当前位置:文档之家› 气压制动系统的主要构造元件和工作原理

气压制动系统的主要构造元件和工作原理

气压制动系统的主要构造元件和工作原理
气压制动系统的主要构造元件和工作原理

气压制动系统的主要构造元件和工作原理

————————————————————————————————作者:————————————————————————————————日期:

气压制动系统的主要构造元件

和工作原理

气压制动以压缩空气为制动源,制动踏板控制压缩空气进入车轮制动器,所以气压制动最大的优势是操纵轻便,提供大的制动力矩;气压制动的另一个优势是对长轴距、多轴和拖带半挂车、挂车等,实现异步分配制动有独特的优越性。

但是气压制动的缺点也很明显:

相对于液压制动,气压制动结构要复杂的多;且制动不如液压式柔和、行驶舒适性差;所以气压制动因而一般只用于中、重型汽车上。

下面主要以斯太尔8X4载重汽车为例介绍气压制动传动装置主要部件的结构组成。

1.空气压缩机

空气压缩机是全车制动系气路的气源,斯太尔6X4载重汽车空气压缩机为单缸混合冷却式,气缸体为风冷,气缸盖通过发动机冷却系统水冷。它固定在发动机前端左侧的支架上,它的传动齿轮与其曲轴为高扭矩自锁连接,在正时齿轮室中悬臂安装,由发动机曲轴通过中间齿轮、喷油泵齿轮、空气压缩机传动轴驱动转动,其构造如图18. 5所示,与汽车发动机机构相似,它主要由空气压缩机壳体1、活塞2、曲轴3、单向阀4等组成。

壳体由气缸体、气缸盖组成,壳体是铸铁的,外面带有用于空气冷却的散热筋片,里面是用于产生压缩空气的气缸。进、排气阀门采用舌簧结构,进气口经气管通向空气滤清器;出气口则经气管通向空气干燥器。润滑油由发动机主油道经油管、滚珠轴承,进入曲轴箱,然后经正时齿轮室回到油底壳。

活塞通过连杆与曲轴相连,连杆轴承合金直接浇注在连杆大头和连杆瓦盖上,活塞通过活塞环与气缸密封。

曲轴两端通过滚珠轴承支承在曲轴箱内,?前后有轴承盖,前端伸出盖外用半圆键及螺母固装传动齿轮,前端孔内分另1J装有防止漏油的油封。

发动机运转时,空气压缩机随之转动,当活塞下行时,进气阀门被打开,外界空气经空气滤清器、进气道进人气缸。当活塞上行时,?进气阀门被关闭,气缸内空气被压缩,出气阀门在压缩空气的作用下被打开,压缩空气由空气压缩机出气口经管路、空气干燥器进人储气筒和四管路保护阀。

2.空气干燥器

空气干燥器吸收压缩空气中的水,为制动气路提供清洁干燥的压缩空气。A D-103型空气干燥器结构如图18. 6所示

AD-103型空气干燥器利用分子筛作干燥剂,采用与卸荷调压阀一体的整体式结构,巧妙地利用了调节阀卸荷排气的动作过程,使再生储气筒中的干燥压缩空气反向通过干燥剂筒,将干燥剂表面吸附的水分带走排人大气,实现了分子筛的再生活化。AD-103型空气干燥器能长期有效地吸收压缩空气中的水,提供清洁干燥的压缩空气?在充气过程中,由空压机输出的压缩空气经进气口9进人腔室8。这时由于温度下降, 会产生冷凝水,冷凝水经过通道流到排水阀阀门6处。?压缩空气经滤清器12和环形室达到干燥剂筒13上端。当空气流经干燥剂筒13时,水分被吸收并滞留在干燥剂筒的上层。干燥处理过的空气经过单向阀门10、接口21通向四管路保护阀,然后供应给整车气路;同时干燥的空气经过节流口11和接口22导向再生气$?当整个系统中的压力升高至预定卸荷值时,压缩空气推动活塞2移动,打开进气阀3,关闭排气阀1,压缩空气通过通道5到达卸荷阀7活塞的上端,推动活塞向下运动,从而使排水阀6阀门打开,从腔室8来的压缩空气和冷凝水经过打开的排水阀6排向大气,开始排气过程。?来自再生储气筒的干净空气经节流口11、干燥罐的排气阀1排向大气。当空气从下往上流经颗粒干燥罐时,将滞留在其表层的水分带走并排向大气,使分子

筛再生?。

当21接口的压力下降至工作气压值时,活塞2在回位弹簧作用下运动,进气阀3关闭,排气阀1打开。卸荷阀7活塞上端的空气经过通道5、排气阀1和小孔排出。卸荷阀7活塞向上运动,排水阀6关闭,排气过程完成,下个充气过程又重新开始。?通过调节螺栓可以调节卸荷气压值和关闭气压值。空气干燥器还装有自动加热器,防止活塞被冻住,从而避免故障发生。?

3.四管路保护阀

四管路保护阀是将全车气路分成4个既相互联系又相互独立的管路。当任何一个管路发生故障时,不影响其他管路正常工作与充气。

如图18.7所示是四管路保护阀中的一个阀。由空气干燥器来的压缩空气从进气4进入保护阀,当进气压力较低时阀门2在弹簧1 的作用下将阀座封闭,进气压力作用在阀中心面积“a”上。当进气压力上升至7.0bar时,

作用在“a”面积上的气压产生向上的推力足以克服弹簧1的预压力,使阀门2开始升起,打开管路充气口3的通道。由于阀制成节流形式,?因此阀在向管路充气过程中不会时开时关而产生振动,延长了阀的使用寿命。随管路不断充气,管路气压又作用在阀的环形面积“b”上。4 因此,随管路气压不断升高,充气开启压力不断降低,直到管路气压达4.5bar时,阀门重新关闭。这里称7. Obar为保护阀的开启压力;4.5bar为保护阀的关闭压力

将4个阀组合在一起即为四管路保护阀,如图18.8所示。全车气路在没有气的情况下,4个保护阀全部关闭,从空压机来的压缩空气进人保护阀。当输人端气压达7.0bar时,4个阀分别开始向各自管路充气,当管路气压上升到4. 5bar时阀全部打开,直至全车气压达到调压阀所设定的7. 5!8.0bar气压值。值得说明的是实际工作中4个阀并不是同时打开的,因为4个阀弹簧设定的压力不会完全一致;同时4个管路充气压力上升的速度也不尽相同,开启时间要视弹簧预紧力和管路气压上升的差异而定,这也是充气过程中双针气压表两指针往

往不同步的原因。当某一管路发生断、漏气故障时,如前制动管路断裂,该管路气压就急剧下降,全车气路都经21出口放气,气压同时下降。当各管路下降至4. 5bar时,4个阀全部关闭。此时无故障管路仍然保留有4.5bar气压, 而漏气管路将继续漏气直至气压下降为零。此刻随空气压缩机继续供气,供气压力一旦回升至4.5bar气压时,解除故障,除管路阀继续关闭外,其余管路阀又都重新打开充气,直到同路气压上升到故障管路阀所设定的开启压力7.0bar,如此确保无故障管路正常工作和充气。?在全车气压较低的情况下,为了首先向前、中、后制动储气筒充气,以确保制动的可靠性,常选用带有单向阀的四管路保护阀,结构如图18. 9所示。

该阀的停车制动和辅助用气管路的供气口是分别接在前制动和中后制动管路上的,且用两个单向阀加以隔离。这样只有当前、中、后制动管路气压达到7.0bar才开始向停车制动和辅助用气管路充气。?

在正常情况下,四管路保护阀实际上是一个五通接头!只有在某一管路发生断、漏故障时才起保护作用。

4 .主制动控制阀

主制动控制阀是用来操纵主制动系统工作的,且使制动气压与制动操纵力或踏板行程成一定比例关系的装置。主制动控制阀目前常用到的有单列双腔膜片式和并列双腔膜片式,斯太尔汽车采用的是单列双腔膜片式主制动控制阀,东风EQ1092型汽车为并列双腔膜片式主制动控制阀。?

斯太尔汽车主制动控制阀结构属于单列双腔膜片式,如图18.10所示,分上下两腔室。由中、后制动储气筒来接11接口,由前制动储气筒来接12接口。上腔出气口21向中、后桥制动继动阀提供制动fg 号气压,22通向前制动气室。

制动时,制动踏板通过一套连接杠杆使主制动控制阀顶杆1向下移动,再通过橡胶弹簧2迫使活塞3克服回位弹簧弹力向下移动,当活塞3与阀杆5接触时,关闭排气口4,继续下移,进气口打开,使中、后轮制动。在进气口打开向制动管路充气时,制动管路气压同时作用在活塞3上,当气压向上顶活塞的力与橡胶弹簧预压力相等时活塞开始向上回升到进气口关闭的平衡状态。制动踏板行程越大,弹簧预紧力越大,从而输出到制动管路的气压也越高,这种制动气压与制动踏板行程成一定比例关系,具备制动随动性。

在上腔动作的同时,制动管路气压经小孔D通向B腔作用在活塞6上,迫使活塞下移,首先将关闭排气口9,进而打开进气口8,来自前制动储气筒的压缩气体经12接口和进气口8通过出气口22,使前轮制动。当气压上升到与B腔气压相等时,活塞6又回升关闭进气口使制动管路气压不再升高,产生下一个与中、后桥制动同步的气压。下腔输出气压与上腔输出气压按一定的比例关系同步增减,只是上腔输出气压总比下腔输出气压高出一'个数值。

双腔主制动阀能够保证某一管路失效时不影响另一管路正常工作。由于主制动阀下腔是由上腔来控制的,因而下腔工作失效显然不影响上腔输出管路的工作。如果上腔输出管! 21出断、! 1 打气7!21 不起气压!

从而B腔也没有气压信号,但顶杆推动活塞3以及阀杆5继续下行使阀杆与活塞杆排气间隙消除之后,顶杆的下移会直接推动活塞6下移,从而打开下腔进气口实现输出管路制动。此时的平衡关系将是下腔输出管路制动气压作用在活塞向上的力与橡胶弹簧弹力之间的平衡。?制动解除时!作用在顶杆上的力消除,橡

胶弹簧压力消失,活塞3在回位弹簧和管路气压的作用之下上行,首先关闭进气口7、进而打开排气口4,继动阀的输人气压经21接口和排气口4放空,制动气室的气压经继动阀放空,中、后桥制动解除。与此同时,主制动阀下腔在管路气压作用下使活塞6上行,关闭进气口8,打开排气口9,前制动气室气压22排气9放空!制动解除。

?5.主制动继动阀

主制动继动阀是缩短制动反应时间,对主制动气室起一个“快充”和“快放”的作用。?

对于轴距较长,汽车中后桥制动气室总容量又大,距主制动控制阀的距离又远的,当制动踏板被踩下时,到最远的那个制动气室气压达到相应数值的制动反应时间会过长。为此,可在距中后桥制动气室最近的位置安装一个继动阀,由储气筒用一根较粗的主管路直接供气,再用一根较细的管路由主制动控制阀来控制。主制动继动阀工作示意图,如图18. 11所示。

当主制动控制阀工作时,由主制动控制阀上腔输出一个与制动踏板行程相应的气压信号,进人继动阀的控制口,该气压使继动活塞1下行,首先使封闭排气阀2关闭,进而将进气阀3压下,打开进气口,经主气路的压缩空气迅速通过进气口向

制动气室充气,如图18.11 (a)所示。当制动气室气压上升到与控制动气压相等时,该气压作用在继动活塞1下面的力与控制气压作用在继动活塞上面的力

平衡,继动活塞1回升重新关闭进气阀,如图18.11 (b)所示,使输出气压不再上升,达到与制动踏板行程同步随动效果。

当主制动阀解除制动时,主制动继动阀继动活塞1上方的输入气压经主制动阀放空, 制动气室管路气压迫使继动活塞迅速上升,重新打开排气阀,气室气压经由继动阀排气口放空,从而达到“快放”的目的,如图18.11")所示。?

6.前制动气室?

向前制动气室输人不同的气压会产生不同的推力,并通过制动凸轮使制动器对前桥产生不同强度的制动。现大多采用膜片式制动气室,其结构如图18. 12所示,它主要由进气口1、橡胶膜片3、壳体6、支承盘4、推杆8及回位弹簧5等组成。

夹布层橡胶膜片的周缘用卡箍夹紧在壳体和盖的凸缘之间。盖2与膜片3之间为工作腔。用橡胶软管与由制动阀接出的钢管连通,膜片3右方则通大气。

弹簧5通过焊接在推杆8上的支承盘4推动膜片3紧靠在盖2的极限位置。?推杆8的外端通过连接叉9与制动器的制动调整臂相连。

当驾驶员踩下制动踏板时,压缩空气经制动控制阀进人制动气室,在气压作用下膜片3变形,推动推杆8 并带动制动调整臂,转动制动凸轮将制动蹄片压向制动鼓而产生制动作用。

当驾驶员放松制动踏板时,制动气室中的压缩空气经快放阀或制动阀排到大

气中,在弹簧5的作用下,推杆8和膜片3又恢复原始状态。?

斯太尔系列载重汽车前车轮制动气室采用的也是常规膜片式,由壳体、盖、膜片、弹簧及推杆组成。其推杆最大行程为60mm,可产生最大9800N的推力,制动气室的制动强度与输入气压成正比。

7.复合式制动气室

复合式制动气室既对中、后桥行车制动产生作用,又可实施驻车制动与应急制动,如图18. 13所示为解放CA1110PK2L2型汽车复合制动气室,行车制动气室与驻车制动气室制成一个整体。行车制动气室即右气室采用常规式膜片制动结构,驻车制动气室即左气室采用典型弹簧储能放气制动装置。

复合式制动气室的右气室用于行车制动是主制动气室,由小膜片12、右气室外壳16、右气室推杆17和右气室回位弹簧15等零件组成,并且被小卡箍13和右气室紧固螺钉11连接到中壳22上;复合式制动气室的左气室用于驻车制动是驻车制动气室,由大膜片9、大托盘24、左气室推杆23、小托盘19、左气室回位弹簧21和弹簧缸等组成,并且被大卡箍10和左气室紧固螺钉连接到中壳22上。其中,弹簧缸由弹簧缸外壳4、支承架5、制动弹簧6、托架7和解除制动螺栓1等组成。?汽车行车前,储气筒要储存足够的气压才能起步。通过进气孔A向左气室充气,气压作用在大膜片9上,达到一定程度,克服制动弹簧6的弹力,推动大膜片9和左气室推杆23左移,右气室推杆在右气室回位弹簧作用下左移,使车轮制动器解除制动,汽车起步。

汽车制动时,通过进气孔B向右气室小膜片的左腔充气,克服右气室回位弹簧的弹力,推动小膜片及右气室推杆右移,使连接叉推动制动调整臂偏转,使车轮制动器工作。输人不同气压可产生不同强度的制动效果。

驻车制动时,通过操纵驻车制动手柄,使左气室放气,在制动弹簧作用下,推动左气室推杆、右气室推杆右移,使车轮制动器作用,达到驻车制动目的。驻车制动最大制动强度力。

如制动管路出现漏气或断裂,驻车制动气室即左气室气压完全放空,则大膜片被制动弹簧推动,并通过推杆推动主制动气室推杆伸出产生制动力,因此,驻车制动气室又是应?急制动气室。?在驻车制动气室中的托架上设置有一细齿螺栓,当螺栓全部旋出时,就将克服弹簧弹力拉向左极限位置,从而可在没有压缩空气的情况下解除驻车制动。

?8.驻车制动与应急制动阀

应急制动阀是当主制动失效时,用以代替主制动并与主制动性能一致的备用制动系统。斯太尔系列载重汽车应急制动系统与驻车制动共用一套控制系统,由驻

车和应急制动以及挂车制动检验阀组成,其结构简图如图18.14所示。

当汽车需行驶时’驻车制动手柄置“行驶”位置,如图18.14(a)所示。平面凸轮5将阀杆7压缩到最低位置,此时阀杆7压下进气阀10将进气门打开,驻车制动储气筒的压缩空气由接口1经进气门通向出气口21和22,21 口通向应急制动继动阀,从而使驻车制动储气筒的气压直接进人中、后桥驻车制动气室。当气压达6.5bar以上时!各气室将弹簧制动解除。对牵弓丨车而言,接口22通向挂车制动阀的控制口,当汽车行驶时,输人气压由接口1和进气口11、出气口22给挂车制动阀一个气压信号,使挂车制动解除。

在行驶中需要制动而主制动阀失效时,可以拉动驻车制动手柄至所需位置,如图18.14(b)所示,由平面凸轮5将阀杆7提起到某一相应位置,此时进气阀10被关闭,排气阀15被打开,应急制动继动阀控制口气压经21接口和放气口3接通,气压下降,活塞9将在1接口输人气压作用下上移。当a腔气压将活塞9上移至重新关闭排气阀15时为止达一平衡,a腔气压不再下降。此刻驻车制动气室弹力和气室残存气体压力之差相对应,这就是应急制动的工作原理。应急制动强度与手柄操作行程或手柄操作转角有一定的比例关系,使其完全可以代替主制动控制。

同样,当采用应急制动时,接口22也输出一个相应气压的控制信号,使挂车产生相应强度的制动。

当手柄4提起到“驻车”位置时,平面凸轮5将阀杆7提升至最高位置,使活塞9既使上行至极限位置也不能将排气阀15关闭,此时应急制动继动阀控制口气压经排气阀15、放气口3完全放空,驻车制动气室气压也完全放空,气室弹簧全力推动活塞、推杆产生制动,达到驻车制动目的。对于牵弓丨车而言,此时挂车

制动控制阀的控制气压也将放空,从而使挂车产生全负荷制动,达到驻车制动的目的。

为保证汽车在坡上停车安全,检验仅用主车制动是否能可靠的将汽车停住,该阀还设置了一个挂车制动检验阀。当手柄由“驻车”位置转至“检验”位置时,凸轮19将阀杆16压下,从而关闭排气阀14,顶开进气阀13,此时主车制动仍处于驻车制动状态,而主车制动则由于接口1输人全气压经22出气口提供给挂车制动控制阀,使挂车解除制动,如此时汽车能在坡道上稳定地停住,则驻车制动手柄置“驻车”位置是安全可靠的;否则必须采取其他措施,因为当挂车储气筒漏气而牵引车驻车制动失效时将会因主车制动强度不够而发生事故。

应急制动系统与主制动系统一样,为了缩短制动反映时间达到“快充”与“快放”作用,在应急制动控制管路中必设置应急制动继动阀,其结构原理与主制动继动阀相同。??9.挂车制动阀

挂车制动阀是安装在挂车上的制动系统主要阀件。斯太尔主车通过它为挂车储气筒充气,根据主车的制动信号使挂车同步产生同等强度的制动,以及当连接管路断漏或主车与挂车脱钩时,均能使挂车自动产生制动,其结构简图如图18. 15所示。由主车来的充气管路连接于进气口1,制动控制管路连接于控制口4。当主车正常行驶时,充气管路经进气口1和单向Y型皮碗6通过12接口向挂车储气筒充气,当12 口气压达到要求时充气结束。?

当主车制动时,安装于主车上的挂车制动控制阀通过制动管路给出一个制动气压信号,该气压通过控制口4作用在活塞5上,使活塞下行,首先封闭排气口10,进而顶开进气门9,此时挂车储气筒的压缩空气经打开的进气门和出气口2给挂车制动气室充气产生制动。与此同时,管路气压又作用在活塞5的下面,当气室管路气压不再上升时,从而使挂车产生与主车同步强度的制动。

与此同时,若挂车储气筒接口气压低于充气接口气压值,主车仍持续为挂车储气筒充气,以确保挂车制动气压的需要。?当主车制动解除时,控制口4的控制气压经控制管路由主车制动控制阀放空。挂车气室管路气—使活塞5上行打开排气口10,气室气压5该口和放气口“3”放空,挂车制动解除。?行驶中,如果充气管路突然断、漏,充气接口1气压突然下降,挂车储气筒接口压力高于充气压力,此时活塞在该压力差作用下上行关闭排气口,打开进气门9,从而使储气筒向制动气室充气,使挂车自动产生制动,其制动强度取决于管路漏气的程度。如充气管路完全断裂,充气接口1气压下降为零,则会产生全负荷紧急制动。

??10 .双管路挂车制动控制阀?双管路挂车制动控制阀安装在主车上’其主要作用是主车通过它持续不断地向挂车充气。无论是主车前制动、中后桥制动还是驻车制动,只要其中一个或全部动作,挂车制动控制阀都向挂车制动阀输出一个制动信号,使挂车产生相应强度的制动。当制动控制管路断裂或泄漏时,它同样能使挂车与主车同步产生制动。其结构简图如图18.16所示,驻车制动储气筒的空气通向进气口,输出口12接挂车充气管路。出气口22接挂车制动控制管路,控制接口41接主制动阀上腔即中、后桥制动管路来的控制信号气压,控制口“42” 接主制动阀下腔即前制动管路来的制动信号气压。?无论是在正常行驶,还是在制动状态,驻车制动储气筒总把压缩空气经进气口11输人到C腔,再由12接口和充气管路向挂车储气筒充气。?在汽车正常行驶时,来自驻车制动阀的气压经43 口进人D腔,该气压作用在膜片9上的力与充气气压C腔作用在活塞体8上方的力平衡。活塞有效面积与膜片有效面积相同,活塞体8保持在图18.16所示位置上。

当主制动阀动作时,来自中、后制动管路的气压信号经41接口通向A腔,使活塞4 下行,同时来自前制动管路的气压信号经42通向E腔,作用在膜片9的下面,从而使活塞体8打破平衡状态而上行。活塞4下行和活塞体8上行的结果首先是将排气口5封闭;进而将阀杆7顶开,打开两用阀门6进气口,如此C腔的气压经进气口通向B腔,经22口输出。当这一输出的制动控制信号气压达到主制动信号气压值时,B腔气压对活塞4的作用力与A腔制动信号气压对活塞4的作用力以及弹簧力相平衡,B腔气压对活塞体8的作用力与E腔制动信号气压对膜片9的作用力相平衡。此时活塞体8下行、活塞4上行,两用阀门6进气口重新关闭,使输出给挂车的制动信号气压不再增加,从而使挂车产生与主车同等强度的制动。?

主制动阀解除制动时! A腔与E腔制动信号气压经主制动阀放空,活塞4在B腔气压与回位弹簧作用下上行,活塞体8在B腔气压作用下下行,从而迅速打开排气口5,挂车制动控制管路气压从排气口5与放气口放空,挂车制动解除。主制动阀任何一管路失效时,同样可以产生制动控制信号进行气压输出。?当驻车手柄置“驻车”位置时,D腔气压经43接口由驻车制动阀放空,活塞体8在C 腔充气气压作用下迅速上行,从而关闭排气口5,打开两用阀门6进气口,通过22接口输出全压制动信号,使挂车产生制动。在应急制动时,驻车制动手柄置某一需要位置,D腔气压则相应降至某一数值,此时活塞体8在C腔和D腔气压差作用下上行,关闭排气口, 打开进气口;当B腔气压上升到某一数值时,作用在活塞体8上的力与C腔、D腔气压差作用在其上的力相平衡,输出控制信号气压由于进气口重新关闭而不再增大,从而使挂车产生一个与主车相应强度的应急制动。?当驻车制动阀置于“行驶”位置时,43接口输人到D腔的全气压,使活塞体8下行,关闭进气口,打开排气口,使挂车制动控制气压放空,挂车制动解除。在汽车行驶中,制动控制管路断裂或泄漏,当主车制动时,该挂车制动阀动作使两用阀门6进气口打开时,由于接口22输出管路断、漏,因此B腔不能建立气压,此时断气阀13的活塞下腔F同样不能建立气压,而活塞上腔则由A腔输人主制动气压,从而使阀杆12迅速下行关闭11接口,使充气管路被切断,通过挂车制动阀会使挂车自动产生制动,确保挂车制动的可靠。?由于断气阀13的上腔G仅与中后制动信号作用腔A相通,因此当主车中后轮制动失效,则上述这种挂车制动与主车同步制动将不会产生。?

11 .挂车制动释放阀?当挂车与主车分离后,由于充气管路被脱开,挂车自动产生制动,而此时又须移动挂车时,挂车制动释放阀可将挂车制动临时解除。?

如图18.17所示,主车充气口“11”接口接主车充气管路,2接口是挂车制动阀道气接口,12接口是挂车制动阀通气口。当挂车与主车充气管路连接之后,由11接口来的充气压使释放阀杆下移到图18. 17 (a)所示的位置,给挂车制动阀充气。

当挂车与主车脱离之后,由于11 口空气放空,挂车产生制动,如须解除挂车制动,只需将阀杆向上推到图18.17(b)所示位置,挂车制动释放阀将储气筒与挂车制动阀进气连通,挂车制动自然解除。

12. 挂车载荷调节阀?挂车载荷调节阀串接在主车至挂车的制动控制管路上,其根据挂车的载荷手动有机地调节挂车制动气压最大值,以适应不同载荷对挂车制动强度的不同需要。它本身也是一个极简单的改善制动效果的装置。

挂车载荷调节阀的结构简图如图18.18所示,正常行驶时,平衡活塞5在弹簧2的作用下处于图18. 18所示极限位置,此时进气间隙1被打开,排气口被关闭。当主车制动时,制动控制管路的气压信号由进气间隙1输人,经进气口、气室、出气口通向挂车制动阀。输出管路b腔气压同时作用在平衡活塞5上,当气压对活塞5的力大于弹簧2的弹力时,活塞5下行关闭进气间隙,达到平衡位置使控制挂车制动阀的气压不再升高。显然,弹簧2的压缩预紧力越大,输出的最大制动信号气压越大。弹簧2的压缩预紧力是由手柄3和凸轮4控制,手柄3有“空载”、“半载”和“满载” 3个位置,对应这3个位置可输出3个制动气压最大值,以达到3种最大制动强度改善制动性能目的。

挂车制动系统形式多样,阀件的种类较多,上述部分阀件是挂车的基本典型阀件,因挂车部分由挂车生产厂家生产,选装与否取决于各生产厂家。

13. 辅助用气系统元件?辅助用气管路系统阀件也较多,下面仅以典型阀件进行简单的介绍。1?)按钮阀

按钮阀是辅助用气管路常见的两位置开关阀,其结构原理如图18.19所示。离合器制动阀、气动扬声器开关阀、熄火器开关阀都属于这类阀。

按钮阀不工作时,由进气口1来的压缩空气被阀门3封闭,辅助用气元件的空气经口2和排气口3放空。

当按下按钮时,阀杆将把阀门3顶开,不仅封闭了排气口,而且打开了进气口,压缩空气由1口经2口输出给辅助用气元件,使辅助用气管路系统工作。?按

阀放,气被封, 排气被打, 用气的压缩空气 2 排气3放空,解除工作。?2)熄火工作阀?当停车熄火或行驶时进行辅助制动需要将柴油机排气管关闭。熄火开关阀起到一种开关作用,控制熄火工作阀工作,熄火工作阀结构如图18.20所示,它实际上是一种动力阀,它主要由活塞、回位弹簧、推杆等组成。

当熄火开关阀打开时,压缩空气经进气孔进人熄火工作阀,推动活塞及推杆移动,通过控制蝶形阀门将排气管关闭,从而达到停车熄火和行驶时辅助制动的目的。

3)

汽车气路管路除少部分采用金属管路之外,大部分采用高强度塑料管路,因此,在使用中不能在管路附近进行切割、电焊或气焊作业。

气压传动系统的工作原理及组成

气压传动系统的工作原理及组成 一、气压传动系统的工作原理 气压系统的工作原理是利用空气压缩机将电动机或其它原动 机输出的机械能转变为空气的压力能,然后在控制元件的控制和辅助元件的配合下,通过执行元件把空气的压力能转变为机械能,从而完成直线或回转运动并对外作功。 二、气压传动系统的组成 典型的气压传动系统,如图10.1.1所示。一般由以下四部分组成: 1.发生装置它将原动机输出的机械能转变为空气的压力能。 其主要设备是空气压缩机。

2.控制元件是用来控制压缩空气的压力、流量和流动发向,以保证执行元件具有一定的输出力和速度并按设计的程序正常工作。如压力阀、流量阀、方向阀和逻辑阀等。 3.控制元件是将空气的压力能转变成为机械能的能量转换装置。如气缸和气马达。 4.辅助元件是用于辅助保证空气系统正常工作的一些装置。如过滤器、干燥器、空气过滤器、消声器和油雾器等。 10.2 气压传动的特点 一、气压传动的优点 1. 以空气为工作介质,来源方便,用后排气处理简单,不污染环境。 2. 由于空气流动损失小,压缩空气可集中供气,远距离输送。 3. 与液压传动相比,启动动作迅速、反应快、维修简单、管路不易堵塞,且不存在介质变质、补充和更换等问题。 4. 工作环境适应性好,可安全可靠地应用于易燃易爆场所。 5. 气动装置结构简单、轻便、安装维护简单。压力等级低,固使用安全。 6. 空气具有可压缩性,气动系统能够实现过载自动保护。

二、气压传动的特点 1. 由于空气有可压缩性,所以气缸的动作速度易受负载影响。 2. 工作压力较低(一般为0.4Mpa-0.8Mpa),因而气动系统 输出力较小。 3. 气动系统有较大的排气噪声。 4. 工作介质空气本身没有润滑性,需另加装置进行给油润滑。

消防水系统气压罐的工作原理概述

消防水系统气压罐的工作原理概述 消防水系统气压罐的工作原理 消防水系统气压罐有带气囊的和不带气囊的两种;其工作原理就是水泵启动后,水进入有空气的压力罐,空气压缩,当在小流量的情况下,空气膨胀,将罐内的水压出,使水泵不至于在小流量的情况下启动。 消防器件的工作原理之--压力开关

压力开关是一种简单的压力控制装置,当被测压力达到额定值时,压力开关可发出警报或控制信号。压力开关的工作原理是:当被测压力超过额定值时,弹性元件的自由端产生位移,直接或经过比较后推动开关元件,改变开关元件的通断状态,达到控制被测压力的目的。 压力开关采用的弹性元件有单圈弹簧管、膜片、膜盒及波纹管等。 开关元件有磁性开关、水银开关、微动开关等。 压力开关的开关形式有常开式和常闭式两种。 压力开关用在空压机上面主要是来调节空压机的起停状态,通过调节储气罐内的压力来让空压机停机休息,对机器有保养作用.在空压机工厂调试的时候,根据客户需要调节到指定压力,然后设定一个压差.例如,压缩机开始启动,向储气罐打气,到压力10kg的时候,空压机停机或者卸载,当压力到7kg的时候空压机又开始启动,此间有一个压力差,这个过程就可以让压缩机休息一下,达到保护空压机的作用. 由电动机直接驱动压缩机,使曲轴产生旋转运动,带动连杆使活塞产生往复运动,引起气缸容积变化。由於气缸内压力的变化,通过进气阀使空气经过空气滤清器(消声器)进入气缸,在压缩行程中,由於气缸容积的缩小,压缩空气经过排气阀的作用,质量流量计经排气管,单向阀(止回阀)进入储气罐,当排气压力达到额定压力0.7MPa时由压力开关控制而自动停机。当储气罐压力降至0.5--0.6MPa时压力开关自动联接启动 随着电子技术和信息技术的飞速发展,压力测量和自动控制技术已深入到人们生活和工作的各个领域,作为压力量的控制方式之一的压力开关已不仅仅局限于对某一点压力的开闭式两态控制,而是在开关控制的基础上要同时能够实现分辨压力大小,对控制点连续设定,进行远距离信号传输等功能,因此电子压力开关代替各种机械式压力开关已逐渐成为应用的主流。 自动喷淋泵的压力开关的工作原理是什么 正常情况下管网中有一定压力的水,当系统中报警阀上面的水压低于下面水压时(或者

气压制动系统的主要构造元件和工作原理

气压制动系统的主要构造元件和工作原理

————————————————————————————————作者:————————————————————————————————日期:

气压制动系统的主要构造元件 和工作原理 气压制动以压缩空气为制动源,制动踏板控制压缩空气进入车轮制动器,所以气压制动最大的优势是操纵轻便,提供大的制动力矩;气压制动的另一个优势是对长轴距、多轴和拖带半挂车、挂车等,实现异步分配制动有独特的优越性。 但是气压制动的缺点也很明显: 相对于液压制动,气压制动结构要复杂的多;且制动不如液压式柔和、行驶舒适性差;所以气压制动因而一般只用于中、重型汽车上。

下面主要以斯太尔8X4载重汽车为例介绍气压制动传动装置主要部件的结构组成。 1.空气压缩机 空气压缩机是全车制动系气路的气源,斯太尔6X4载重汽车空气压缩机为单缸混合冷却式,气缸体为风冷,气缸盖通过发动机冷却系统水冷。它固定在发动机前端左侧的支架上,它的传动齿轮与其曲轴为高扭矩自锁连接,在正时齿轮室中悬臂安装,由发动机曲轴通过中间齿轮、喷油泵齿轮、空气压缩机传动轴驱动转动,其构造如图18. 5所示,与汽车发动机机构相似,它主要由空气压缩机壳体1、活塞2、曲轴3、单向阀4等组成。 壳体由气缸体、气缸盖组成,壳体是铸铁的,外面带有用于空气冷却的散热筋片,里面是用于产生压缩空气的气缸。进、排气阀门采用舌簧结构,进气口经气管通向空气滤清器;出气口则经气管通向空气干燥器。润滑油由发动机主油道经油管、滚珠轴承,进入曲轴箱,然后经正时齿轮室回到油底壳。 活塞通过连杆与曲轴相连,连杆轴承合金直接浇注在连杆大头和连杆瓦盖上,活塞通过活塞环与气缸密封。 曲轴两端通过滚珠轴承支承在曲轴箱内,?前后有轴承盖,前端伸出盖外用半圆键及螺母固装传动齿轮,前端孔内分另1J装有防止漏油的油封。 发动机运转时,空气压缩机随之转动,当活塞下行时,进气阀门被打开,外界空气经空气滤清器、进气道进人气缸。当活塞上行时,?进气阀门被关闭,气缸内空气被压缩,出气阀门在压缩空气的作用下被打开,压缩空气由空气压缩机出气口经管路、空气干燥器进人储气筒和四管路保护阀。

汽车启动系工作原理

汽车启动系统 学习目标: 1. 掌握启动机的组成和结构; 2. 掌握几种单向离合器的构造和工作过程; 3. 掌握电磁控制装置的构造及工作原理; 4. 通过对启动机的工作原理、特性、结构组成及控制装置工作过程的了解能够对启动系的一些典型的故障进行检测并排除 学习方法 从了解启动机的启动性能、工作原理和特性岀发,掌握启动机的组成和结构特点并详细掌握几种单向离合 器的构造、工作原理和电磁控制装置的构造与工作原理。并通过以上系统的学习,对启动系的组成和结构 特点有一个全面的认识,再通过对典型车辆启动系的认识做到能够对启动系的一些典型故障进行诊断和排除。 学习内容 1. 启动系统的功用和类型与基本组成; 2. 启动机的结构; 3. 汽车启动系统电路分析; 4. 启动机的正确使用与故障诊断; 5. 启动系统常见故障的诊断与排除; 一、启动系统的基本组成和作用 现代汽车发动机以电动机作为启动动力。启动系统的基本组成如图3—1所示,由蓄电池、点火开关、启 动继电器、启动机等组成。启动系统的功用是通过启动机将蓄电池的电能转换成机械能,启动发动机运转 1. 启动开关接通启动机电磁开关电路,以使电磁开关通电工作。汽油发动机的启动开关与点火开关组合在一起。 2. 启动继电器由启动继电器触点(常开型)控制启动机电磁开关电路的通断,启动开关只是控制启动继电器线圈电路,从而保护了启动开关,有单联型(保护启动开关)和复合型(既保护启动开关又保护启动机)。 二、启动机的类型

1. 按驱动齿轮啮合方式 (1)惯性啮合式 启动时,依靠驱动齿轮自身旋转的惯性与飞轮齿环啮合。惯性啮合方式结构简单,但工作可靠性较差,现很少采用。 (2)电枢移动式 靠磁极产生的电磁力使电枢作轴向移动,带动固定在电枢轴上的驱动齿轮与飞轮齿环啮合。电枢移动式启动机其结构较为复杂,在欧洲国家生产的柴油车上使用较多。 (3)磁极移动式 靠磁极产生的磁力使其中的活动铁心移动,带动驱动齿轮与飞轮齿环啮合。磁极移动式启动机其磁极的结构较为复杂,目前采用此种结构形式的启动机已不多见。 (4)齿轮移动式 靠电磁开关推动电枢轴孔内的啮合杆而使驱动齿轮与飞轮齿环啮合。齿轮移动式其结构也比较复杂,采用此种结构的一般为大功率的启动机。 (5)强制啮合式 靠电磁力通过拨叉或直接推动驱动齿轮作轴向移动与飞轮齿环啮合。强制啮合式启动机工作可靠、结构也不复杂,因而使用最为广泛。 2. 按传动机构结构 (1)非减速启动机 启动机与驱动齿轮之间直接通过单向离合器传动。一直以来,汽车上使用的启动机其传动机构均为这种机 构。 (2)减速启动机 在启动机与驱动齿轮之间增设了一组减速齿轮。减速启动机具有结构尺寸小、重量轻、启动可靠等优点,在一些轿车上应用日渐增多。 学习内容启动机的组成直流电动机的结构传动机构电磁开关 一、启动机的组成 启动机一般由直流电动机、传动机构和电磁操纵机构三部分组成,如图3 —2所示,其各部分功用: 直流电动机:产生电磁转矩。

变速器工作原理

手动档变速器工作原理ZT 发动机是汽车的心脏,它为车辆的行驶提供源源不断的动力,车辆变速器的主要作用就是改变传动比,将合适的牵引力通过传动轴输出到车轮上以满足不同车辆在工况下的需求。 下面,我们就从结构最简单最传统的手动变速器说起。一般的手动变速箱的基本结构包括了动力输入轴和输出轴这两大件,再加上构成变速箱的齿轮,这就是一个手动变速箱最基本的组件。动力输入轴与离合器相连,从离合器传递来的动力直接通过输入轴传递给齿轮组,齿轮组是由直径不同的齿轮组成的,不同的齿轮组合则产生了不同的齿比,平常驾驶中的换挡也就是指换齿轮比。输入轴的动力通过齿轮间的传递,由输出轴传递给车轮,这就是一台手动变速箱的基本工作原理。 接下来,让我们通过一个简单的模型来给大家讲讲,手动变速箱换挡的原理。下图是一个简易的3轴2档变速箱的结构模型

输入轴(绿色)也叫第一轴,通过离合器和发动机相连,轴和上面的齿轮是一个硬连接的部件。红色齿轮轴叫做中间轴。输入轴和中间轴的两个齿轮是处于常啮合状态的,因此当输入轴旋转时就会带动中间轴的旋转。黄色则是输出轴,它也叫第二轴直接和驱动轴相连(只针对后轮驱动,前驱一般为两轴),再通过差速器来驱动汽车。 当车轮转动时同样会带着花键轴一起转动,此时,轴上的蓝色齿轮可以在花键轴上发生相对自由转动。因此,在发动机停止,而车轮仍在转动时,蓝色齿轮和中间轴出在静止状态,而花键轴则随车轮转动。这个原理和自行车后轴的飞轮很相似。蓝色齿轮和花键轴是由套筒来连接的,套筒随着花键轴转动,但同时也可以在花键轴上左右自由滑动来啮合齿轮。

说完这些,换挡的过程就很好理解了,当套筒和蓝色齿轮相连时,发动机的动力就会通过中间轴传递到输出轴上,在这同时,左边的蓝色齿轮也在自由旋转,但由于没有和套筒啮合,所以它不对花键轴产生影响。而如果套筒在两个蓝色齿轮之间时,变速箱在空挡位置,此时两个蓝色齿轮都在花键轴上自由转动,互不干涉。 除了上述的传统三轴手动变速箱,目前轿车上广泛使用的是二轴手动变速箱,它的结构和三轴变速箱基本类似,只是其输入轴和中间轴整合为一根轴,因此具有结构简单,尺寸小的优势。

气压罐的用途

说明:气压罐是定压补水中的一个必不可少的元件,气压罐要和系统中的压力开关,水泵等电器元件一起工作才能起到定压补水的作用。气压罐本身不是一个产生能量或压力的元件,气压罐中储存的水或压力只是能短时间内补偿系统中压力的变化,当气压罐无法向系统中补偿更多的水或压力时,系统中的压力会持续降低,直到压力降低到压力开关的设定值,此时压力开关起动水泵向系统中补水,随着压力的升高,到达压力开关的高压设定点时,压力开关会停止水泵,终止补水。当系统压力异常升高时,气压罐里的气囊会继续膨胀,吸收压力,如果压力持续升高,当达到泄压阀的设定值时,泄压阀会进行泄压。 气压罐的工作原理: 当外界有压力的水进入气压罐气囊内时,密封在罐内的氮气被压缩,根据波义耳气体定律,气体受到压缩后体积变小压力升高,直到气压罐内气体压力与水的压力达到一致时停止进水。当水流失后压力降低时气压罐内气体压力大于水的压力,此时氮气体积膨胀将气囊内的水挤出气压罐补到系统中,直到氮气气体压力与水的压力再次达到一致时停止排水。 ( 1)调节系统水体由于温度波动而引起的膨胀及收缩──胀缩; ( 2)使系统某点压力恒定──定压; ( 3)当系统发生泄漏时向系统补水──补水; 本装置尚具备的另一持殊功能 ( 4)周期性的排析溶于水体的气体──排气。 定压补水装置适用范围 ( 1 ) t ≤120 ℃的热水采暧系统 ( 2 ) t ≤130 ℃的热水供热系统 ( 3 )冬夏共用的双管、三管制空调水系统 ( 4 )未设开式贮热水箱的生活热水供应系统 定压补水装置特点 ( 1 )配有微处理机,控制功能多。精度高,定压点控制精度可达ΔP =±0.01MPa 。 ( 2 )设定值可根据工程需要调整: 定压值Pd ──如建筑加层6m ,只要将Pd 调高0.06MPa 即可; 定压精度ΔP ──可调到±0.01Mpa 或±0.02Mpa 或±0.03Mpa …; 冬季主要解决水升温膨胀,可将隔膜腔水位设定在低位。反之夏季设定在高位; ( 3 )罐本体不承压属常压容器──隔膜与钢罐夹层有一通气管,故隔膜腔内水亦处于常压,便于补水及排气。 ( 4 )罐体有效容积率高达90 %──隔膜外表与钢罐内壁可紧贴故有效容积率高,致使外形小,而充氮隔膜罐一般有效容积率仅30 %,即外形要大三倍。 ( 5 )隔膜柔性极佳,挠曲疲劳试验达45 万次,允许持续温度70 ℃以下,短时间允许达 120 ℃。 ( 6 )水泵起动有延迟功能──为防止由于非正常原因频繁起动水泵、水泵设有延迟功能,当压力下降,稳定几秒(可设定)后水泵再予开动。 ( 7 )水泵还设有强制起动──如24 小时内水泵不运转,就会自动强制短时运转,亦可手动强制运转。

汽车启动系工作原理

汽车启动系工作原理标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DDQTY-KII

汽车启动系统 学习目标: 1.掌握启动机的组成和结构; 2.掌握几种单向离合器的构造和工作过程; 3.掌握电磁控制装置的构造及工作原理; 4.通过对启动机的工作原理、特性、结构组成及控制装置工作过程的了解能够对启动系的一些典型的故障进行检测并排除 学习方法 从了解启动机的启动性能、工作原理和特性出发,掌握启动机的组成和结构特点并详细掌握几种单向离合器的构造、工作原理和电磁控制装置的构造与工作原理。并通过以上系统的学习,对启动系的组成和结构特点有一个全面的认识,再通过对典型车辆启动系的认识做到能够对启动系的一些典型故障进行诊断和排除。 学习内容 1.启动系统的功用和类型与基本组成; 2. 启动机的结构; 3. 汽车启动系统电路分析; 4. 启动机的正确使用与故障诊断; 5. 启动系统常见故障的诊断与排除; 学习内容启动系统的基本组成和功用启动机的类型 一、启动系统的基本组成和作用

现代汽车发动机以电动机作为启动动力。启动系统的基本组成如图3—1所示,由蓄电池、点火开关、启动继电器、启动机等组成。启动系统的功用是通过启动机将蓄电池的电能转换成机械能,启动发动机运转。 1.启动开关接通启动机电磁开关电路,以使电磁开关通电工作。汽油发动机的启动开关与点火开关组合在一起。 2.启动继电器由启动继电器触点(常开型)控制启动机电磁开关电路的通断,启动开关只是控制启动继电器线圈电路,从而保护了启动开关,有单联型(保护启动开关)和复合型(既保护启动开关又保护启动机)。 二、启动机的类型 1.按驱动齿轮啮合方式 (1)惯性啮合式 启动时,依靠驱动齿轮自身旋转的惯性与飞轮齿环啮合。惯性啮合方式结构简单,但工作可靠性较差,现很少采用。 (2)电枢移动式 靠磁极产生的电磁力使电枢作轴向移动,带动固定在电枢轴上的驱动齿轮与飞轮齿环啮合。电枢移动式启动机其结构较为复杂,在欧洲国家生产的柴油车上使用较多。 (3)磁极移动式 靠磁极产生的磁力使其中的活动铁心移动,带动驱动齿轮与飞轮齿环啮合。磁极移动式启动机其磁极的结构较为复杂,目前采用此种结构形式的启动机已不多见。 (4)齿轮移动式

汽车传动系组成及工作原理

传动系 传动系一般由离合器、变速器、万向传动装置、主减速器、差速器和半轴等组成。 功用 汽车发动机所发出的动力靠传动系传递到驱动车轮。传动系具有减速、变速、倒车、中断动力、轮间差速和轴间差速等功能,与发动机配合工作,能保证汽车在各种工况条件下的正常行驶,并具有良好的动力性和经济性。 种类组成 传动系可按能量传递方式的不同,划分为机械传动、液力传动、液压传动、电传动等。 下面分别介绍小传动系各个分总成的工作原理以及作用:[2] 离合器:离合器位于发动机和变速箱之间的飞轮壳内,用螺钉将离合器总成固定在飞轮的后平面上,离合器的输出轴就是变速箱的输入轴。在汽车行驶过程中,驾驶员可根据需要踩下或松开离合器踏板,使发动机与变速箱暂时分离和逐渐接合,以切断或传递发动机向变速器输入的动力。离合器接合状态离合器切断状态离合器的功用主要有: 1、保证汽车平稳起步:起步前汽车处于静止状态,如果发动机与变速箱是刚性连接的,一旦挂上档,汽车将由于突然接上动力突然前冲,不但会造成机件的损伤,而且驱动力也不足以克服汽车前冲产生的巨大惯性力,使发动机转速急剧下降而熄火。如果在起步时利用离合器暂时将发动机和变速箱分离,然后离合器逐渐接合,由于离合器的主动部分与从动部分之间存在着滑磨的现象,可以使离合器传出的扭矩由零逐渐增大,而汽车的驱动力也逐渐增大,从而让汽车平稳地起步。 2、便于换档:汽车行驶过程中,经常换用不同的变速箱档位,以适应不断变化的行驶条件。如果没有离合器将发动机与变速箱暂时分离,那么变速箱中啮合的传力齿轮会因载荷没有卸除,其啮合齿面间的压力很大而难于分开。另一对待啮合齿轮会因二者圆周速度不等而难于啮合。即使强行进入啮合也会产生很大的齿端冲击,容易损坏机件。利用离合器使发动机和变速箱暂时分离后进行换档,则原来啮合的一对齿轮因载荷卸除,啮合面间的压力大大减小,就容易分开。而待啮合的另一对齿轮,由于主动齿轮与发动机分开后转动惯量很小,采用合适的换档动作就能使待啮合的齿轮圆周速度相等或接近相等,从而避免或减轻齿轮间的冲击。 3、防止传动系过载:汽车紧急制动时,车轮突然急剧降速,而与发动机相连的传动系由于旋转的惯性,仍保持原有转速,这往往会在传动系统中产生远大于发动机转矩的惯性矩,使传动系的零件容易损坏。由于离合器是靠磨擦力来传递转矩的,所以当传动系内载荷超过磨擦力所能传递的转矩时,离合器的主、从动部分就会自动打滑,因而起到了防止传动系过载的作用。

汽车启动电机的结构与工作原理

汽车起动机的结构与工作原理 前言在工作过程中就曾接触到汽车起动机,了解车辆对发动机起动机的工作要求,但是对汽车起动机的结构和工作原理并不清楚,借谭老师布置作业的这个机会,最近比较系统的查阅了汽车起动机的相关课件和参考书,了解了汽车起动机的结构及工作原理。汽车起动机由直流电机、传动装置和控制装置组成,直流电机没有特殊之处,比较容易理解,传动装置和控制装置结构较为特殊,本文重点整理了所查阅的汽车起动机的传动装置和控制装置的相关资料。 要使发动机由静止状态过渡到工作状态,必须用外力转动发动机的曲轴,使气缸内吸入(或形成)可燃混合气并燃烧膨胀,工作循环才能自动进行。汽车发动机常用的起动方式是用电动机作为机械动力,当将电动机轴上的齿轮与发动机飞轮周缘的齿圈啮合时,动力就传到飞轮和曲轴,使之旋转。电动机本身又用蓄电池作为能源。目前绝大多数汽车发动机都采用电动机起动。 起动机一般由直流电动机、传动机构、控制装置三部分组成。 图1 起动机 1.直流电动机 直流电动机在直流电压的作用下,产生旋转力矩。直流电动机主要由电枢、磁极、电刷、电刷架及壳体等部件组成。 1.1 电枢 电枢是直流电动机的转子部分,用来将电能转变为机械能,即在起动机通电时,与磁场相互作用而产生电磁转矩。

1.2 磁极 磁极是直流电动机的定子部分,用来产生电动机运转所必须的磁场,它由磁极铁心、安装在铁心上的励磁绕组及机壳组成。 1.3 电刷与电刷架 电刷用铜和石墨粉压制而成,一般含铜80%~90%,石墨10%~20%,以减小电刷电阻并增加其耐磨性。一般起动机电刷个数等于磁极个数,也有的大功率起动机电刷个数等于磁极个数的2倍,以便减小电刷上的电流密度。 2.传动装置 普通起动机传动装置中的主要组成部件是单向离合器,单向离合器的作用是起动时将电枢的电磁转矩传递给发动机飞轮,而在发动机起动后,就立即打滑,以防止发动机飞轮带动起动机电枢高速旋转而损坏起动机。起动机单向离合器常见的有滚柱式、摩擦片式、扭簧式等几种形式。 2.1滚柱式单向离合器 (1)结构特点 滚柱式单向离合器的外壳2与驱动齿轮1连为一体,外壳和十字块3装配后形成四个楔形槽,槽中有四个滚柱,滚柱的直径大于槽窄端又小于槽宽端,弹簧将滚柱推向槽窄端,使得滚柱与十字块及外壳表面有较小的摩擦力。十字块与传动套筒8刚性连接,传动套筒安装在电枢轴花键部位,使单向离合器总成可作轴向移动和随轴转动。 图2 滚柱式单向离合器 (2)工作原理 起动时,电枢轴通过花键带动传动套筒而使十字块转动,十字块相对于外壳作顺时针转动,使滚柱在小摩擦力的作用下滚向槽窄端而被卡紧,外壳即随十字块一起转动,电动机的电磁转矩便通过单向离合器传递给了驱动齿轮。发动机一旦发动,发动机飞轮

气压罐工作原理

消防稳压泵XBD 消防泵 点击放大 产品 型 号: XBD 产品 报 价: 产品特点: 消防稳压 泵是消防 水泵的另 一种叫 法,由于 消防泵在 消防系统 中起到消 防稳压的 作用,固 很多地方 把其叫做 消防稳压 泵,常见 的消防稳 压泵一般 分为单级 与多级两 种较多 消防稳压泵概述:

消防稳压泵是消防泵的另一种叫法,由于具有消防稳压的作用,固被叫做消防稳压泵。 XBD系列消防泵是我公司根据市场对消防泵的实际需要及其特殊的使用要求,严格按照国家最新颁布的GB6245-2006《消防泵》标准而研制开发的新型消防产品。经国家消防装备质量监督检测中心检测,各项性能指标均达到或超过标准的要求,并获得国家消防产品认证证书。 XBD系列分为立式单级、立式多级、便拆立式多级和卧式多级四种结构形式,以满足用户不同的使用需要 消防稳压泵用途: XBD系列消防水泵主要用于各企事业单位、工程建设、高层大厦等固定消防系统中的消防栓灭火系统、自动喷淋灭火系统等,可供输送100℃以下不含固体颗粒的清水及物理化学性质类似于水的介质,又可用于消防、生活、生产共用给水系统及建筑、市政给排水等。 消防稳压泵使用说明 启动前: 1、用手转动联轴器,转子部件应无卡死现象。 2、打开进口阀门、排气阀使水充满泵腔,然后关闭排气阀; 3、点动电机,确定转向是否正确; 运行: 1、全开进口阀门,关闭出口管路阀门。 2、接通电源,当泵转速达到正常后,再打开出口管道阀门,并调节到所需的工况点; 3、观察泵运行后的有无异常情况,如有异常情况应立即停车检查,处理后再运行; 停车: 1、逐渐关闭出口阀门后,切断电源; 2、关闭进口阀门; 3 、如环境温度低于0℃,应采取保暖措施。 消防稳压泵分类: 常见的消防稳压泵有立式单级消防泵、立式多级消防泵。 消防稳压泵安装说明 1、安装时管路重量不得承受在泵体上,否则易损坏泵; 2、泵与电机是整体结构,出厂时已由厂家校正,所以安装时无须调整,因此安装十分方便; 3、安装时务必拧紧地脚螺栓,且每间隔一定时段应对泵进行检查防止其松动,以免泵启动时发生剧烈振动而影响泵的性能; 4、为了维护方便和使用安全,在泵的出口管路上安装一只调节阀及在出口附近安装一只压力表,对于高扬程的泵,为防止水锤,还应在出口闸阀前安装一只止回阀以防止突然断电等失去动力事故,从而确保水泵在最佳工况下运行; 5、泵用于有吸程的场合,应装有底阀,并且进口管道不应有过多的弯道,同时不得有漏气漏水等现象,以免影响水泵的吸入能力; 6、为了不使杂质进入泵内而堵塞流道影响性能,应在泵进口前面安装过滤器; 7、应定期(一般为15天)试运行泵,运行时间为1小时左右,以防止紧急时刻抱轴卡死不能运行。 XBD消防稳压泵订货须知: 一、按照使用条件决定泵的规格、材料、冷却和米饭管理系统及原动机。在订货时应提供流量(Q)、扬程(H)、吸入压力、密度、温度及介

汽车刹车制动系统工作原理图解

汽车刹车制动系统工作原理图解 想必不需要多问,大家都知道在行车过程中,汽车制动功能是非常重要的,因为刹车制动直接关系到车主的生命财产安全,如果知道不好,那是极度危险的,学习了解汽车制动工作原理,有利于在今后的开车过程中熟练掌握刹车技能,在日常汽车维护中也能自己修理刹车制动部件。随着酒后代驾、商务代驾、婚庆代驾等代驾行业的兴起,标志着中国交通社会文明程度的不断提升。当然,对代驾司机提出了更多的驾驶技能要求,不仅要会驾驶各种品牌的汽车,更要懂得在紧急情况下如何处理应急问题,因此第一代驾为广大司机整理了全面的汽车刹车制动系统工作原理图解知识。 实际刹车与工作原理图解

●制动系统的组成 作为制动系统,作用当然就是让行驶中的汽车按我们的意愿进行减速甚至停车。工作原理就是将汽车的动能通过摩擦转换成热能。汽车制动系统主要由供能装置、控制装置、

传动装置和制动器等部分组成,常见的制动器主要有鼓式制动器和盘式制动器。 ●鼓式制动器 鼓式制动器主要包括制动轮缸、制动蹄、制动鼓、摩擦片、回位弹簧等部分。主要是通过液压装置是摩擦片与岁车轮转动的制动鼓内侧面发生摩擦,从而起到制动的效果。 在踩下刹车踏板时,推动刹车总泵的活塞运动,进而在油路中产生压力,制动液将压力传递到车轮的制动分泵推动活塞,活塞推动制动蹄向外运动,进而使得摩擦片与刹车鼓发生摩擦,从而产生制动力。 从结构中可以看出,鼓式制动器是工作在一个相对封闭的环境,制动过程中产生的热量不易散出,频繁制动影响制动效果。不过鼓式制动器可提供很高的制动力,广泛应用于重型车上。 ●盘式制动器 盘式制动器也叫碟式制动器,主要由制动盘、制动钳、摩擦片、分泵、油管等部分构成。盘式制动器通过液压系统把压力施加到制动钳上,使制动摩擦片与随车轮转动的制动盘发生摩擦,从而达到制动的目的。 与封闭式的鼓式制动器不同的是,盘式制动器是敞开式的。制动过程中产生的热量可以很快散去,拥有很好的制动效能,现在已广泛应用于轿车上。

消防水系统气压罐的工作原理

消防水系统气压罐得工作原理 消防水系统气压罐有带气囊得与不带气囊得两种;其工作原理就就是水泵启动后,水进入有空气得压力罐,空气压缩,当在小流量得情况下,空气膨胀,将罐内得水压出,使水泵不至于在小流量得情况下启动。消防器件得工作原理之--压力开关 压力开关就是一种简单得压力控制装置,当被测压力达到额定值时,压力开关可发出警报或控制信号。压力开关得工作原理就是:当被测压力超过额定值时,弹性元件得自由端产生位移,直接或经过比较后推动开关元件,改变开关元件得通断状态,达到控制被测压力得目得。压力开关采用得弹性元件有单圈弹簧管、膜片、膜盒及波纹管等. 开关元件有磁性开关、水银开关、微动开关等。 压力开关得开关形式有常开式与常闭式两种. 压力开关用在空压机上面主要就是来调节空压机得起停状态,通过调节储气罐内得压力来让空压机停机休息,对机器有保养作用、在空压机工厂调试得时候,根据客户需要调节到指定压力,然后设定一个压差、例如,压缩机开始启动,向储气罐打气,到压力10kg得时候,空压机停机或者卸载,当压力到7kg得时候空压机又开始启动,此间有一个压力差,这个过程就可以让压缩机休息一下,达到保护空压机得作用、 由电动机直接驱动压缩机,使曲轴产生旋转运动,带动连杆使活塞产生往复运动,引起气缸容积变化。由於气缸内压力得变化,通过进气阀使空气经过空气滤清器(消声器)进入气缸,在压缩行程中,由於

气缸容积得缩小,压缩空气经过排气阀得作用,质量流量计经排气管,单向阀(止回阀)进入储气罐,当排气压力达到额定压力0、7MPa时由压力开关控制而自动停机。当储气罐压力降至0、5--0、6MPa时压力开关自动联接启动 随着电子技术与信息技术得飞速发展,压力测量与自动控制技术已深入到人们生活与工作得各个领域,作为压力量得控制方式之一得压力开关已不仅仅局限于对某一点压力得开闭式两态控制,而就是在开关控制得基础上要同时能够实现分辨压力大小,对控制点连续设定,进行远距离信号传输等功能,因此电子压力开关代替各种机械式压力开关已逐渐成为应用得主流. 自动喷淋泵得压力开关得工作原理就是什么 正常情况下管网中有一定压力得水,当系统中报警阀上面得水压低于下面水压时(或者系统中有喷头动作,人为在放水测试时,)就会造成报警阀动作,这时压力开关动作,把报警信号传入控制中心,提示启动喷淋泵,(新安装得系统,这时压力开关信号直接进入喷淋泵控制柜)如控制柜在自动状态,这时喷淋泵就会启动. 消防器件得工作原理之-—湿式报警阀 系统组成:湿式喷水灭火系统由末端试水装置、闭式喷头、压力开关、管道系统、水流指示器、湿式报警阀、报警装置与供水设施等组成。 工作原理:当火灾发生时,高温气流使闭式喷头得热敏元件动作,喷头打开喷水.管网中得水由静止变为流动,水流指示器在水流得作用

制动系统的一般工作原理

制动系统的一般工作原理 制动系统的一般工作原理是,利用与车身(或车架)相连的非旋转元件和与车轮(或传动轴)相连的旋转元件之间的相互摩擦来阻止车轮的转动或转动的趋势。 可用一种简单的液压制动系统示意图来说明制动系统的工作原理。一个以内圆面为工作表面的金属制动 鼓固定在车轮轮毂上,随车轮一同旋转。在固定不动的制动底板上,有两个支承销,支承着两个弧形制动蹄的下端。制动蹄的外圆面上装有摩擦片。制动底板上还装有液压制动轮缸,用油管5与装在车架上的液压制动主缸相连通。主缸中的活塞3可由驾驶员通过制动踏板机构来操纵。 当驾驶员踏下制动踏板,使活塞压缩制动液时,轮缸活塞在液压的作用下将制动蹄片压向制动鼓,使制动鼓减小转动速度,或保持不动。 使机械运转部件停止或减速所必须施加的阻力矩称为制动力矩。制动力矩是设计、选用制动器的依据,其大小由机械的型式和工作要求决定。制动器上所用摩擦材料(制动件)的性能直接影响制动过程,而影响其性能的主要因素为工作温度和温升速度。摩擦材料应具备高而稳定的摩擦系数和良好的耐磨性。摩擦材料分金属和非金属两类。前者常用的有铸铁、钢、青铜和粉末冶金摩擦材料等,后者有皮革、橡胶、木材和石棉等。 在了解某款车型的刹车系统时,您可能经常会听到“前盘后鼓”或“前碟后鼓”这四个字,那么,它到底是什么意思呢?最近就有读者通过电子邮件询问有关汽车制动系统的问题,比如盘式制动器和鼓式制动器的区别,通风盘和实心盘的不同之处等等。 目前车市中很多发动机排量较小的中低档车型,其制动系统大多采用“前盘后鼓式”,即前轮采用盘式制动器,后轮采用鼓式制动器,比如常见的一汽大众捷达、长安铃木奥拓及羚羊、比亚迪福莱尔、东风悦达起亚千里马、上海通用赛欧等等。我们先来简单了解一下后轮经常采用的鼓式制动器。 实际应用差别很明显,盘刹比鼓刹好用。刹车鼓中的石棉材料会致癌。鼓刹与盘刹各有利弊。在刹车效果上,鼓刹与盘刹的相差并不大,因为刹车时,是轮胎和地面的摩擦力让车子逐渐停止下来的。如果车身小巧,车身重量轻,后轮采用鼓刹就足以使轮胎和地面产生足够的摩擦力了。如果后轮使用盘刹,ABS和EBD系统也会自动降低其刹车力度,以保证后轮不会失去抓地力出现打滑、抱死现象。 散热性上,盘刹要比鼓刹散热快,通风盘刹的散热效果更好;在灵敏度上,盘刹会

气压罐原理结构

消防水系统气压罐有带气囊的和不带气囊的两种;其工作原理就是水泵启动后,水进入有空气的压力罐,空气压缩,当在小流量的情况下,空气膨胀,将罐内的水压出,使水泵不至于在小流量的情况下启动。 气压罐结构(图) 标签:气压结构 上一篇:[转贴]OnlineNIC公司恶意注册域下一篇:气压罐原理(图) 膨胀罐的结构: 膨胀罐按结构可分为隔膜式和气囊式两种,如下图: 隔膜式膨胀罐及其隔膜气囊式膨胀罐及其气囊

对隔膜式膨胀罐来讲,其罐体和隔膜之间预充有一定压力的氮气,气囊式膨胀罐是罐体可气囊之间预充有一定压力的氮气 膨胀罐的工作原理: 有上面其结构可知:当膨胀罐用于系统中时,由于系统压力比预充气体的压力,所以会有一部分工作介质进入气囊内(对隔膜式来讲是进入罐体内),直到达到新的平衡,当系统压力再度升高,系统压力再次大于预充气体的压力,又会有一部分介质进入囊内,压缩囊和罐体间的气体,气体被压缩压力升高,当升高到跟系统压力一致时,介质停止进入,反之,当系统压力下降,系统内介质压力低于囊和罐体间的气体压力,气囊内的水会被气体挤出补充到系统内,使系统压力升高,直到系统工作介质压力跟囊和罐体间的气体压力相等,囊内的水不再外系统补给,维持动态的平衡。 膨胀罐的作用: 膨胀罐被广泛应用于中央空调、锅炉、热水器、变频、恒压供水设备中,其缓冲系统压力波动,消除水锤起到稳压卸荷的作用,在系统内水压轻微变化时,膨胀罐气囊的自动膨胀收缩会对水压的变化有一定缓冲作用,能保证系统的水压稳定,水泵不会因压力的改变而频繁的开启。 隔膜式膨胀罐的缺点: 1.因为隔膜式膨胀罐壳体是直接与水接触的,所以壳内都喷涂防锈层。罐的接口与壳体之间是焊接而成。 这样在焊接的过程中,高温就会将防锈涂层氧化。本来是银白色的涂层,在焊接后呈现黑色。用手触摸可感觉有黑色小颗粒。那么这些看似微不足道的氧化点工作时长期与水接触,慢慢就会生锈并逐渐扩大,直到整个罐体生锈,为什么这种膨胀罐用一段时间后,倒出来来的水呈黄水也就不足为奇了。 2.隔膜式膨胀罐的内膜是通过热轧的方式固定在膨胀罐的两个半壳的碳钢中间,这种工艺过程如果处理的不好,就会留下微小的气孔在内膜和碳钢之间,这些微小的气孔就会将预充的气体泄露出去,膨胀罐如果泄露气体,90%就是从这里泄露的。这种漏气的膨胀罐用一段时间如果不再补充气体就不能起到定压卸荷作用。而这本身是很难察觉。由于罐壁厚度一般在1mm左右,接口直接与罐焊接在一起,这种联接方式可承受的扭力相当小。而安装罐时只能抱着壳体旋转,这样如果用力太大或过猛,就会将接口旋断。这种情况在空调生产过程中最为常见。气囊式膨胀罐就克服了这些缺点气囊式膨胀罐内部有一个整体的气囊,在工作时水只进入气囊内,不与壳体接触。接口处用法兰盘连接。这种结构就避免了焊接过程引起的生锈问题。这种结构的膨胀罐的气囊可更换。同样,由于是法兰连接,故它的接口就可以承受很大的扭力,在安装过程中就不怕会扭断接口。 气压罐原理(图) 标签:气压原理 上一篇:气压罐结构(图)下一篇:DR-700AG工业级气动研磨机(图)

消防稳压气压罐的工作原理

消防稳压(气压)罐的工作原理 消防稳压罐(又名:消防气压罐)用于顶层消防给水的增压也是设计常用的一种增压设施。气压罐的主要作用是提供足够的消防水压,而贮存少量的消防用水,室内10min的消防水量仍然贮存在屋顶水箱中,因此,消防气压罐的容积较小,这是与其它气压给水系统的不同之处。 一、消防稳压(气压)罐的工作原理 消防气压罐的消防水总容积分为3个部分,即消防贮水容积(调节容积)、缓冲水容积和稳压水容积,如图1所示。 系统平时的压力由稳压泵提供,当压力升高,达到稳压水容积的高水位时,稳压泵自动停止运行;当压力降低,达到稳压水容积的低水位时,稳压泵自动开启,将稳压水容积提升到最高水位。如此循环以保持系统的高压状态。 当发生火灾时,随着消火栓的投入使用,系统压力开始下降,当降至消防贮水容积的最低水位时,停止稳压泵,自动开启消防泵灭火。 二、消防稳压(气压)罐的设计计算 气压罐增压系统的设计计算内容主要有两个部分,即气压罐总容积的计算和每个压力控制点压力值的计算。 总容积的计算确定所选压力罐的大小,压力的计算确定稳压泵的启、停范围以及开启消防泵的压力值。 1、气压罐的总容积V 气压罐的总容积一般按公式V= βVX÷(1- αb)计算。 式中:V为气压罐的总容积m3;VX为消防水总容积等于消防贮水容积、缓冲水容积和稳压水容积之和;β为气压罐的容积系数,卧式、立式、隔膜式气压罐的容积系数分别为1.25,1.10和1.05;αb为气压罐最低工作压力和最高工作压力之比(以绝对压力计),一般宜采用0.65~0.85。 消防贮水总容积(VX):设置气压罐的目的是为了保证火灾发生初期消防泵没有启动之前消火栓和喷头所需的水压,这段时间约为30s。对于消火栓给水系统,按同时使用2支水枪(每支水枪流量5 L/s)计,消防贮水容积为2*5*30=300L;对于自动喷水灭火系统,按5个喷头同时开启,每个喷头以1 L/s计,消防贮水容积为5*1*30=150L。当2个系统共用气压罐时,消防贮水总容积为300 150=450L。 缓冲水容积V1一般不小于20L,稳压水容积V2一般不小于50L。 2、压力控制点压力值的计算 气压罐设4个压力控制点,如图2所示。其中:P1为气压罐最低工作压力点或气压罐充气压力,即消防贮水容积的下限水位压力,等于最不利点消火栓所需的水压Hmin,其计算方法同增压泵;P2为最高工作压力,即启动消防泵的压力值。按下式计算:

制动系统-各种阀类原理介绍

制定系统简要介绍一:制动系统零部件的介绍 2、制动系统零部件的接口标示 0——真空接口 1——进气接口 2——出气接口 3——排气接口(通大气) 4——控制接口(进入部件) 5——备用 6——备用 7——防冻液接口 8——润滑油接口(空气压缩机用) 9——冷却液接口(空气压缩机用)

3、制动系统零部件的工作原理 A、气制动阀 用途: 在双回路主制动系统的制动过程和释放过程中实现灵敏的随动控制。 工作原理: 在顶杆座a施加制动力,推动活塞c下移,关闭排气口d,打开进气门j,从11口来的压缩空气到达A腔,随后从21口输出到制动管路I。同时气流经孔D到B腔,作用在活塞f上,使活塞f 下行,关闭排气孔h,打开进气门g,由12口来的压缩空气到达c腔,从22口输出送到制动管路II。 解除制动时,21、22口的气压分别经排气门d和h从排气口3排向大气。 当第一回路失效时,阀门总成e推动活塞f向下移动,关闭排气门h,打开进气门g,使第二回路正常工作。当第二回路失效时,不影响第一回路正常工作。

B、快放阀 用途: 该总成可迅速地将制动气室中的压缩空气排入大气,以便迅速地解除制动工作原理: 气路中没有压力时,阀片a在本身弹力的作用下,使进气口和排气口处于关闭状态。 制动时,压缩空气从1口进入,将阀片a紧压在排气口上,气流经A腔从2口进入制动气室。 解除制动时,1口压力下降阀片a在气室压力作用下,关闭进气口,气室压力从2口进入3口迅速排入大气。 C、挂车阀 a、挂车阀(不带接流装置) 挂车控制阀(不带节流) 用途: 用以控制挂车或半挂车的制动,装于牵引车上。

适用于挂车是双管路制动系统,牵引车主制动是双回路系统,停车或是断气式制动。 工作原理: 图一:不带越前装置。 正常行使时,从手制动阀来的压缩空气从43口进入,使进气门h关闭、排气门C打开,2口无气压输出。 当操纵牵引车行车制动时,从制动阀第一回路来的压缩空气从41口进入A 腔,作用在活塞A上,使排气门C关闭,进气门h开启,2口则有输出。2口输出气压值的大小与41口气压值成正比例。当第一回路失效时,41口无气压出入,此时从制动阀第二回路来的压缩空气从42口进入。E腔,作用在膜片e上,使排气门C关闭,进气门h开启,2口有输出。2口输出气压值大小与42口气压值成正比例。当解除制动时,41、42口气压下降而43口气压上升、进气门h关闭,排气门C打开,B腔气压(2口气压)从排气口3进入大气。 图二:带越前装置。 原理同图一,越前作用是通过调节螺钉(i)调节弹簧(h)的力,使2口相对与41口的压力越前值最大可达100Kpa。 B、挂车阀(带接流装置) 用途 用以控制挂车或半挂车的制动,装于牵引车上。适用于挂车是是双回路制动系统,停车或紧急制动为断气式制动。 具有当挂车制动系统控制管路断裂或漏气会自动引起挂车制动的功能。 工作原理: 正常行驶时,从空压机来的压缩空气从11口进入,使柱塞i处于上面的位置,节流阀体上的节流通道全部打开,气压从21口输出直挂车充气双接头,一方面给挂车充气,另一方面又回到12口的输入c腔。当挂车控制管路连接断裂或漏气,则制动时在22口不能建立压力,从41口输入G腔的压缩空气。使柱塞i下移,节流孔被堵住,使11口到21口的气流受到很大的节流作用,同时进气门C打开,因而挂车充气管路中的压力很快经12口,进气阀门C从22口排入大气。阀的其它部分工作原理同不带节流装置的挂车控制阀。

SQL气压罐

SQL气压罐 SQL气压罐也叫隔膜气压罐或隔膜式气压罐,它广泛应用于中央空调循环水稳压系统,热水供应膨胀系统,采暖循环水补水稳压,消防给水、自动喷淋系统、消火栓给水系统的补水稳压,变频给水稳压,锅炉补水,气压式给水等场合,起稳压和缓冲水锤的作用. SQL气压罐的结构: SQL气压罐主要由碳钢罐体,橡胶气囊,充气口,进水法兰,支撑脚五部分组成,如下图: SQL气压罐的技术参数: 远明丰SQL气压罐的工作原理: 远明丰SQL气压罐是利用了气体比液体更容易被压缩的特性来工作的,当SQL气压罐安装到系统中时,由于系统压力比预充气体的压力大,所以会有一部分工作介质在系统压力的作用下挤入气囊内(对隔膜式来讲是进入罐体内),同时压缩气囊和罐体间的预充气体,预充气体被压缩,体积变小,压力升高,直到达到新的平衡,当系统开始工作,压力再度升高,系统压力再次大于预充气体的压力,又会有一部分介质进入囊内,压缩囊和罐体间的气体,预充气体被压缩压力升高,当升高到跟系统压力一致时,介质停止进入,反之,当系统压力下降,系统内介质压力低于囊和罐体间的气体压力,气囊内的水会被预充气体挤出补充到系统内,使系统压力不会下降过多,直到系统工作介质压力跟囊和罐体间的气体压力相等,囊内

的水不再外系统补给,维持动态的平衡。 远明丰SQL气压罐使用说明 1.使用远明丰SQL气压罐前必须先充气,然后才能安装使用,一般出厂时已预充好一定压力的气体; 2.充气压力表压为0.2-0.3MPa,用户若认为此压力不合适,可在供应商的指导下进行充/放气; 3.在长期使用过程中发现表压低于0.2MPa时应及时补气,以免影响远明丰SQL气压罐的使用效果; 4.稳压泵在加压前,必须打开通往SQL气压罐的阀门,使SQL气压罐气囊内在自然压力前提下充满当确认补满水后再正常运行水泵; 5.在使用过程中出现表压不稳定,把补气阀打开,检查是否有出水现象,如有出水现象就表示隔膜已损坏需调换隔膜,再投入使用; 6.每使用6个月,定期进行检查维修,补气阀是否有漏气现象,压力表校验期是否到期,需校验; 7.远明丰SQL气压罐罐体标签上有注明工作温度和最大工作压力,严禁超出此范围使用; 8.应严格按公式来计算所需SQL气压罐的大小,SQL气压罐过小会引起安全阀的频繁起跳和自动补水阀的频繁补水; 9.更换SQL气压罐前应先把系统关停或者把SQL气压罐跟系统隔开,防止系统介质通过SQL 气压罐接口处泄露,更换的SQL气压罐最好跟原SQL气压罐体积、耐温和耐压一致。 远明丰SQL气压罐的安装 1.远明丰SQL气压罐可直接并联在给水管路上,给水管道上应安装阀门,罐体底部须安装排污阀。 2.安放远明丰SQL气压罐的房间或场所,应有排水设施,采光和通风良好,环境少灰尘,无腐蚀性气体,且不致冻结。环境温度宜为5-40℃,空气相对湿度不宜大于85%,水温不超过60℃。

相关主题
文本预览
相关文档 最新文档