第6讲-列联分析与方差分析
- 格式:pdf
- 大小:3.89 MB
- 文档页数:115
列联分析和方差分析的区别
方差分析得到的是自变量(因素)对总量y是否具有显著影响的整体判断,.回归分析得到的是在不独立的情况下自变量与因变晕之间的更加精确的回归函数式,也即判断相关关系的类型。
方差分析中的因素的水平的取值在回归分析中代表了自变量的取值.方差分析中用到了总量的很多组观测值,回归分析中只要求一组。
方差分析不管自变量与因变量之间的关系有多么复杂,总能得到因素对总量的影响是否显著的整体判断.回归分析只能分析出变量之间关系比较简单的回归函数式,对比较复杂的关系无能为力。
方差分析中的因素与总量的数据可以是定性的、计数的、也可以是计量的,或者说是离散的或连续的,尤其方差分析对于因素是定性数据也非常有效,而回归分析的数据则要求是连续的,总量也要求是连续的,所以回归分析对连续性变量非常有效。
不管是方差分析还是回归分析都假定总量服从正态分布.在回归分析中总量也假定服从正态分布.如表中数据为两个自变量的情形,同时要求方差是齐性的。
总之,方差分析给出自变量(因素)与因变量(总量)是否相互独立的初步判断,不需要自变量(因素)的具体数据,只需要因变量(总量)的观察数据.在不独立即相关的条件下,自变量与因变量到底是什么样的关系类型,则需应用回归分析作出进一步的判断,此时需要自变量(因素)及因变量(总量)的具体观察数据,得到它们之间的回归函数关系式。
第六讲 多因素试验资料的方差分析M ULTIFACTOR ANALYSIS OF V ARIANCE多因素试验是指同时研究n 个因素对试验指标的作用,以及它们的共同作用。
多因素试验的最大优点首先在于除了一次试验可以同时明确多个因素的效应,还可以分析出因素间的相互作用(互作),便于选定最优处理组合。
其次,多因素试验可增加误差项的自由度,降低试验误差。
因此比单因素试验精确度更高。
最后,多因素实验所得的结论确切、具体、论据充足。
如单独进行品种对比试验,结果只能粗略地明确品种间的优劣,如果与饲料水平、饲喂方式结合进行三因素试验,可具体明确用一定的饲喂方式在特定的饲料水平下,哪个品种优于哪个品种。
论据、内容都比单因素试验结果丰富。
田间试验中也常要考察哪个品种在何时播种以及在何种密度下的产量表现,同时还可以采用区组设计来安排重复,以便控制系统误差,提高试验的准确性。
现以三因素试验的资料介绍其方差分析方法。
第一节 线性模型与期望均方一、线性数学模型设A 、B 、C 三个因素各含a 、b 、c 个水平,共abc 个处理组合,每个处理组合重复数为r 。
则其任一观察值的线性数学模型为:kl j i l ijk jk ik j i k j i kl j i e y +++++++++=ραβγβγαγαβγβαμ)()()()(其中kl j i l ijk jk ik j i k j i e ,,)(,)(,)(,)(,,,,ραβγβγαγαβγβαμ依次表示总体平均数、A 、B 、C 主效应, A ×B 、A ×B 、B ×C 、A ×B ×C 互作效应,重复(区组)效应和随机误差。
在样本资料中依次分别由),(,x x x A -)(x x B -,)(x x C -,)(x x x x B A AB +--,)(x x x x C A AC +--,)(x x x x C B BC +--,)(x x x x x x x x BC AC AB C B A ABC ----+++,)(x x R -,)(x x x x R ABC ijkl +--进行估计。