、核反应堆堆
芯及附件物理分析等多个方面的物理分析。
核反应堆热工特性分析是核反应堆的基础物理分析,它是核反应堆经济性、安全性及
其对外界的影响等物理数据的基础。
核反应堆热工特性分析主要包括核反应堆内部热载荷
分析、核反应堆内部温度场分析、核反应堆内部流场分析、核反应堆内部气体场分析、核
反应堆外部热载荷分析等。
核反应堆稳定性分析是核反应堆安全性的重要保障,根据核反应堆稳定性分析的结果,可以判断核反应堆的安全性。
核反应堆稳定性分析的主要内容包括核反应堆内部稳定性分析、核反应堆外部稳定性分析、核反应堆程控反应堆稳定性分析等。
核反应堆安全适当性分析,主要是对核反应堆安全性进行全面分析,对核反应堆的设计、建造和运行都有重要的指导作用。
核反应堆安全适当性分析的主要内容包括核反应堆设计安全性分析、核反应堆安全性实验分析、核反应堆安全性实验扩展分析等。
核反应堆堆芯及附件物理分析,是对核反应堆堆芯及附件的物理结构和性能进行全面
分析,它是核反应堆安全性和可靠性分析的重要基础。
核反应堆堆芯及附件物理分析的主
要内容包括核反应堆堆芯及附件材料物理分析、核反应堆堆芯及附件结构及性能分析等。
核反应堆物理分析是核反应堆设计、建造和运行的重要组成部分,它是核反应堆安全
性及其经济性的重要保障。
核反应堆物理分析的结果可以为核反应堆的设计和运行提供重
要的参考和指导。
第一章核反应堆的核物理基础(6学时)1.什么是核能?包括哪两种类型?核能的优点和缺点是什么?核能:原子核结构发生变化时释放出的能量,主要包括裂变能和聚变能。
优点:1)污染小:2)需要燃料少;3)重量轻、体积小、不需要空气,装一炉料可运行很长时间。
缺点:1)次锕系核素具有几百万年的半衰期,且具有毒性,需要妥善保存;2)裂变产物带有强的放射性,但在300年之内可以衰变到和天然易裂变核素处于同一放射性水平上;3)需要考虑排除剩余发热。
2.核反应堆的定义。
核反应堆可按哪些进行分类,可划分为哪些类型?属于哪种类型的核反应堆?核反应堆:一种能以可控方式产生自持链式裂变反应的装置。
核反应堆分类:3.原子核基本性质。
核素:具有确定质子数Z和核子数A的原子核。
同位素:质子数Z相同而中子数N不同的核素。
同量素:质量数A相同,而质子数Z和中子数N各不相同的核素.同中子数:只有中子数N相同的核素。
原子核能级:最低能量状态叫做基态,比基态高的能量状态称激发态.激发态是不稳定的,会自发跃迁到基态,并以放出射线的形式释放出多余的能量.核力的基本特点:1)核力的短程性2)核力的饱和性3)核力与电荷无关4.原子核的衰变。
包括:放射性同位素、核衰变、衰变常数、半衰期、平均寿命的定义;理解衰变常数的物理意义;核衰变的主要类型、反应式、衰变过程,穿透能力和电离能力。
放射性同位素:不稳定的同位素,会自发进行衰变,称为放射性同位素。
核衰变:有些元素的原子核是不稳定的,它能自发而有规律地改变其结构转变为另一种原子核,这种现象称为核衰变,也称放射性衰变。
衰变常数:它是单位时间内衰变几率的一种量度;物理意义是单位时间内的衰变几率,标志着衰变的快慢。
半衰期:原子核衰变一半所需的平均时间。
平均寿命:任一时刻存在的所有核的预期寿命的平均值。
衰变类型细分前后变化射线性质ααZ减少2,A减少4 电离本领强,穿透本领小ββ—Z增加1,A不变电离本领较弱,穿透本领较强β+ Z减少1,A不变电子俘获Z减少1,A不变γγ激发态向基态跃迁电离本领几乎没有,穿透能力很强5.结合能与原子核的稳定性。