1.2.2集合的相等
- 格式:doc
- 大小:273.00 KB
- 文档页数:3
1.2 集合间的基本关系(基础知识+基本题型) 知识点一 子集1.子集定义 一般地,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 中的元素,我们就说这两个集合有包含关系,称集合A 为集合B 的子集,记作A B ⊆(或B A ⊇),读作“A 含于B ”(或“B 包含A ”) 图示或 结论 (1)任何一个集合是它本身的子集,即A A ⊆;(2)对于集合A ,B ,C ,若A B ⊆,且B C ⊆,则A C ⊆.2.V enn 图用平面上封闭曲线的内部代表集合,这种图称为Venn 图.表示集合的Venn 图的边界是封闭曲线,它可以是圆、矩形、椭圆,也可以是其他封闭曲线.提示:(1)注意符号“∈”与“⊆”的区别. “⊆”只用于集合与集合之间,如{0}N ⊆,而不能写成0N ⊆;“∈”只能用于元素与元素之间,如0N ∈,而不能写成{0}N ∈.(2)“A 是B 的子集”:集合A 中的任何一个元素都是集合B 中的元素,即由任意x A ∈能推出x B ∈.(3)当A 不是B 的子集时,我们记作“A B ”(或“B A ”),读作“A 不含于B ”(或“B 不包含A ”),此时A 中至少存在一个元素不是B 中的元素,用图形语言表示如图1.1-2所示.例如,集合{,,}A a b c =不是集合{,,,,}B b c d e f =的子集,因为集合A 中的元素a 不是集合B 中的元素.知识点二 集合相等如果集合A 是集合B 的子集()A B ⊆,且集合B 是集合A 的子集()B A ⊆,此时,集合A 与集合B 中的元素是一样的,因此,集合A 与集合B 相等,记作A B =.拓展:(1)若A B ⊆,且B A ⊆,则A B =;反之,若A B =,则A B ⊆,且B A ⊆,这就给出了证明两个集合相等的方法,即欲证A B =,只需要证A B ⊆与B A ⊆均成立即可.(2)若两个集合相等,则这两个集合中所含的元素完全相同,与元素的排列顺序无关.(3) 要判断两个集合是否相等,对于元素较少的有限集,可用列举法将元素列举出来,看两个集合中的元素是否完全相同;对于元素较多的有限集或无限集,应从“互为子集”入手进行判断.()A B B A A A AB B B 1.12-图知识点三 真子集定义 如果集合A B ⊆,但存在元素x B ∈,且x A ∈/,我们称集合A 是集合B 的真子集,记作A B (或B A )图示结论(1)若A B ⊆,且A B ≠,则AB ; (2)若AB ,且BC ,则A C . 提示(1)在证明AB ,时,应先证明A B ⊆,再证明B 中至少存在一个元素a ,使得a A ∉即可. (2) A B 对任意x A ∈都有x B ∈,但存在0x B ∈,且0x A ∉.(3)注意符号“⊆”与“”的区别. A B ⊆⇒A B =或A B ,例如,若集合{}1,2A =,{}1,2,3B =,则A 是B 的子集,也是真子集,用A B ⊆与A B 均可,但用AB 更准确. 知识点四 空集我们把不含任何元素的集合叫做空集,记为φ,并规定:空集是任何集合的子集.在这个规定的基础上,结合子集和真子集的有关概念。
1.子集对于两个集合A和B,如果集合A中任何一个元素都属于集合B,那么集合A叫做集合B的子集,记作A⊆B或(B⊇A),读作“A包含于B”或“B包含A”.我们规定,空集包含于任何一个集合,空集是任何集合的子集.2.相等的集合对于两个集合A和B,如果A⊆B且B⊆A,那么叫做集合A与集合B相等,记作A=B,读作“集合A等于集合B”.因此,如果两个集合所含的元素完全相同,那么这两个集合相等.3.真子集对于两个集合A、B,如果A⊆B,并且B中至少有一个元素不属于A,那么集合A叫做集合B的真子集,记作A⫋B,读作“A真包含于B”.4.子集的个数5.韦恩图(文氏图)【例题】判断下列说法是否正确,并说明理由.(1)A⊆A;(2)若A⊆B,B⊆C,则A⊆C;(3)∅⊆A;(4)A⫋B,B⫋C,则A⫋C.【例题】在下面写法中,错误写法的个数是()①{0}∈{0,1};②∅⫋{0};③{0,-1,1}={1,-1,0};④0∈∅;⑤{(0,0)}={0}.A.2B.3C.4D.5【判别】a与{a},{0}与∅之间有何区别?【例题】已知a为给定的实数,那么集合M={x|x2-3x-a2+2=0}的子集个数为 . 【例题】设集合A={1,2,3},B={x|x⊆A},求集合B.【例题】设集合A={1,2,3},B={x|x∈A},求集合B.【例题】已知A={x|x2-2x-3=0},B={x|ax-1=0},若B⫋A,试求a的值.【例题】已知集合A={x|x2-3x+2=0},B={x|0<x<5,x∈N},则满足A⫋C⫋B的集合的个数是()A.1B.2C.3D.4【例题】已知集合A={x|-2≤x≤5},B={x|a+1≤x≤2a-1}.(1)若B⊆A,求实数a的取值范围;(2)若A⫋B,求a的范围.。
集合之间的关系(子集篇一:集合之间的关系教案1.2集合之间的关系与运算1.2.1 集合之间的关系【学习要求】1.理解子集、真子集、两个集合相等的概念.2.掌握有关子集、真子集的符号及表示方法,能利用Venn图表达集合间的关系.3.会求已知集合的子集、真子集.4.能判断两集合间的包含、相等关系,并会用符号准确地表示出来.【学法指导】通过使用基本的集合语言表示有关的数学对象,感受集合语言在描述客观现实和数学问题中的意义;培养用集合的观点分析问题、解决问题的能力;学习用数学的思维方式解决问题、认识世界.填一填:知识要点、记下疑难点1.子集:一般地,如果集合A中的任意一个元素都是集合B的元素,那么集合A叫做集合B的子集,记作A?B或B?A,读作“A包含于B”,或“B包含A”.2.子集的性质:①A?A(任意一个集合A都是它本身的子集);②??A(空集是任意一个集合的子集).3.真子集:如果集合A是集合B的子集,并且B中至少有一个元素不属于A,那么集合A叫做集合B的真子集,记作A B (或BA),读作“A真包含于B ”,或“B真包含A ”.4.维恩图:我们常用平面内一条封闭曲线的内部表示一个集合,这种图形通常叫做维恩(Venn)图.5.集合相等:一般地,如果集合A的每一个元素都是集合B的元素,反过来,集合B的每一个元素也都是集合A的元素,我们就说集合A等于集合B ,记作A=B .用数学语言表示为:如果A?B ,且B?A ,那么A=B .6.一般地,设A={x|p(x)},B={x|q(x)},如果A?B,则x∈A?x∈B,即p(x)?q(x) .反之,如果p(x)?q(x),则A?B研一研:问题探究、课堂更高效[问题情境] 已知任意两个实数a,b,则它们的大小关系可能是ab,那么对任意的两个集合A,B,它们之间有什么关系?今天我们就来研究这个问题.探究点一子集与真子集的概念导引前面我们学习了集合、集合元素的概念以及集合的表示方法.下面我们来看这样三组集合:(1)A={1,3},B={1,3,5,6};(2)C={x|x是长方形},D={x|x是平行四边形};(3)P={x|x是菱形},Q={x|x是正方形}.问题1 哪些集合表示方法是列举法?哪些集合表示方法是描述法?答:集合A,B的表示是用列举法;集合C,D,P,Q的表示是用描述法.问题2 这三组集合每组彼此之间有何关系?答:集合A中的任意一个元素都是集合B的元素,集合C中的任意一个元素都是集合D的元素,集合Q中的任意一个元素都是集合P的元素.小结:一般地,如果集合A中的任意一个元素都是集合B中的元素,那么集合A叫做集合B的子集.记作:A?B或B?A,读作:A 包含于B或B包含A.问题3 类比表示两集合间子集关系的符号与表示两个实数大小关系的等号之间有什么类似之处?答:在实数中如果a大于或等于b,则a,b的关系可表示为a ≥b或b≤a;在集合中如果集合A是集合B的子集,则A,B的关系可表示为A?B(或B?A).所以这是它们的相似之处.问题4 在导引中集合P与集合Q之间的关系如何表示?答:集合P不包含于Q,或Q不包含P,分别记作P Q或QP.问题5 空集与任意一个集合A有什么关系,集合A与它本身有什么关系?答:(1)空集是任意一个集合的子集;(2)任何一个集合A是它本身的子集.问题6 对于集合A,B,C,如果A?B,B?C,那么集合A与C 有什么关系?答:A与C的关系为A?C.问题7 “导引”中集合A中的元素都是集合B的元素,集合B 中的元素不都是集合A的元素,我们说集合A是集合B的真子集,那么如何定义集合A是集合B的真子集?答:如果说集合A是集合B的子集,并且B中至少有一个元素不属于A,那么集合A叫做集合B的真子集,记作:A B(或B A),读作“A真包含于B”或“B真包含A”.问题8 集合A,B的关系能不能用图直观形象的表示出来?1 / 3答:能.我们常用平面内一条封闭曲线的内部表示一个集合,这种图形通常叫做维恩(Venn)图.问题9 如何用维恩(Venn)图表示集合A是集合B的真子集?答:如图所示:例1 写出集合A={1,2,3}的所有子集和真子集.分析:为了一个不漏地写出集合A={1,2,3}的所有子集,可以分类写,即空集,含一个元素的子集,含两个元素的子集,含三个元素的子集.解:集合A的所有子集是:?,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}.在上述子集中,除去集合A本身,即{1,2,3},剩下的都是A的真子集.3小结:集合A={1,2,3}中有三个元素,其子集的个数为8个,即2个,事实上,如果一个集合含有n个元素,则它的子集个数为2个.跟踪训练1 写出满足{3,4}P?{0,1,2,3,4}的所有集合P.解:由题意知,集合P中一定含有元素3,4并且是至少含有三个元素的集合.此所有满足题意的集合P为{0,3,4},{1,3,4},{2,3,4},{0,1,3,4},{0,2,3,4},{1,2,3,4},{0,1,2,3,4}.探究点二集合的相等问题1 观察下面几个例子,你能发现两个集合间有什么关系吗?(1)集合C={x|x是两条边相等的三角形},D={x|x是等腰三角形};(2)集合C={2,4,6},D={6,4,2};(3)集合A={x|(x+1)(x+2)=0},B={-1,-2}.答:可以看出每组的两个集合的元素完全相同,只是表达形式不同.问题2 与实数中的结论“若a≥b,且b≥a,则a=b”相类比,在集合中,你能得出什么结论?答:若A?B,且B?A,则A=B.小结:一般地,对于两个集合A与B,如果集合A的每一个元素都是集合B的元素,同时集合B的每一个元素都是集合A的元素,我们就说集合A等于集合B,记作A=B.即:如果A?B,且B?A,那么A=B.例2 说出下列每对集合之间的关系:(1)A={1,2,3,4,5},B={1,3,5};2(2)P={x|x=1},Q={x||x|=1};(3)C={x|x是奇数},D={x|x是整数}.解(1)B A;(2)P=Q;(3)C D.小结:在两个集合A,B的关系中,有一个集合是另一个集合的“子集”;或一个集合是另一个集合的“真子集”;或两个集合“相等”;另外还可能有“集合A不包含于B”或“集合B不包含于A”.跟踪训练2 用适当的符号(∈,?)填空:(1)0______{0};0______?;?______{0};22(2)?______{x|x+1=0,x∈R};{0}______{x|x+1=0,x∈R};(3)设A={x|x=2n-1,n∈Z},B={x|x=2m+1,m∈Z},C={x|x =4k±1,k∈Z},则A______B______C. 解析(1)0∈{0},0??,?{0};22(2)?={x|x+1=0,x∈R},{0}{x|x+1=0,x∈R};(3)A,B,C均表示所有奇数组成的集合,∴A=B=C.探究点三集合关系与其特征性质之间的关系问题1 已知集合A的特征性质为p(x),集合B的特征性质为q(x).“如果p(x),那么q(x)”是正确命题,试问集合A和B的关系如何?并举例说明.答:集合A是集合B的子集,例如Q={x|x是有理数},P={x|x 是实数},易知Q?P,也容易判断命题“如果x是有理数,则x是实数”是正确命题.这个命题还可以表述为:x是有理数?x是实数,符号“?”表示推出.小结:一般地,设A={x|p(x)},B={x|q(x)},如果A?B,则x∈A?x∈B,即p(x)?q(x).反之,如果p(x)?q(x),则A?B.问题2 如果命题“p(x)?q(x)”和命题“q(x)?p(x)”都是正确的命题,那么怎样表示p(x),q(x)的关系?答:p(x)?q(x),符号“?”表示相互推出.例3 判定下列集合A与集合B的关系:(1)A={x|x是12的约数},B={x|x是36的约数};(2)A={x|x>3},B={x|x>5};(3)A={x|x是矩形},B={x|x是有一个角为直角的平行四边形}.解:(1)因为x是12的约数?x是36的约数,所以A?B;2 / 3n(2)因为x>5?x>3,所以B?A;(3)因为x是矩形?x是有一个角为直角的平行四边形,所以A=B.小结:当判定用特征性质描述法表示的两个集合关系时,一是可用赋值法,二是从两集合元素的特征性质p(x)入手,通过整理化简,看是否是一类元素.跟踪训练3 确定下列每组两个集合的包含关系或相等关系:(1)A={n|n=2k+1,k∈Z}和B={m|m=2l-1,l∈Z};**(2)C={n|n=2k+1,k∈N}和D={m|m=2l-1,l∈N}.解(1)当k∈Z,l∈Z时,n=2k+1?m=2l-1,所以A=B;**(2)当k∈N,l∈N时,n=2k+1?m=2l-1,所以C?D.练一练:当堂检测、目标达成落实处1.下列命题:①空集没有子集;②任何集合至少有两个子集;③空集是任何集合的真子集;④若?A,则A≠?.其中正确的个数是( )A.0B.1C.2D.3解析:由于任何集合都是它本身的子集,故①错;空集只有一个子集就是它本身,故②错;空集是任何非空集合的真子集,故③错;2.满足条件{1,2}M?{1,2,3,4,5}的集合M的个数是( )A.3 B.6C.7 D.8解析:M中含三个元素的个数为3,M中含四个元素的个数也是3,M中含5个元素的个数只有1个,因此符合题意的共7个.3.若集合{2x,x+y}={7,4},则整数x,y分别等于__________.???2x=7?2x=4?解:由集合相等的定义得或?,?x+y=4?x+y =7??7x=??2∴?1y=??2舍?x=2?或???y=5 .∴x,y的值分别是2,5.4.观察下面几组集合,集合A与集合B具有什么关系?(1)A={1,2,3},B={1,2,3,4,5}.(2)A={x|x>3},B={x|3x-6>0}.(3)A={正方形},B={四边形}.(4)A={育才中学高一(11)班的女生},B={育才中学高一(11)班的学生}.解:通过观察就会发现,这四组集合中,集合A都是集合B的一部分,从而有A?B.课堂小结:1.能判断存在子集关系的两个集合,谁是谁的子集,进一步确定其是否为真子集;注意:子集并不是由原来集合中的部分元素组成的集合.2.空集是任何集合的子集,是任何非空集合的真子集.3.注意区别“包含于”,“包含”,“真包含”.4.注意区分“∈”与“?”的不同涵义.3 / 3篇二:集合间的基本关系知识点集合间的基本关系1.“包含”关系—子集注意:A?B有两种可能(1)A是B的一部分,(2)A与B是同一集合。
§1.2.2集合的相等
【教学目标】
1.知识与技能
进一步理解子集概念,理解集合相等的意义;会用区间表示一些数集;会正确区分使用符号∈、=、⊆.
2.过程与方法
根据集合相等的概念与集合中元素的性质,解决有关集合问题,提高学生逻辑思维能力.
3.情感、态度与价值观
体会数学符号的简洁美,结合同一集合的不同表示方式,体会透过形式看本质的认知态度和方法.
【重点难点】
1.教学重点:集合相等的概念
2.教学难点:正确使用符号表示属于、包含、相等关系.
【教学方法】
谈话法,讲授法,练习法
【教学过程】
一、 复习引入
1.子集的含义?
2.集合的元素有哪些性质?
3.观察集合A 、B ,你能用符号表示它们的关系吗?
(1){}1,2,3,6A =,{}6,1,3,2B =;
(2){}1,1A =-,{}
21B x x ==. 两个集合所含的元素完全相同,我们说这两个集合相等.下面我们学习集合相等的有关知识.
二、 讲授内容
1.集合相等的概念
一般地,如果集合A 中的任何一个元素都是集合B 的元素,同时集合B 中的任何一个元素都是集合A 的元素,我们就说集合A 等于集合B ,记作A B =.用符号表示如下: 如果A B B A ⊆⊆且,则A B =.
2.区间表示数集
数集还可以用区间来表示
设R b a ∈,,且b a <,规定
闭区间[]{}
b x a x b a ≤≤=,,
开区间(){}b x a x b a <<=,, 半开半闭区间{}b x a x b a ≤<=],(,{}b x a x b a <≤=),[, b a ,叫做相应区间的端点.
还有以下几种开区间: {}a x x a >=+∞),(,{}b x x b <=∞-),(,(,)-∞+∞=.符号“∞”读作无穷大.
三、 讲解范例
例1 说出下列各组集合中A 与B 的关系:
(1){}
05,A a a a N =≤<∈,{}5,4,3,2,1,0=B
(2)10,2A ⎧⎫=⎨⎬⎩⎭
,{}sin 30,cos90B = ;
(3){}A x x =是等腰三角形,{}B x x =是等边三角形; (4){}21, A x x m m Z ==+∈,{}21,B x x n n Z ==-∈.
分析 根据子集的定义,检查集合A 中元素是否都在B 中, 或者集合B 中元素是否都在A 中.
解 (1)A ≠⊂B ;(2)A =B ;(3) A ≠
⊂B ;(4)A =B . 点评 判断子集、真子集、相等关系,主要是根据定义.对于表示复杂的描述法给出的集合,尤其要认真分辨,比如(4).
例2 已知{}A x x a =<,()2,∞-=B ,若A ≠
⊂B ,求实数a 的取值组成的集合. 分析 根据A ≠
⊂B 的意义,可结合数轴观察. 解 {}A x x a =<=()a ,∞-,若使A ≠
⊂B ,只须2≤a .所以实数a 的取值组成的集合为{}2≤a a .
点评 思考要严密,注意边界点的取值,此题容易误认为2a <.
例3 已知{}
210A x ax bx =++=={}1,求b a ,的值. 分析 根据集合相等的含义,方程2
10ax bx ++=的解只有一个1x =.不同次数的方程,解的情况也不同,此题需分类讨论.
解 当a =0时,由1=x 是一次方程01=+bx 的解,得1-=b .
当0≠a 时,由1=x 是二次方程012=++bx ax 的两个相同的实数根,得⎪⎩⎪⎨⎧+=-⨯=11111a
b a ,即⎩⎨⎧-==21b a . 点评 认真解读题目是找到解题捷径的前提。
本题当方程是二次方程时,解集{}1不仅表示1是该方程的解,而且表示了这个二次方程由两个相等的实数根,从而可利用韦达定理迅速解题.
例4 设{}2,A x x =, {}1,B x =,且A B =,求实数x 的值.
分析 根据集合相等的定义以及集合元素的互异性解题.
解 由A B =,得B A ⊆,故1A ∈,从而有211x x ⎧=⎨≠⎩
,解得1x =-. 点评 由已知条件A B =,知1A ∈,是解决本题的突破口.解题时应注意集合的元素满足确定性、互异性、无序性.
四、 课堂练习
1.教材P10练一练:1
2.设{}0, A a =,且{}
A x x
B ∈=,则集合A 与B 的关系是( ) A .A B ≠⊂ B .B A ≠
⊂ C .B A = D .B A ∈ 3. 说说{}1,2,(1,2), [1,2] 有什么不同?
参考答案:
1.(1)=;(2)≠⊂;(3)⊃≠;(4)∈;(5)≠
⊂;(6)∈;2.C ;
3.{}1,2表示一个有限集,元素是1,2;(1,2), [1,2]都是无限集,(1,2)={}12x R x ∈<< ,[1,2]={}
12x R x ∈≤≤;
五、 反思总结
数学知识:
1.集合相等的涵义,集合相等与集合的包含关系总是密切联系;
2. 区间的表示,注意圆括号与方括号的区别.
思想方法:
集合相等,应注意集合的元素满足三个特性.注意分类讨论,思考要严密.
六、 布置作业
1. 教材P10习题1.2:1,
2. 教材P10习题1.2:4
3. 将下列集合用区间表示: (1){}
3x x >= ;
(2){}1x x ≤-= ; (3)702x x ⎧⎫-
<≤⎨⎬⎩⎭= ; (4){}23y y ≤<= .
参考答案:
1.(1)=;(2)⊃≠;(3)≠⊂;(4)∉;(5)⊃≠
; 2.(1){}2;(2)2,1b c =-=(提示,解法参照例3);
3.(1)()3,+∞;(2)(,1]-∞-;(3)7(,0]2-;(4)[2,3) .。