制动传动装置
- 格式:ppt
- 大小:1.36 MB
- 文档页数:2
常用气制动元件工作原理简介装设在车辆上的所有各种制动系总称为制动装备。
任何制动系都具有四个基本组成部分:供能装置——包括供给、调节制动所需能量以及改善传能介质状态的各种部件。
其中产生制动能量的部分称为制动能源。
如空压机、人的肌体控制装置——包括产生制动动作和控制制动效果的各种部件。
如制动踏板机构,制动阀。
传动装置——包括将制动能量传输到制动器的各个部件,如制动总泵、制动轮缸制动器——产生阻碍车辆的运动或运动趋势的力(制动力)的部件,其中也包括辅助制动系中的缓速装置。
较为完善的制动系还具有制动力调节装置以及报警装置、压力保护装置等附加装置。
制动系还可按照制动能源来分类:以驾驶员的肌体作为唯一制动能源的制动系称为人力制动系;完全靠由发动机的动力转化而成的气压或液压形式的势能进行制动的则是动力制动系。
其制动能源可以是发动机驱动的空气压缩机或油泵。
兼用人力和发动机动力进行制动的制动系称为伺服制动系,如真空助力。
按照制动能量的传输方式,制动系又可分为机械式、液压式、气压式和电磁式等,我厂现有车型主要采用液压制动和气压制动两种传输方式。
液压制动式结构简单,主要用于490发动机以下小型工程车和平板车上,气压制动结构复杂,用于中型及以上车型。
下面只讨论一下我厂最常用的动力制动系中的气压制动。
气压制动系是发展最早的一种动力制动系,也是我厂现在最主要采用的制动形式。
图为气压双回路气压制动系示意图:由发动机驱动的双缸活塞式空气压缩机将压缩空气经调压阀首先输入湿储气筒,压缩空气在湿储气筒内冷却并进行油水分离之后,再经过四回路保护阀,分别进入前桥储气筒、后桥储气筒和驻车储气筒,将气路分成三个回路;前、后储气筒分别与制动阀的上、下两腔相连,当驾驶员踩下踏板时,前筒气体通过制动阀上腔经快放阀到达前桥制动气室,实现前桥制动;后储气筒气体通过制动阀下腔,打开继动阀控制口,使后储气筒压缩空气直接经继动阀进入后桥制动气室,实现后桥制动;驻车储气筒与手控阀相连,在正常行车状态,驻车储气筒与手控阀和弹簧气室处于常通状态,当车辆停止时,将手刹手柄达到停车位置,阻断气源,弹簧气室内的压缩空气通过快放阀排入大气,实现驻车制动。
制动系工作原理制动系统是汽车的重要组成部分,主要负责控制车辆的运动状态,保障行车安全。
制动系统的工作原理主要包括制动力的产生和传递两个方面。
本文将以液压制动系统为例,详细阐述制动系统的工作原理。
一、制动力的产生制动力的产生主要依靠制动器。
制动器包括固定元件和旋转元件。
固定元件通常为制动蹄或制动片,旋转元件为制动鼓或制动盘。
当驾驶员踩下刹车踏板时,制动主缸内的制动液受到压力,通过液压管路传递到各个制动轮缸。
轮缸内的活塞在液压力的作用下,推动制动蹄或制动片与制动鼓或制动盘产生摩擦,从而产生制动力。
二、制动力的传递制动力的传递主要通过制动传动装置实现。
制动传动装置包括制动踏板、制动主缸、轮缸及连接管路等部件。
当驾驶员踩下刹车踏板时,踏板通过杠杆原理将力传递到制动主缸。
主缸内的制动液在压力作用下,通过管路输送到各个轮缸。
轮缸内的活塞在液压力的作用下,推动制动蹄或制动片与制动鼓或制动盘产生摩擦,从而产生制动力。
三、制动系统的组成制动系统主要由以下几个部分组成:1. 制动传动装置:包括制动踏板、制动主缸、轮缸及连接管路等部件。
主要负责制动力的传递。
2. 制动器:包括固定元件和旋转元件。
主要负责制动力的产生。
3. 制动辅助装置:包括制动力调节装置、报警装置、压力保护装置等。
主要负责提高制动系统的性能和安全性。
4. 制动液:作为制动系统的传动介质,负责将制动主缸产生的压力传递到各个制动轮缸。
四、制动系统的工作原理总结制动系统的工作原理可以概括为:驾驶员通过踩下刹车踏板,使制动主缸内的制动液受到压力。
压力通过液压管路传递到各个制动轮缸,推动活塞产生制动力。
制动蹄或制动片在制动鼓或制动盘上产生摩擦,从而实现车辆减速或停车。
在此过程中,制动辅助装置对制动系统进行监控和调节,确保制动力的稳定和安全。
结束语:总之,制动系统是汽车安全行驶的重要保障。
了解其工作原理,有助于我们更好地掌握汽车制动技术,确保行车安全。
制动系统科技名词定义中文名称:制动系统英文名称:brake system定义:由动力源、控制系统和执行机构构成的实现制动功能的系统。
所属学科:煤炭科技(一级学科);矿山机械工程(二级学科);矿井提升(三级学科)本内容由全国科学技术名词审定委员会审定公布百科名片电子制动系统制动系统是汽车上用以使外界(主要是路面)在汽车某些部分(主要是车轮)施加一定的力,从而对其进行一定程度的强制制动的一系列专门装置。
制动系统作用是:使行驶中的汽车按照驾驶员的要求进行强制减速甚至停车;使已停驶的汽车在各种道路条件下(包括在坡道上)稳定驻车;使下坡行驶的汽车速度保持稳定。
对汽车起制动作用的只能是作用在汽车上且方向与汽车行驶方向相反的外力,而这些外力的大小都是随机的、不可控制的,因此汽车上必须装设一系列专门装置以实现上述功能。
目录功用1类型(1)按制动系统的作用分类1(2)按制动操纵能源分类1(3)按制动能量的传输方式分类1组成(1)制动操纵机构1(2)制动器1原理1、一般制动系的基本结构12、制动工作原理13、制动主缸的结构及工作过程14、制动轮缸的结构及工作过程要求1维修与保养1.保证车辆制动性能良好12.怎样防止汽车侧滑1一、制动系统概述1.制动系可分为如下几类12.制动系统的一般工作原理13.轿车典型制动系统的组成1二、制动器——鼓式制动器1. 概述12.领从蹄式制动器13.单向双领蹄式制动器14.双向双领蹄式制动器15.双从蹄式制动器16.单向自增力式制动器17.双向自增力式制动器18.凸轮式制动器19.楔式制动器110.鼓式制动器小结三、制动器——盘式制动器1.概述2.定钳盘式制动器3.浮钳盘式制动器4.盘式制动器的特点四、驻车制动机构五、制动器的间隙自调装置六、制动传动装置1.机械制动传动装置2.液压传动装置七、制动助力器八、气压制动系统展开制动系统编辑本段功用·为了保证汽车安全行驶,提高汽车的平均行驶车速,以提高运输生产率,在各种汽车上都设有专用制动机构。
第一节概述一、制动系的功用和组成汽车制动系统的功用是:按照需要使汽车减速或在最短的距离内停车;下坡行驶是限制车速;保证汽车停放可靠,不致自动滑溜。
汽车制动系一般包括独立的制动装置。
一套是行车制动装置,用于汽车行驶时减速或停车,其制动器装在车轮上,通常由驾驶员用脚操纵,称为车轮制动装置或行车制动装置。
另一套是驻车制动装置,用于使停使的汽车驻留原地不动,通常由驾驶员用手操纵,称为驻车制动装置。
它们都由制动器和制动传动机构组成。
行车制动装置按制动力源又分为液力式(靠驾驶员施加于制动踏板的力作为制动力源,如液力制动装置)和动力式(利用发动机的动力作为制动力源,如气压制动装置),动力式中又有气压式、真空液压式和空气液压式。
按传动机构的布置形式可分为单回路制动系(采用单一的传动回路制动系,当回路中有一处损坏而漏气、漏油时,整个制动系失效)和双回路制动系(行车制动器的传动回路分属两个彼此独立的回路,当一个回路失败时,还能利用另一个回路获得一定的制动力)。
二、制动系的基本结构和工作原理一般制动系的基本结构和工作原理可用图所示的一种简单液压制动系说明。
该液压制动装置由车轮制动器和液压传动机构两部分组成。
1. 基本结构汽车的制动装置都是利用机械摩擦来产生制动作用的,其中用来直接产生摩擦力矩迫使车轮减速和停车的部分,称为制动器;将操纵力传给制动器,迫使制动器产生摩擦作用的部分,称为制动传动机构。
车轮制动器主要由旋转部分、固定部分、张开机构和调整机构组成。
旋转部分是固定在轮毂上与车轮一起旋转的制动鼓。
固定部分主要包括制动蹄和制动底板等。
制动底板固定在转向节凸缘(前轮)或桥壳凸缘(后桥)上。
铆有摩擦片的制动蹄,下端通过偏心支撑销安装在制动底板上,上端用回位弹簧拉紧,靠在轮缸活塞上,张开机构是制动轮缸(气压式为凸轮),通过油管与装在车架上的制动主缸相通。
制动传动机构主要由制动踏板、推杆、制动主缸等组成。
制动鼓与制动蹄摩擦间隙的调整靠偏心支撑销完成。
起重机的基本构造无论是结构简单还是结构复杂的起重机,其基本构造都是由金属结构部分、传动机构和安全、控制系统3大部分组成。
能使起重机发生某种动作的传动系统,统称为起重机的机构。
因起重运输作业的需要,起重机要做升降、移动、旋转、变幅、爬升及伸缩等动作,而这些动作必须由相应的机构来完成。
起重机的基本机构有起升、运行、回转和变幅4个机构。
另外,还有塔吊的塔身爬行机和汽车、轮胎等起重机专用的支腿伸缩机构。
起重机的每个机构均由4种装置组成,即驱动装置、制动装置、传动装置和与机构作用直接相关的专用装置。
驱动装置分人力、机械和液压驱动装置。
制动装置是制动器。
不同类型的起重机使用各种不同型式的块式、盘式、带式、内张蹄式和锥形等制动器。
传动装置是减速器。
不同类型的起重机使用各种不同形式的斜齿轮、蜗轮和行星减速器。
一、起重机的起升机构起升机构的驱动装置采用电力驱动时为电动机。
其中,葫芦起重机多用异步鼠笼式电动机,其他电动起重机多采用绕线式异步电动机,或直流电动机。
履带、铁路起重机的起升驱动装置为内燃机。
汽车、轮胎起重机的起升机构驱动装置是由原动机带动的液压泵、液压油缸或液压电动机。
起升机构包括起升卷筒(或链轮)、钢丝绳(或链条)、定滑轮、动滑轮、吊钩(或抓斗、吊环、吊梁、电磁吸盘)等。
二、起重机的运行机构起重机的运行机构可分为轨行式运行机构和无轨行式运行机构(轮胎、履带式运行机构),这里只介绍轨行式运行机构。
轨行式运行机构除了铁路起重机以外,基本上都是电动机驱动形式。
此运行机构是由电动机、制动器、减速器和车轮四部分组成。
车轮装置由车轮、车轮轴、轴承及轴承箱等组成。
采用无轮缘车轮,是为了将轮缘的滑动摩擦变为滚动摩擦,此时应增设水平导向轮。
车轮与车轮轴的连接可采用单键、花键或锥套等多种方式。
起重机的运行机构分为集中驱动和分别驱动2种形式。
集中驱动是由一台电动机通过传动轴驱动两边车轮转动运行的运行机构形式,集中驱动只适合小跨度的起重机或起重小车的运行机构。
图解汽车(12)汽车制动系统结构解析● 制动系统的组成作为制动系统,作用当然就是让行驶中的汽车按我们的意愿进行减速甚至停车。
工作原理就是将汽车的动能通过摩擦转换成热能。
汽车制动系统主要由供能装置、控制装置、传动装置和制动器等部分组成,常见的制动器主要有鼓式制动器和盘式制动器。
● 鼓式制动器鼓式制动器主要包括制动轮缸、制动蹄、制动鼓、摩擦片、回位弹簧等部分。
主要是通过液压装置是摩擦片与岁车轮转动的制动鼓内侧面发生摩擦,从而起到制动的效果。
在踩下刹车踏板时,推动刹车总泵的活塞运动,进而在油路中产生压力,制动液将压力传递到车轮的制动分泵推动活塞,活塞推动制动蹄向外运动,进而使得摩擦片与刹车鼓发生摩擦,从而产生制动力。
从结构中可以看出,鼓式制动器是工作在一个相对封闭的环境,制动过程中产生的热量不易散出,频繁制动影响制动效果。
不过鼓式制动器可提供很高的制动力,广泛应用于重型车上。
●盘式制动器盘式制动器也叫碟式制动器,主要由制动盘、制动钳、摩擦片、分泵、油管等部分构成。
盘式制动器通过液压系统把压力施加到制动钳上,使制动摩擦片与随车轮转动的制动盘发生摩擦,从而达到制动的目的。
与封闭式的鼓式制动器不同的是,盘式制动器是敞开式的。
制动过程中产生的热量可以很快散去,拥有很好的制动效能,现在已广泛应用于轿车上。
● 通风制动盘制动过程实际上是摩擦力将动能转化为热能的过程,如制动器的热量不能及时散出,将会影响其制动效果。
为了进一步提升制动效能,通风制动盘应运而生。
通风刹车盘内部是中空的或在制动盘打很多小孔,冷空气可以从中间穿过进行降温。
从外表看,它在圆周上有许多通向圆心的洞空,它利用汽车在行驶当中产生的离心力能使空气对流,达到散热的目的,因此比普通实心盘式散热效果要好许多。
●陶瓷制动盘陶瓷制动盘相对于一般的刹车盘具有重量轻、耐高温耐磨等特性。
普通的刹车盘在全力制动下容易高热而产生热衰退,制动性能会大打折扣,而陶瓷刹车盘有很好的抗热衰退性能,其耐热性能要比普通制动盘高出许多倍。
汽车制动系统结构性能和试验方法一、汽车制动系统结构1.制动器:主要分为盘式制动器和鼓式制动器两种类型。
盘式制动器由刹车盘、刹车片、刹车卡钳和刹车液组成,通过刹车卡钳施加在刹车盘上的刹车力来实现制动。
鼓式制动器由鼓式刹车核心、制动皮、刹车回踏杆和制动鼓等组成,通过刹车回踏杆施加在制动鼓上的制动力来实现制动。
2.制动传动装置:包括制动踏板、制动杆、制动器杆等,通过力的传递将驾驶者施加在制动踏板上的力转化为刹车盘或制动鼓上的制动力。
3.制动液压装置:由主缸、助力器、制动管路和制动油等组成,通过踏板力传达到主缸,再通过液压助力器将主缸力放大,通过制动油传达到制动器,实现制动。
二、汽车制动系统性能1.制动力:指制动系统施加在车轮上的力,取决于制动器和制动液压装置的性能。
制动力越大,汽车减速越快。
2.制动距离:指汽车从开始制动到完全停下所行驶的距离,取决于汽车的质量、速度、制动力和路面情况等因素。
3.制动稳定性:指制动系统的工作稳定性和一致性。
制动系统在长时间的制动过程中,应始终保持稳定的制动力和制动平衡,减少制动的波动和失效。
三、汽车制动系统试验方法1.性能试验:包括制动力试验、制动距离试验和制动稳定性试验等。
制动力试验通过测量刹车盘上的制动力来评估制动系统的制动力是否符合要求;制动距离试验通过测量汽车从开始制动到完全停下所行驶的距离来评估制动系统的制动性能;制动稳定性试验通过对汽车制动过程中制动力的变化进行测量,评估制动系统的制动稳定性。
2.耐久性试验:通过长时间的制动测试,评估制动系统在重复使用和高温条件下的耐久性和可靠性。
常见的耐久性试验包括持续制动试验、急停试验和重负荷制动试验等。
3.安全性试验:用于评估制动系统的紧急制动和制动失效时的安全性能,主要包括制动距离加长试验、制动失效试验和制动力均衡试验等。
综上所述,汽车制动系统结构包括制动器、制动传动装置和制动液压装置;性能主要包括制动力、制动距离和制动稳定性;试验方法包括性能试验、耐久性试验和安全性试验等。