(05)第5章概率与概率分布
- 格式:ppt
- 大小:1.73 MB
- 文档页数:6
第五章 二维随机变量第一节 二维随机变量及其分布一、二维随机变量1、定义:设),,(P S F 为一概率空间,X 、Y 均为S 上的一维随机变量,称二维向量X ),(Y X =为S 上的二维随机变量.2、X 的分布:}{B P ∈X , 2B ∈B . 其中可证:=∈}{B X F ∈∈∈},))(),((|{S e B e Y e X e .若取},|),{(2121y y y x x x y x B ≤<≤<=,那么},{}{2121y Y y x X x P B P ≤<≤<=∈X},{22y Y x X P ≤≤=},{21y Y x X P ≤≤- },{},{1112y Y x X P y Y x X P ≤≤+≤≤-.3、分布函数(1)定义:设),,(P S F 为一概率空间,),(Y X 为S 上的二维随机变量,R ∈∀y x ,,规定:},{),(y Y x X P y x F ≤≤=. 称),(y x F 为),(Y X 的分布函数.显然: },{2121y Y y x X x P ≤<≤<),(),(),(),(11122122y x F y x F y x F y x F +--=.(2)性质① R ∈∀y x ,,1),(0≤≤y x F .② ),(y x F 关于y x ,均为单调不减函数.③ 0),(=-∞y F ,0),(=-∞x F ,0),(=-∞-∞F ,1),(=+∞+∞F . ④ ),(y x F 关于y x ,均为为右连续函数.⑤ R ∈<<∀2121,y y x x ,0),(),(),(),(11122122≥+--y x F y x F y x F y x F .注:①~⑤为分布函数的特征性质.反之亦然.例1掷硬币三次,X 表示出现正面的次数,|)3(|X X Y --=,求),(Y X 的分布函数),(y x F .解:(1) X 的所有可能取值为3,2,1,0,依次记为4321,,,x x x x ,Y 的所有可能取值为3,1,依次记为21,y y .列表如下X样 本 点Y0 (反反反)3 1 (正反反) (反正反) (反反正) 1 2(正正反) (正反正) (反正正)13 (正正正)3(2) 概率情况列表 81},{21===y Y x X P ,83},{12===y Y x X P , 83},{13===y Y x X P ,81},{24===y Y x X P ,其他0},{===j i y Y x X P .(3)求分布. 记}2,1 ,3,2,1|),{(===j i y x A j i ,YX1 3 0 0 8/1 1 8/3 02 8/3 0 38/1A B BA B +=, 显然φ=∈}),{(A B Y X ,那么}),{(}),{(}),{(A B Y X P BA Y X P B Y X P ∈+∈=∈∑∈===∈=By x j i j i y Y x XP BA Y X P )(,},{}),{((4)求分布函数. ∑≤≤===≤≤=yy x x j i j i y Y x XP y Y x X P y x F ,},{},{),(.⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥≥≥<≤<≤≥≥<≤<≤<≤≥<≤<<<<=.3 ,3 1, ,3 ,32 ,8/7 ;31 ,3 ,8/6 ;3 ,21 ,8/4 ;31 ,21 ,8/3 ;3 ,10 ,8/1;3 ,1 1 0 0,),(y x y x y x y x y x y x y x y x y x F 或或二、边缘分布1、),(Y X 关于X 的边缘分布: ),(lim }{)(y x F x X P x F y X +∞→=≤=.证明:取}{},{},{x X Y x X n Y x X A n ≤=+∞<≤→≤≤=不减,由①②知),(lim y x F y +∞→存在,故)(}{)lim ()(lim ),(lim ),(lim x F x X P A P A P n x F y x F X n n n n n y =≤====∞→∞→∞→+∞→.2、),(Y X 关于Y 的边缘分布: ),(lim }{)(y x F y Y P y F x Y +∞→=≤=. (略)三、随机变量相互独立、定义:设),(y x F 为),(Y X 的分布函数,X 、Y 的分布函数分别为 )(x F X 、)(y F Y ,若R ∈∀y x ,,恒有=),(y x F )(x F X )(y F Y , 则称X 与Y 相互独立.2、X 与Y 相互独立⇔R ∈<<∀2121,y y x x ,恒有}{}{},{21212121y Y y P x X x P y Y y x X x P ≤<≤<=≤<≤<.证明:“⇐” R ∈∀y x ,,由于},{},{y Y x X y Y n x X n ≤≤→≤<-≤<-, }{}{x X x X n ≤→≤<-, }{}{y Y y Y n ≤→≤<-均不减,则},{),(y Y x X P y x F ≤≤=},{lim y Y n x X n P n ≤<-≤<-=∞→}]{}{[lim y Y n P x X n P n ≤<-≤<-=∞→}]{lim }{lim y Y n P x X n P n n ≤<-≤<-=∞→∞→)()(}{}{y F x F y Y P x X P Y X =≤≤=.“⇒”R ∈<<∀2121,y y x x ,有 },{2121y y x x P ≤<≤<ηξ ),(),(),(),(11122122y x F y x F y x F y x F +--=)()()()()()()()(11122122y F x F y F x F y F x F y F x F Y X Y X Y X Y X +--= )]()()][()([1212y F y F x F x F Y Y X X --= }{}{2121y y P x x P ≤<≤<=ξξ.3、X 与Y 相互独立⇔R ⊂∀21,B B ,恒有}{}{},{2121B Y P B X P B Y B X P ∈∈=∈∈.第二节 二维离散型随机变量一、二维离散型随机变量 1、定义:设),,(P S F 为一概率空间,),(Y X 为S 上的二维随机变量,若),(Y X 的取值为有限个或可数个(至多可数),称),(Y X 为S 上的二维离散型随机变量. 显然:),(Y X 为S 上的二维离散型随机变量⇔X 与Y 均为S 上的一维离散型随机变量.2、概率分布:设),(Y X 所有可能取的值为),(j i y x ,令 },{j i ij y Y x X P p ===,称其为二维随机变量),(Y X 的概率分布(分布率)。
第五章 概论与概率分布重点知识1.样本、样本空间、随机事件的定义;2.事件的运算:交、并、对立事件、互斥事件;3.概论的定义:古典定义、统计定义、经验定义;4.概率的计算:加法公式,乘法公式,条件概率,事件的独立性,全概率公式,贝叶斯公式; 5.随机变量的定义,有几种类型;6.离散型随机变量及其分布的定义与性质,数学期望与方差:重点了解二项分布及其简单性质; 7.连续型随机变量及其分布的定义与性质,数学期望与方差:重点了解正态分布及其简单性质,会根据标准正态分布计算任何正态分布随机变量的概率;复习题一、填空1.用古典法求算概率.在应用上有两个缺点:①它只适用于有限样本点的情况;②它假设 。
2.若事件A 和事件B 不能同时发生,则称A 和B 是 事件。
3.在一副扑克牌中单独抽取一次,抽到一张红桃或爱司的概率是 ;在一副扑克牌中单独抽取一次,抽到一张红桃且爱司的概率是 。
4.甲、乙各射击一次,设事件A 表示甲击中目标,事件B 表示乙击中目标,则甲、乙两人中恰好有一人不击中目标可用事件 表示.5.已知甲、乙两个盒子里各装有2个新球与4个旧球,先从甲盒中任取1个球放入乙盒,再从乙盒中任取1个球,设事件A 表示从甲盒中取出新球放入乙盒,事件B 表示从乙盒中取出新球,则条件概率P(B A )=__.6.设A,B 为两个事件,若概率P (A )=41,P(B)=32,P(AB)=61,则概率P(A+B)=__.7.设A,B 为两个事件,且已知概率P(A)=0.4,P(B)=0.3,若事件A,B 互斥,则概率P(A+B)=__. 8.设A,B 为两个事件,且已知概率P(A)=0.8,P(B)=0.4,若事件A ⊃B ,则条件概率P(B A )=__. 9.设A,B 为两个事件,若概率P(B)=103,P(B A )=61,P(A+B)=54,则概率P(A)=__.10.设A,B 为两个事件,且已知概率P(A )=0.7,P(B)=0.6,若事件A,B 相互独立,则概率P(AB)=__. 11.设A,B 为两个事件,且已知概率P(A)=0.4,P(B)=0.3,若事件A,B 相互独立,则概率P(A+B)=__. 12.设A,B 为两个事件,若概率P(B)=0.84,P(A B)=0.21,则概率P(AB)=__. 13.设离散型随机变量X 的概率分布如下表ccccPX 4322101-则常数c =__.14.已知离散型随机变量X 的概率分布如下表414121P321X则概率P {3<X }=__.15.已知离散型随机变量X 的概率分布如下表6632P213-X11则数学期望)(X E =__.16.设离散型随机变量X 服从参数为p 的两点分布,若离散型随机变量X 取1的概率p 为它取0的概率q 的3倍,则方差)(X D =__.17.设连续型随机变量的概率X 密度为⎪⎩⎪⎨⎧<<-=其他,0210,1)(2x x k x ϕ 则常数k =__.18.设连续型随机变量X 的概率密度为⎩⎨⎧≤≤=其他,00,24)(2rx x x ϕ 则常数r =__.19.已知连续型随机变量X 的概率密度为⎪⎩⎪⎨⎧≥=-其他,00,2)(2x xex xϕ 则概率}11{<<-X P =__.20.已知连续型随机变量X 的概率密度为⎪⎩⎪⎨⎧≤≤=其他,021,2)(2x x x ϕ 则数学期望)(X E =_____.21.设X 为随机变量,若数学期望1)12(=-X E ,则数学期望)(X E =__.22.设X 为随机变量,若方差3)63(=-X D ,则方差)(X D =__.二、单项选择1.设A,B 为两个事件,若事件A ⊃B ,则下列结论中( )恒成立.(a)事件A,B 互斥 (b)事件A,B 互斥 (c)事件A ,B 互斥 (d)事件A ,B 互斥 2.设A,B 为两个事件,则事件B A +=( ).(a)A +B (b)A-B (c)A B (d)AB3.投掷两颗均匀骰子,则出现点数之和等于6的概率为( ).(a)111 (b)115 (c)361 (d)3654.盒子里装有10个木质球与6个玻璃球,木质球中有3个红球、7个黄球,玻璃球中有2个红球、4个黄球,从盒子里任取1个球.设事件A 表示取到玻璃球,事件B 表示取到红球,则条件概率P(A B )=( ).(a)114 (b)74 (c)83 (d)535.设A,B 为两个事件,若概率P(A)=31,P(A B )=32,P(A B )=53,则概率P(B)=__.(a)51 (b)52 (c)53 (d)546.设A,B 为两个事件,且已知概率P(A)>O ,P(B)>0,若事件A ⊃B,下列等式中( )恒成立.(a)P(A+B)=P(A)+P(B) (b)P(A-B)=P(A)-P(B)(c)P(AB)=P(A)P(B) (d)P(B A )=17.设A,B 为两个事件,则概率P(A+B)=( ).(a)P(A)+P(B) (b)P(A)+P(B)-P(A)P(B)(c)1-P (B A ) (d)1-P( A )P(B ) 8.设A,B 为两个事件,若概率P(A)=31,P(B)=41,P(AB)=121,则( ).(a)事件A 包含B (b)事件A ,B 互斥但不对立 (c)事件A ,B 对立 (d)事件A ,B 相互独立 9.设A,B 为两个事件,且已知概率P(A)=53,P(A+B)=107,若事件A,B 相互独立,则概率P(B)=( ).(a)161 (b)101 (c)41 (d)5210.设A,B 为两个事件,且已知概率P(A)>O ,P(B)>O ,若事件A,B 相互独立,则下列等式中( )恒成立.(a)P(A+B)=P(A)+P(B) (b)P(A+B)=P(A) (c)P(A-B)=P(A)-P(B) (d)P(A-B)=P(A)P(B )11.中( )可以作为离散型随机变量X 的概率分布.(a)6321-P321X11 (b)653-21P321X1(c)6321P321X 11 (d)65321P321X 112.已知离散型随机变量X 的概率分布如下表52511015110142101PX-则下列概率计算结果中( )正确.(a)0}3{==X P (b)0}0{==X P . (c)1}1{=->X P (d)1}4{=<X P13.设离散型随机变量X 的所有可能取值为-1与l ,且已知离散型随机变良X 取-1的概率为)10(<<p p ,取1的概率为q ,则数学期望=)(2X E ( ).(a)O (b)l (c)p q - (d)2)(p q - 14.设连续型随机变量X 的概率密度为⎪⎩⎪⎨⎧≥+=其他,00,1)(2x x kx ϕ 则常数k =( ).(a)π1(b)π (c)π2(d)2π15.下列函数中( )不能作为连续型随机变量X 的概率密度.(a)⎩⎨⎧≤≤-=其他,001,3)(2x x x f (b)⎪⎩⎪⎨⎧≤≤-=其他,021,2)(x x x g(c)⎪⎩⎪⎨⎧≤≤=其他,020,cos )(πx x x h (d)⎪⎩⎪⎨⎧≤≤=其他,02,sin )(ππx x x h 16.设X 为连续型随机变量,若b a ,皆为常数,则下列等式中( )非恒成立.(a)}{}{a X P a X P ==≥ (b)}{}{b X P b X P <=≤ (c)1}{=≠a X P (d)0}{==b X P 17.已知连续型随机变量X 的概率密度为⎪⎩⎪⎨⎧<<=其他,040,81)(x x x ϕ 则数学期望)(X E =( ).(a)21 (b)2 (c)83 (d)3818.设X 为随机变量,若数学期望)(X E 存在,则数学期望))((X E E =( ).(a)O (b))(X E (c))(2X E (d)2))((X E 19.设X 为随机变量,若方差)(X D =4,则方差)43(+X D =( ).(a)12 (b)16 (c)36 (d)4020.设X ,Y 为随机变量,已知随机变量X 的标准差等于4,随机变量Y 的标准差等于3,若随机变量X ,Y 相互独立,则随机变量X -Y 的标准差等于( ).(a)1 (b)7 (c)5 (d)7四、名词解释1、 数学期望:2、 对立事件:3、 随机事件:4、 事件和:5、 事件积:6、 互斥事件:7、 互相独立事件:五、判断题1.对于连续型随机变量,讨论某一点取值的概率是没有意义的。
第四章统计数据的概括性度量4.1 一家汽车零售店的10名销售人员5月份销售的汽车数量(单位:台)排序后如下:2 4 7 10 10 10 12 12 14 15要求:(1)计算汽车销售量的众数、中位数和平均数。
(2)根据定义公式计算四分位数。
(3)计算销售量的标准差。
(4)说明汽车销售量分布的特征。
解:StatisticsMissing0Mean9.60Median10.00Mode10Std. Deviation 4.169Percentiles25 6.255010.007512.504.2下:单位:周岁19 15 29 25 2423 21 38 22 1830 20 19 19 1623 27 22 34 2441 20 31 17 23要求;(1)计算众数、中位数:排序形成单变量分值的频数分布和累计频数分布:网络用户的年龄看,中位数Me=23。
(2)根据定义公式计算四分位数。
Q1位置=25/4=6.25,因此Q1=19,Q3位置=3×25/4=18.75,因此Q3=27,或者,由于25和27都只有一个,因此Q3也可等于25+0.75×2=26.5。
(3)计算平均数和标准差;Mean=24.00;Std. Deviation=6.652 (4)计算偏态系数和峰态系数: Skewness=1.080;Kurtosis=0.773(5)对网民年龄的分布特征进行综合分析:分布,均值=24、标准差=6.652、呈右偏分布。
如需看清楚分布形态,需要进行分组。
为分组情况下的直方图:为分组情况下的概率密度曲线: 分组:1、确定组数:()lg 25lg() 1.398111 5.64lg(2)lg 20.30103n K =+=+=+=,取k=62、确定组距:组距=( 最大值 最小值)÷ 组数=(4115)÷6=4.3,取53、分组频数表网络用户的年龄 (Binned)4.3 某银行为缩短顾客到银行办理业务等待的时间。
概率论与数理统计第五章课后习题及参考答案1.用切比雪夫不等式估计下列各题的概率.(1)废品率为03.0,1000个产品中废品多于20个且少于40个的概率;(2)200个新生儿中,男孩多于80个而少于120个的概率(假设男孩和女孩的概率均为5.0).解:(1)设X 为1000个产品中废品的个数,则X ~)1000,03.0(B ,有30)(=X E ,1.29)(=X D ,由切比雪夫不等式,得)3040303020()4020(-<-<-=<<X P X P )103010(<-<-=X P )1030(<-=X P 709.0101.2912=-≥.(2)设X 为200个新生儿中男孩的个数,则X ~)200,5.0(B ,有100)(=X E ,50)(=X D ,由切比雪夫不等式,得)10012010010080()12080(-<-<-=<<X P X P )2010020(<-<-=X P )20100(<-=X P 87205012=-≥.2.一颗骰子连续掷4次,点数总和记为X ,估计)1810(<<X P .解:设i X 为该骰子掷第i 次出现的点数,则61)(==k X P i ,6,,2,1 =i ,6,,2,1 =k .27)654321(61)(=+++++=i X E ,691)654321(61)(2222222=+++++=i X E ,35)]([)()(22=-=i i i X E X E X D ,4,3,2,1=i .因为4321X X X X X +++=,且1X ,2X ,3X ,4X 相互独立,故有14)(=X E ,335)(=X D .由切比雪夫不等式,得)1418141410()1810(-<-<-=<<X P X P )4144(<-<-=X P )414(<-=X P 271.0433512=-≥.3.袋装茶叶用及其装袋,每袋的净重为随机变量,其期望值为100g ,标准差为10g ,一大盒内装200袋,求一盒茶叶净重大于5.20kg 的概率.解:设i X 为一袋袋装茶叶的净重,X 为一盒茶叶的净重,由题可知∑==2001i i X X ,100)(=i X E ,100)(=i X D ,200,,2,1 =i .因为1X ,2X ,…,200X 相互独立,则20000)()(2001==∑=i i X E X E ,20000)()(2001==∑=i i X D X D .)()(20500)()(()20500(2001X D X E X D X E X P X P i i ->-=>∑=)1020020000205001020020000(⋅->⋅-=X P )2251020020000(>⋅-=X P 由独立同分布的中心极限定理,1020020000⋅-X 近似地服从)1,0(N ,于是0002.0)5.3(1)2251020020000(=Φ-≈>⋅-X P .4.有一批建筑用木桩,其80%的长度不小于3m .现从这批木桩中随机取出100根,试问其中至少有30根短于3m 的概率是多少?解:设X 为100根木桩中短于3m 的根数,则由题可知X ~)2.0,100(B ,有20)(=X E ,16)(=X D ,由棣莫弗—拉普拉斯定理,得)30(1)30(<-=≥X P X P )42030(1)()((1-Φ-=-Φ-=X D X E X 0062.0)5.2(1=Φ-=.5.某种电器元件的寿命服从均值为100h 的指数分布.现随机选取16只,设它们的寿命是相互独立的.求这16只元件寿命总和大于1920h 的概率.解:设i X 为第i 只电器元件的寿命,由题可知i X ~)01.0(E ,16,,2,1 =i ,且1X ,2X ,…,16X 相互独立,则100)(=i X E ,10000)(=i X D .记∑==161i i X X ,则1600)()(161==∑=i i X E X E ,160000)()(161==∑=i i X D X D .))()(1920)()(()1920(X D X E X D X E X P X P ->-=>)400160019204001600(->-=X P )8.04001600(>-=X P ,由独立同分布的中心极限定理,1600-X 近似地服从)1,0(N ,于是2119.0)8.0(1)8.04001600(=Φ-=>-X P .6.在数值计算中中,每个数值都取小数点后四位,第五位四舍五入(即可以认为计算误差在区间]105,105[55--⨯⨯-上服从均匀分布),现有1200个数相加,求产生的误差综合的绝对值小于03.0的概率.解:设i X 为每个数值的误差,则i X ~)105,105(55--⨯⨯-U ,有0)(=i X E ,1210)(8-=i X D ,1200,,2,1 =i .从而0)()(12001==∑=i i X E X E ,61200110)()(-===∑i i X D X D .由独立同分布的中心极限定理,X 近似地服从)10,0(6-N ,于是)03.0(<X P ))()(03.0)()((X D X E X D X E X P -≤-=12101200003.0121012000(44--⋅-≤⋅-=X P 9974.01)3(2=-Φ=.7.某药厂断言,该厂生产的某药品对医治一种疑难的血液病治愈率为8.0.医院检验员任取100个服用此药的病人,如果其中多于75个治愈,就接受这一断言,否则就拒绝这一断言.(1)若实际上此药对这种病的治愈率是8.0,问接受这一断言的概率是多少?(2)若实际上此药对这种病的治愈率是7.0,问接受这一断言的概率是多少?解:设X 为100个服用此药的病人中治愈的个数,(1)由题可知X ~)8.0,100(B ,则80)(=X E ,16)(=X D ,由棣莫弗—拉普拉斯定理,得)75(1)75(≤-=>X P X P 48075(1))()((1-Φ-=-Φ-=X D X E X 8944.0)25.1(=Φ=.(2)由题可知X ~)7.0,100(B ,则70)(=X E ,21)(=X D ,由棣莫弗—拉普拉斯定理,得)75(1)75(≤-=>X P X P 217075(1)()((1-Φ-=-Φ-=X D X E X 1379.0)09.1(1=Φ-=.8.一射手在一次射击中,所得环数的分布律如下表:X678910P 05.005.01.03.05.0求:(1)在100次射击中环数介于900环与930环之间的概率是多少?(2)超过950环的概率是多少?解:设X 为100次射击中所得的环数,i X 为第i 次射击的环数,则∑==1001i i X X ,15.9)(=i X E ,95.84)(2=i X E ,2275.1)]([)()(22=-=i i i X E X E X D ,100,,2,1 =i .由1X ,2X ,…,100X 相互独立,得915)()(1001==∑=i i X E X E ,75.122)()(1001==∑=i i X D X D .由独立同分布的中心极限定理,75.122915-X 近似地服从)1,0(N ,于是(1))930900(≤≤X P ))()(930)()()()(900(X D X E X D X E X X D X E P -≤-≤-=75.12291593075.12291575.122915900(-≤-≤-=X P )75.1221575.122915(≤-=X P 823.01)35.1(2=-Φ≈.(2))950(>X P ))()(950)()((X D X E X D X E X P ->-=75.122915950)()((->-=X D X E X P 001.0)1.3(1=Φ-≈.9.设有30个电子元件1A ,2A ,…,30A ,其寿命分别为1X ,2X ,…,30X ,且且都服从参数为1.0=λ的指数分布,它们的使用情况是当i A 损坏后,立即使用1+i A (29,,2,1 =i ).求元件使用总时间T 不小于350h 的概率.解:由题可知i X ~)1.0(E ,30,,2,1 =i ,则10)(=i X E ,100)(=i X D .记∑==301i i X T ,由1X ,2X ,…,30X 相互独立,得300)()(301==∑=i i X E T E ,3000)()(301==∑=i i X D T D .))()(350)()(()350(T D T E T D T E T P T P ->-=>30103003503010300(⋅->⋅-=T P )91.03010300(>⋅-≈T P ,由独立同分布的中心极限定理,3010300⋅-T 近似地服从)1,0(N ,于是1814.0)91.0(1)91.03010300(=Φ-=>⋅-T P .10.大学英语四级考试,设有85道选择题,每题4个选择答案,只有一个正确.若需要通过考试,必须答对51道以上.试问某学生靠运气能通过四级考试的概率有多大?解:设X 为该学生答对的题数,由题可知X ~41,85(B ,则25.21)(=X E ,9375.15)(=i X D ,85,,2,1 =i .由棣莫弗—拉普拉斯中心极限定理,近似地有9375.1525.21-X ~)1,0(N ,得)8551(≤≤X P ))()(85)()()()(51(X D X E X D X E X X D X E P -≤-≤-=)9375.1525.21859375.1525.219375.1525.2151(-≤-≤-=X P 0)45.7()97.15(=Φ-Φ=.即学生靠运气能通过四级考试的概率为0.。
第五章 概率、概率分布与临床决策练 习 题一、最佳选择题1.若事件A 和事件B 互不相容,则一定有( )。
A. P (A +B )=P (A )+P (B )B. P (A +B )=P (AB )C. P (AB )= P (A ) P (B )D. P (A │B )= P (A )E. P (B │A )= P (B )2.若人群中某疾病发生的阳性数X 服从二项分布,则从该人群随机抽取n 个人,阳性数X 不小于k 人的概率为( )。
A. P (k )+ P (k +1)+…+ P (n )B. P (k +1)+ P (k +2)+…+ P (n )C. P (0)+ P (1)+…+ P (k )D. P (0)+ P (1)+…+ P (k -1)E. P (1)+ P (2)+…+ P (k -1)3.Poisson 分布的标准差σ和平均数λ的关系是( )。
A.λ=σ B. λ<σ C. λ=σ2 D. λ= E. λ>σ4.当n 很大,二项分布在下列条件下可用Poisson 分布近似( )。
A. λπ≈nB. λ≈n X /C. λππ≈-)1(nD. λππ≈-)1(E. λππ≈-n /)1(5.对于任何两个随机变量X1和X2,一定有( )。
A. E (X 1+X 2)=E (X 1)+E (X 2)B. V (X 1+X 2)=V (X 1)+ V (X 2)C. E (X 1+X 2)=E (X 1)·E (X 2)D. V (X 1+X 2)=V (X 1)·V (X 2)E. E (X 1+X 2)=E (X 1X 2)二、问答题1.简述概率的统计定义。
2.举例说明医学观察结果中的离散型随机变量和连续型随机变量。
3.举例说明医学现象中的先验概率和后验概率。
4.简述二项分布的应用条件。
5.简述Poisson 分布的性质特征。
6.简述概率和概率分布在临床决策中的运用。
第 ×× 次课 2学时本次课教学重点:常用的统计量 本次课教学难点:总体,简单随机样本,统计量的概念。
本次课教学内容:第五章 数理统计的基础知识 第一节 数理统计的基本概念 教学组织: 一、引言在前五章中我们学习了概率论的基本内容,因为随机变量及其所伴随的概率分布全面描述了随机现象的统计规律性,所以在概率论的许多问题中,概率分布通常都是已知的,或者假设是已知的,而一切计算与推理都是在此基础上得出来的。
然而,实际情况往往并非如此。
一个随机现象所服从的分布概型可能完全不知道,或者只知道其概型而不知其分布函数中所含的参数。
例如,某工厂生产的灯泡的寿命服从什么分布是不知道的。
再如,某厂生产的一件产品是合格品还是不合格品,我们知道它服从两点分布,但其参数p 却不知道。
那么怎样才能知道一个随机现象的分布或其参数呢?这就是数理统计所要解决的一个首要问题。
为了获得灯泡的寿命分布,我们从所有的灯泡中抽出一部分进行观察与测试以取得相关信息,从而做出推断。
由于观察和测试是随机现象,依据有限个观察与测试对整体所做出的推断不可能绝对准确,这个不确定性我们用概率来表达。
数理统计学的基本问题就是依据观测或试验所取得的有限信息对整体做出推断,每个推断必须伴有一定的概率来表明其可靠程度。
这种伴有一定概率的推断称为统计推断。
二、总体与随机样本 1、总体在数理统计中,我们往往研究有关对象的某一数量指标(如灯泡的寿命这一数量指标)。
为此,考虑与这一数量指标相联系的随机试验,对这一数量指标进行试验或观察。
我们把研究对象的全体所构成的一个集合称为总体,总体中的每个对象称为个体。
总体中所包含的个体的个数称为总体的容量。
容量有限的总体称为有限总体,容量无限的总体称为无限总体。
例如,考察某批灯泡的质量,如这一批灯泡共有5000只,每个灯泡的寿命是一个可能的观察值,是一个个体。
所有5000只灯泡的寿命是一个有限总体。
习题五1 .已知()1E X =,()4D X =,利用切比雪夫不等式估计概率{}1 2.5P X -<.解: 据切比雪夫不等式{}221P X σμεε-<≥-{}241 2.51 2.5P X -<≥-925=.2.设随机变量X 的数学期望()E X μ=,方程2()D X σ=,利用切比雪夫不等式估计{}||3P X μσ-≥.解:令3εσ=,则由切比雪夫不等式{}2()||3D X P X μσε-≥≤, 有{}221||3(3)9P X σμσσ-≥≤=.3. 随机地掷6颗骰子,利用切比雪夫不等式估计6颗骰子出现点数之和在1527 之间的概率.解: 设X 为6颗骰子所出现的点数之和;i X 为第i 颗骰子出现的点数,1,2,,6i = ,则61ii X X==∑,且126,,...,X X X 独立同分布,分布律为:126111666⎛⎫ ⎪⎪ ⎪⎝⎭,于是6117()62i k E X k ==⋅=∑6221191()66i k E X k ==⋅=∑所以22()()()i i i D X E X E X =-914964=-3512=,1,2,,6i =因此 617()()6212ii E X E X===⨯=∑6135()()612i i D X D X ===⨯∑352=故由切比雪夫不等式得:{}{}|5271428P X P X ≤≤=<<{}7217P X =-<-< {}|()|7P X E X =-<2()17D X ≥-13559114921414=-⨯=-=.即6颗骰子出现点数之和在1527 之间的概率大于等于914.4. 对敌阵地进行1000次炮击,每次炮击中。
炮弹的命中颗数的期望为0.4,方差为3.6,求在1000次炮击中,有380颗到420颗炮弹击中目标的概率.{}1|()|7P X E X =--≥解: 以i X 表示第i 次炮击击中的颗数(1,2,,1000)i =有()0.4i E X = ,() 3.6i D X =据 定理:则10001380420i i P X =⎧⎫<≤⎨⎬⎩⎭∑420400380400--≈Φ-Φ11()()33=Φ-Φ-12()13=Φ- 20.62931=⨯- 0.2586= .5. 一盒同型号螺丝钉共有100个,已知该型号的螺丝钉的重量是一个随机变量,期望值是100g ,标准差是10g . 求一盒螺丝钉的重量超过10.2kg 的概率.解: 设i X 为第i 个螺丝钉的重量,1,2,,100i = ,且它们之间独立同分布,于是一盒螺丝钉的重量1001ii X X==∑,且由()100i E X =10=知()100()10000i E X E X =⨯=,100=,由中心极限定理有:100001020010000(10200)10100X P X P --⎧⎫>=>⎨⎬⎩⎭100002100X P -⎧⎫=>⎨⎬⎩⎭1000012100X P -⎧⎫=-≤⎨⎬⎩⎭1(2)≈-Φ10.977250.02275=-= .6. 用电子计算机做加法时,对每个加数依四舍五入原则取整,设所有取整的舍入误差是相互独立的,且均服从[]0.5,0.5-上的均匀分布.(1)若有1200个数相加,则其误差总和的绝对值超过15的概率是多少? (2)最多可有多少个数相加,使得误差总和的绝对值小于10的概率达到90%以上.解: 设i X 为第i 个加数的取整舍入误差, 则{}i X 为相互独立的随机变量序列, 且均服从[]0.5,0.5-上的均匀分布,则0.50.5()0i E X xdx μ-===⎰0.5220.51()12i D X x dx σ-===⎰(1) 因1200n =很大,由独立同分布中心极限定理对该误差总和12001ii X=∑,1200115i i P X =⎧⎫>⎨⎬⎩⎭∑15P ⎫⎪=>12 1.5i i P X =⎫⎪=>⎬⎪⎭2(1(1.5))=-Φ 0.1336= .即误差总和的绝对值超过15的概率达到13.36% .(2) 依题意,设最多可有n 个数相加,则应求出最大的n ,使得1100.9n k k P X =⎧⎫<≥⎨⎬⎩⎭∑由中心极限定理:1110n ni ii i P X P X ==⎧⎧⎫⎪<=<⎨⎬⎨⎪⎩⎭⎩∑∑210.9≈Φ-≥ .即0.95Φ≥查正态分布得 1.64≥即21012()446.161.64n ≤≈取446n =,最多可有446个数相加 .7. 在人寿保险公司是有3000个同一年龄的人参加人寿保险,在1年中,每人的的死亡率为0.1%,参加保险的人在1年第1天交付保险费10元,死亡时家属可以从保险公司领取2000元,求保险公司在一年的这项保险中亏本的概率.解 以X 表示1年死亡的人数 依题意,(3000,0.001)X B注意到{}{}200030000P P X =>保险公司亏本其概率为{}1530000.001151P X -⨯>≈-Φ1(6.932)=-Φ 0≈ .即保险公司亏本的概率几乎为0 .8. 假设12,,...,n X X X 是独立同分布的随机变量,已知()ki k E X α= (1,2,3,4;1,2,,)k i n == .证明:当n 充分大时,随机变量211nn i i Z X n==∑近似服从正态分布.证明:由于12,,...,n X X X 独立同分布,则22212,,...,n X X X 也独立同分布由()ki k E X α= (1,2,3,4;1,2,,)k i n ==有22()iE X α=,2242()((i iiD XE X E X ⎡⎤=-⎣⎦242αα=-2211()()nn i i E Z E X nα==⋅=∑2242211()()()nn i i D Z D X n nαα==⋅=-∑{}15P X =>因此,根据中心极限定理:(0,1)nZU Nα-=即当n充分大时,n Z近似服从2242(,())N nααα- .9. 某保险公司多年的统计资料表明:在索赔户中被盗索赔户占20%,以X表示在随机抽查的100个索赔户中因被盗向保险公司索赔的户数.(1)写出X的概率分布;(2)利用德莫弗-位普拉斯中心极限定理.求:被盗索赔户不少于14户,且不多于30户的概率.解(1)(100,0.2)X B,所以{}1001000.20.80,1,2,,100k k kP X k C k-===()20E X np==,()(1)16D X np p=⋅-=(2){}|430P X≤≤1420203020XP---⎧⎫=≤≤(2.5)( 1.5)=Φ-Φ-(2.5)( 1.5)1=Φ+Φ--0.9940.93310.927=+-= .10 .某厂生产的产品次品率为0.1p=,为了确保销售,该厂向顾客承诺每盒中有100只以上正品的概率达到95%,问:该厂需要在一盒中装多少只产品?解:设每盒中装n只产品,合格品数~(,0.9)X B n,()0.9E X n=,()0.09D X n=则{}{}1001100P X P X>=-≤1000.910.95n -=-Φ=1000.9 1.65n-=-解得117n =,即每盒至少装117只才能以95%的概率保证一盒内有100只正品。