高中物理 第1章 碰撞与动量守恒 1_1 探究动量变化与冲量的关系教师用书 沪科版选修3-5
- 格式:doc
- 大小:191.50 KB
- 文档页数:7
第1节碰__撞(对应学生用书页码P1)一、碰撞现象1.碰撞做相对运动的两个(或几个)物体相遇而发生相互作用,运动状态发生改变的过程。
2.碰撞特点(1)时间特点:在碰撞过程中,相互作用时间很短。
(2)相互作用力特点:在碰撞过程中,相互作用力远远大于外力。
(3)位移特点:在碰撞过程中,物体发生速度突变时,位移极小,可认为物体在碰撞前后仍在同一位置。
试列举几种常见的碰撞过程。
提示:棒球运动中,击球过程;子弹射中靶子的过程;重物坠地过程等。
二、用气垫导轨探究碰撞中动能的变化1.实验器材气垫导轨,数字计时器、滑块和光电门,挡光条和弹簧片等。
2.探究过程(1)滑块质量的测量仪器:天平。
(2)滑块速度的测量仪器:挡光条及光电门。
(3)数据记录及分析,碰撞前、后动能的计算。
三、碰撞的分类1.按碰撞过程中机械能是否损失分为:(1)弹性碰撞:碰撞过程中动能不变,即碰撞前后系统的总动能相等,E k1+E k2=E k1′+E k2′。
(2)非弹性碰撞:碰撞过程中有动能损失,即动能不守恒,碰撞后系统的总动能小于碰撞前系统的总动能。
E k1′+E k2′<E k1+E k2。
(3)完全非弹性碰撞:碰撞后两物体黏合在一起,具有相同的速度,这种碰撞动能损失最大。
2.按碰撞前后,物体的运动方向是否沿同一条直线可分为:(1)对心碰撞(正碰):碰撞前后,物体的运动方向沿同一条直线。
(2)非对心碰撞(斜碰):碰撞前后,物体的运动方向不在同一直线上。
(高中阶段只研究正碰)。
(对应学生用书页码P1)探究一维碰撞中的不变量1.探究方案方案一:利用气垫导轨实现一维碰撞 (1)质量的测量:用天平测量。
(2)速度的测量:v =ΔxΔt ,式中Δx 为滑块(挡光片)的宽度,Δt 为数字计时器显示的滑块(挡光片)经过光电门的时间。
(3)各种碰撞情景的实现:利用弹簧片、细绳、弹性碰撞架、胶布、撞针、橡皮泥设计各种类型的碰撞,利用滑块上加重物的方法改变碰撞物体的质量。
1.1 探究动量变化与冲量的关系[学习目标]1.理解冲量和动量的定义、公式、单位及矢量性.2.理解动量定理及其表达式.3.能够利用动量定理解释有关现象,解决有关实际问题.一、动量和冲量[导学探究] 在激烈的橄榄球赛场上,一个较瘦弱的运动员携球奔跑时迎面碰上了高大结实的对方运动员,自己被碰倒在地,而对方却几乎不受影响……,这说明运动物体产生的效果不仅与速度有关,而且与质量有关.(1)若质量为60kg的运动员(包括球)以5m/s的速度向东奔跑,他的动量是多大?方向如何?若他以大小不变的速率做曲线运动,他的动量是否变化?(2)若这名运动员与对方运动员相撞后速度变为零,他的动量的变化量多大?动量的变化量方向如何?答案(1)动量是300kg·m/s,方向向东;做曲线运动时他的动量变化了,因为方向变了.(2)—300kg·m/s,方向向西.[知识梳理] 动量和动量的变化量1.动量(1)定义:物体的质量m和速度v的乘积mv.(2)公式:p=mv.单位:kg·m/s.(3)动量的矢量性:动量是矢(填“矢”或“标”)量,方向与速度的方向相同.(4)动量是状态量:进行运算时必须明确是哪个物体在哪一状态(时刻)的动量.(5)动量具有相对性:由于速度与参考系的选择有关,一般以地球为参考系.2.冲量(1)冲量的定义式:I=Ft.(2)冲量是过程(填“过程”或“状态”)量,反映的是力在一段时间内的积累效应,求冲量时一定要明确是哪一个力在哪一段时间内的冲量.(3)冲量是矢(填“矢”或“标”)量,若是恒力的冲量,则冲量的方向与力F 的方向相同.[即学即用] 判断下列说法的正误.(1)动量相同的物体,运动方向一定相同.( √ )(2)一个物体(质量不变)的动量改变,它的动能一定改变.( × )(3)一个物体(质量不变)的动能改变,它的动量一定改变.( √ )(4)冲量是矢量,其方向与合外力的方向相反.( × )(5)力越大,力对物体的冲量越大.( × )(6)不管物体做什么运动,在相同的时间内重力的冲量相同.( √ )二、动量定理[导学探究]1.如图1所示,假定一个质量为m 的物体在碰撞时受到另一个物体对它的力是恒力F ,在F 的作用下,经过时间t ,物体的速度从v 变为v ′,应用牛顿第二定律和运动学公式推导物体的动量改变量Δp 与恒力F 及作用时间t 的关系.图1答案 该物体在碰撞过程中的加速度a =v ′-v t ① 根据牛顿第二定律F =ma ②由①②得F =m v ′-v t整理得:Ft =m (v ′-v )=mv ′-mv即Ft =Δp .2.在日常生活中,有不少这样的事例:跳远时要跳在沙坑里;跳高时在下落处要放海绵垫子;从高处往下跳,落地后双腿往往要弯曲;轮船边缘及轮渡的码头上都装有橡胶轮胎……这样做的目的是为了什么?答案 为了缓冲以减小作用力.[知识梳理]1.内容:物体所受合力的冲量等于物体的动量变化.2.公式:I =Ft =Δp .其中F 为物体受到的合外力.[即学即用] 判断下列说法的正误.(1)若物体在一段时间内,其动量发生了变化,则物体在这段时间内受到的合外力一定不为零.( √ )(2)物体受到的合力的冲量越大,它的动量变化量一定越大.( √ )(3)动量变化量为正,说明它的方向与初始时动量的方向相同.( × )一、对动量及其变化量的理解1.动量p =mv, 描述物体运动状态的物理量.是矢量,方向与速度的方向相同.2.动量的变化量(1)动量变化的三种情况:大小变化、方向变化、大小和方向同时变化(2)关于动量变化量的求解①若初、末动量在同一直线上,则在选定正方向的前提下,可化矢量运算为代数运算. ②若初、末动量不在同一直线上,运算时应遵循平行四边形定则.例1 羽毛球是速度较快的球类运动之一,运动员扣杀羽毛球的速度可达到100m/s ,假设球飞来的速度为50 m/s ,运动员将球以100m/s 的速度反向击回.设羽毛球的质量为10g ,试求:(1)运动员击球过程中羽毛球的动量变化量;(2)运动员击球过程中羽毛球的动能变化量.答案 (1)1.5kg·m/s,方向与羽毛球飞来的方向相反(2)37.5J解析 (1)以羽毛球飞来的方向为正方向,则p 1=mv 1=10×10-3×50kg·m/s=0.5 kg·m/s.p 2=mv 2=-10×10-3×100kg·m/s=-1 kg·m/s所以动量的变化量Δp =p 2-p 1=-1kg·m/s-0.5 kg·m/s=-1.5kg·m/s.即羽毛球的动量变化量大小为1.5kg·m/s,方向与羽毛球飞来的方向相反.(2)羽毛球的初动能:E k =12mv 12=12.5J ,羽毛球的末动能:E k ′=12mv 22=50J .所以ΔE k =E k ′-E k =37.5J.动量与动能的区别与联系1.区别:动量是矢量,动能是标量,质量相同的两个物体,动量相同时动能一定相同,但动能相同时,动量不一定相同.2.联系:动量和动能都是描述物体运动状态的物理量,大小关系为E k=p22m或p=2mE k. 二、冲量及冲量的计算1.求冲量大小时,一定要注意是哪一个力在哪一段时间内的冲量.2.公式I=Ft只适合于计算恒力的冲量,若是变力的冲量,可考虑用以下方法求解:(1)用动量定理I=mv′-mv求冲量.(2)若力随时间均匀变化,则可用平均力求冲量.图2(3)若给出了力F随时间t变化的图像,可用F-t图像与t轴所围成的面积求冲量.如图2所示,力F在1s内的冲量I1=F1t1=20×1N·s=20N·s力F在6s内的冲量I=(20×1-10×5) N·s=-30N·s例2在倾角为37°的足够长的斜面上,有一质量为5kg的物体沿斜面滑下,物体与斜面间的动摩擦因数μ=0.2,求物体下滑2s的时间内,物体所受各力的冲量.(g取10m/s2,sin37°=0.6,cos37°=0.8)答案见解析解析物体沿斜面下滑的过程中,受重力、支持力和摩擦力的作用.冲量I=Ft,是矢量.重力的冲量I G=Gt=mgt=5×10×2N·s=100N·s,方向竖直向下.支持力的冲量I N=Nt=mg cos37°·t=5×10×0.8×2N·s=80N·s,方向垂直于斜面向上.摩擦力的冲量I f=ft=μmg cos37°·t=0.2×5×10×0.8×2N·s=16N·s,方向沿斜面向上.1.在求力的冲量时,首先明确是求哪个力的冲量,是恒力还是变力,如果是恒力,可用I=Ft进行计算,如果是变力,可考虑根据动量定理求冲量.2.注意不要忘记说明冲量的方向.力为恒力时,冲量的方向与力的方向相同.三、动量定理的理解和应用1.对动量定理的理解(1)动量定理反映了合外力的冲量是动量变化的原因.(2)动量定理的表达式是矢量式,运用动量定理解题时,要注意规定正方向.(3)公式中的F 是物体所受的合外力,若合外力是变力,则F 应是合外力在作用时间内的平均值.2.应用动量定理定量计算的一般步骤 选定研究对象,明确运动过程→进行受力分析,确定初、末状态 →选取正方向,列动量定理方程求解例3 如图3所示,用0.5kg 的铁锤把钉子钉进木头里,打击时铁锤的速度为4.0m/s ,如果打击后铁锤的速度变为0,打击的作用时间是0.01s ,那么:图3(1)不计铁锤受到的重力,铁锤钉钉子时,钉子受到的平均作用力是多大?(2)考虑铁锤受的重力,铁锤钉钉子时,钉子受到的平均作用力又是多大?(g 取10m/s 2) 答案 (1)200N ,方向竖直向下(2)205N ,方向竖直向下解析 (1)以铁锤为研究对象,不计重力时,铁锤只受到钉子的平均作用力,方向竖直向上,设为F 1,取竖直向上为正,由动量定理可得F 1t =0-mv所以F 1=-0.5×(-4.0)0.01N =200N ,方向竖直向上. 由牛顿第三定律知,铁锤钉钉子时,钉子受到的平均作用力为200N ,方向竖直向下.(2)若考虑重力,设此时铁锤受钉子的平均作用力为F 2,对铁锤应用动量定理,取竖直向上为正.则(F 2-mg )t =0-mvF 2=-0.5×(-4.0)0.01N +0.5×10N=205N ,方向竖直向上. 由牛顿第三定律知,此时铁锤钉钉子时钉子受到的平均作用力为205N ,方向竖直向下.用动量定理进行定量计算时应注意:(1)列方程前首先选取正方向;(2)分析速度时一定要选取同一参考系,一般选地面为参考系;(3)公式中的冲量应是合外力的冲量,求动量的变化量时要严格按公式,且要注意动量的变化量是末动量减去初动量.例4 (多选)对下列几种物理现象的解释,正确的是( )A .击钉时,不用橡皮锤仅仅是因为橡皮锤太轻B .跳远时,在沙坑里填沙,是为了减小冲量C .易碎品运输时,要用柔软材料包装,船舷常常悬挂旧轮胎,都是为了延长作用时间以减小作用力D .在车内推车推不动,是因为车与人组成的系统所受合外力的冲量为零答案 CD解析 击钉时,不用橡皮锤是因为橡皮锤与钉子的作用时间长;跳远时,在沙坑里填沙,是为了延长人与地的接触时间,所以A 、B 错误;据动量定理Ft =Δp 知,当Δp 相同时,t 越长,作用力越小,故C 项正确;车能否移动或运动状态能否改变取决于外力的作用,与内部作用力无关,所以D 项正确.针对训练 从高处跳到低处时,为了安全,一般都是让脚尖先着地,这样做是为了( )A .减小冲量B .减小动量的变化量C .延长与地面的冲击时间,从而减小冲力D .增大人对地面的压强,起到安全作用答案 C解析 脚尖先着地,接着逐渐到整个脚着地,延缓了人落地时动量变化所用的时间,由动量定理可知,人落地时的动量变化量为定值,这样就减小了地面对人的冲力,故C 项正确.利用动量定理解释现象的问题主要有三类:(1)Δp一定,t短则F大,t长则F小.(2)F一定,t短则Δp小,t长则Δp大.(3)t一定,F大则Δp大,F小则Δp小.1.(对动量定理的理解)(多选)下面关于物体动量和冲量的说法,正确的是( )A.物体所受合外力冲量越大,它的动量也越大B.物体动量发生变化,则物体所受合外力冲量不为零C.物体动量增量的方向,就是它所受合外力的冲量方向D.物体所受合外力冲量越大,它的动量变化量就越大答案BCD2.(对冲量的理解和计算)(多选)恒力F作用在质量为m的物体上,如图4所示,由于地面对物体的摩擦力较大,没有被拉动,则经过时间t,下列说法正确的是( )图4A.拉力F对物体的冲量大小为零B.拉力F对物体的冲量大小为FtC.拉力F对物体的冲量大小是Ft cosθD.合力对物体的冲量大小为零答案BD3.(动量定理的分析应用)篮球运动员通常要伸出两臂迎接传来的篮球,两臂随球迅速收缩至胸前,这样做可以( )A.减小球对手的冲量B.减小球对人的冲击力C.减小球的动量变化量D.减小球的动能变化量答案 B解析篮球运动员接球的过程中,手对球的冲量等于球的动量的变化量,大小等于球入手时的动量,接球时,两臂随球迅速收缩至胸前,并没有减小球对手的冲量,也没有减小球的动量变化量,更没有减小球的动能变化量,而是延长了手与球的作用时间,从而减小了球对人的冲击力,B 正确.4.(动量定理的计算)0.2kg 的小球竖直向下以6m/s 的速度落至水平地面,再以4 m/s 的速度反向弹回,取竖直向上为正方向,g =10m/s 2.(1)求小球与地面碰撞前后的动量变化量的大小?(2)若小球与地面的作用时间为0.2s ,则小球受到地面的平均作用力的大小为多少? 答案 (1)2kg·m/s (2)12N解析 (1)小球与地面碰撞前的动量为:p 1=m (-v 1)=0.2×(-6) kg·m/s=-1.2 kg·m/s 小球与地面碰撞后的动量为:p 2=mv 2=0.2×4 kg·m/s=0.8 kg·m/s小球与地面碰撞前后动量的变化量为Δp =p 2-p 1=2 kg·m/s.(2)由动量定理得(F -mg )Δt =Δp所以F =Δp Δt +mg =20.2 N +0.2×10 N=12 N.一、选择题考点一 对动量和动量变化量的理解1.关于动量,以下说法正确的是( )A .做匀速圆周运动的质点,其动量不随时间发生变化B .悬线拉着的摆球在竖直面内摆动时,每次经过最低点时的动量均相同C .匀速飞行的巡航导弹巡航时动量始终不变D .平抛运动的质点在竖直方向上的动量与运动时间成正比答案 D解析 做匀速圆周运动的质点速度方向时刻变化,故动量时刻变化,A 项错;单摆的摆球相邻两次经过最低点时动量大小相等,但方向相反,故B 项错;巡航导弹巡航时虽速度不变,但由于燃料不断燃烧(导弹中燃料占其总质量的一部分,不可忽略),从而使导弹总质量不断减小,导弹动量减小,故C 项错;平抛运动的质点在竖直方向上的分运动为自由落体运动,在竖直方向的分动量p y =mv y =mgt ,故D 项对.2.质量为0.5kg 的物体,运动速度为3m/s ,它在一个变力作用下速度变为7 m/s ,方向和原来方向相反,则这段时间内动量的变化量为( )A .5kg·m/s,方向与原运动方向相反B.5kg·m/s,方向与原运动方向相同C.2kg·m/s,方向与原运动方向相反D.2kg·m/s,方向与原运动方向相同答案 A解析以原来的运动方向为正方向,由定义式Δp=mv′-mv得Δp=(-7×0.5-3×0.5) kg·m/s=-5kg·m/s,负号表示Δp的方向与原运动方向相反.考点二对冲量的理解和计算3.放在水平桌面上的物体质量为m,用一个大小为F的水平推力推它t秒,物体始终不动,那么t秒内,推力的冲量大小是( )A.F·t B.mg·tC.0 D.无法计算答案 A4.质量为1kg的物体做直线运动,其速度-时间图像如图1所示,则物体在前10s内和后10s内所受合外力的冲量分别是( )图1A.10N·s,10N·s B.10N·s,-10N·sC.0,10N·s D.0,-10N·s答案 D解析由题图图像可知,在前10 s内初、末状态的动量相同,p1=p2=5 kg·m/s,由动量定理知I1=0;在后10 s内末状态的动量p3=-5 kg·m/s,由动量定理得I2=p3-p2=-10 N·s,故正确答案为D.5.质量为m的钢球由高处自由落下,以速率v1碰地,竖直向上弹回,碰撞时间极短,离地的速率为v2.在碰撞过程中,地面对钢球的冲量的方向和大小为( )A.向下,m(v1-v2) B.向下,m(v1+v2)C.向上,m(v1-v2) D.向上,m(v1+v2)答案 D解析 设竖直向上的方向为正方向,对钢球应用动量定理得Ft -mgt =mv 2-(-mv 1)=mv 2+mv 1由于碰撞时间极短,t 趋于零,则mgt 趋于零.所以Ft =m (v 2+v 1),即弹力的冲量方向向上,大小为m (v 2+v 1).6.(多选)一细绳系着小球,在光滑水平面上做匀速圆周运动,小球质量为m ,速度大小为v ,做圆周运动的周期为T ,则以下说法中正确的是( )A .经过时间t =T 2,小球动量变化量为0 B .经过时间t =T 4,小球动量变化量大小为2mv C .经过时间t =T 2,细绳对小球的冲量大小为2mv D .经过时间t =T 4,重力对小球的冲量大小为mgT 4答案 BCD解析 经过时间t =T 2,小球转过了180°,速度方向正好反向,若规定开始计时时的速度方向为正,则动量变化量为Δp =-mv -mv =-2mv ,细绳对小球的冲量为I =Δp =-2mv ,故大小为2mv ,A 错误,C 正确;经时间t =T 4,小球转过了90°,根据矢量合成法可得,动量变化量大小为Δp ′=2mv ,重力对小球的冲量大小为I G =mgt =mgT 4,B 、D 正确.7.水平推力F 1和F 2分别作用于水平面上等质量的甲、乙两物体上,作用一段时间后撤去推力.物体将继续运动一段时间后停下来.两物体的v -t 图像如图2所示.图中线段AB ∥CD ,则整个运动过程中( )图2A .F 1的冲量大于F 2的冲量B .F 1的冲量等于F 2的冲量C .两物体受到的摩擦力大小相等D .两物体受到的摩擦力大小不等答案 C解析甲、乙先做加速运动,撤去推力后做减速运动.题图中线段AB∥CD,表明甲、乙与水平面的动摩擦因数相同.又甲、乙质量相等,所以两物体受到的摩擦力大小相等,所以选项C正确,D错误;因为整个运动过程中物体的动量改变量为零.所以推力的冲量大小等于物体受到的摩擦力的冲量大小.由题图可知甲的运动时间小于乙的运动时间.所以甲受到的摩擦力的冲量小于乙受到的摩擦力的冲量,则F1的冲量小于F2的冲量,所以选项A、B错误.考点三动量定理的分析和计算8.从某高处落下一个鸡蛋,分别落到相同高度的棉絮上和水泥地上,下列结论正确的是( ) A.落到棉絮上的鸡蛋不易破碎,是因为它的动量变化小B.落到水泥地上的鸡蛋易碎,是因为它受到的冲量大C.落到棉絮上的鸡蛋不易破碎,是因为它的动量变化率大D.落到水泥地上的鸡蛋易碎,是因为它的动量变化快答案 D9.(多选)如图3所示,把重物G压在纸带上,用一水平力缓慢拉动纸带,重物跟着纸带一起运动,若迅速拉动纸带,纸带将会从重物下抽出,下列解释正确的是( )图3A.在缓慢拉动纸带时,重物和纸带间摩擦力大B.在迅速拉动纸带时,纸带给重物的摩擦力小C.在缓慢拉动纸带时,纸带给重物的冲量大D.在迅速拉动纸带时,纸带给重物的冲量小答案CD二、非选择题10.(冲量和动量的计算)将质量为m=1kg的小球,从距水平地面高h=5m处,以v0=10m/s 的水平速度抛出,不计空气阻力,g取10 m/s2.求:(1)抛出后0.4s内重力对小球的冲量;(2)平抛运动过程中小球动量的增量Δp;(3)小球落地时的动量大小p ′.答案 (1)4N·s,方向竖直向下(2)10N·s,方向竖直向下 (3)102kg·m/s解析 (1)重力是恒力,0.4s 内重力对小球的冲量I 1=mgt 0=1×10×0.4N·s=4N·s,方向竖直向下.(2)由于平抛运动的竖直分运动为自由落体运动,故h =12gt 2, 落地时间t =2hg =1s .小球飞行过程中只受重力作用,所以合外力的冲量为I =mgt =1×10×1N·s=10N·s,方向竖直向下.由动量定理得Δp =I =10N·s,方向竖直向下.(3)小球落地时竖直分速度为v y =gt =10m/s.由速度合成知,落地速度v =v 0 2+v y 2=102+102m/s =102m/s ,所以小球落地时的动量大小为p ′=mv =102kg·m/s.11.(动量定理的应用)质量为m 的物体静止在足够大的水平面上,物体与水平面间的动摩擦因数为μ,重力加速度为g ,有一水平恒力F 作用于物体上,并使之加速前进,经时间t 1后撤去此恒力,求物体运动的总时间t .答案 Ft 1μmg解析 方法一:物体的运动可分为两个阶段,第一阶段水平方向受F 、f 两个力的作用,时间为t 1,物体由A 运动到B 速度达到v 1;第二阶段物体水平方向只受力f 的作用,时间为t 2,由B 运动到C ,速度由v 1变为0.设向右为正,据动量定理:第一阶段(F -f )t 1=mv 1-0=mv 1第二阶段:-f ·t 2=0-mv 1=-mv 1两式相加:F·t1-f(t1+t2)=0因为f=μmg,代入得t2=(F-μmg)t1μmg所以总时间t=t1+t2=Ft1μmg.方法二:把两个阶段当成一个过程来看:F作用t1时间,μmg则作用了t时间,动量变化Δp =0.F·t1-μmgt=0,t=Ft1μmg.12.(动量定理的应用)为估算池中睡莲叶面承受雨滴撞击产生的平均压强,小明在雨天将一圆柱形水杯置于露台,测得1小时内杯中水位上升了45mm.查询得知,当时雨滴竖直下落的速度约为12m/s.据此估算该压强约为多少(设雨滴撞击睡莲后无反弹,不计雨滴重力,雨水的密度为1×103kg·m-3).答案0.15Pa解析下雨天,雨滴对睡莲叶面持续的作用可以看作是恒力,取单位面积的睡莲叶面,t=1h =3600s时间内,打到该叶面的雨水质量为m=ρSh.根据动量定理,mv=Ft,其中F就是单位面积上的压力,所以F=mvt=ρShvt=1.0×103×1×0.045×123600N=0.15N.所以ρ=FS=0.15Pa.。
第一节 物体的碰撞第二节(1) 动量 动量守恒定律[目标定位] 1.探究物体弹性碰撞的一些特点,知道弹性碰撞和非弹性碰撞.2.理解动量、冲量的概念,知道动量的变化量也是矢量.3.理解动量定理并能解释和解决实际问题.4.理解动量与动能、动量定理与动能定理的区别.一、物体的碰撞1.碰撞时间内产生非常大的相互作用的过程.其最主要特点是:相互极短碰撞就是两个或两个以上的物体在相遇的等.大和作用力峰值变化快,作用力时间短作用 2.碰撞的分类(1)按碰撞前后,物体的运动方向是否沿同一条直线可分为:沿同一条直线.:作用前后)对心碰撞(碰正① 不沿同一条直线.:作用前后)非对心碰撞(斜碰② (2)按碰撞过程中机械能是否损失分为:′.k2E +′k1E =k2E +k1E ,相等弹性碰撞:碰撞前后系统的动能① .k2E +k1E <′k2E +′k1E 非弹性碰撞:碰撞前后系统的动能不再相等,② 二、动量及其改变1.冲量的乘积.力的作用时间与力定义:物体受到的(1) .Ft =I 定义式:(2) .N·s ,符号为秒·牛顿单位:在国际单位制中,冲量的单位是(3) 2.动量的乘积.速度和它的质量定义:运动物体的(1) .mv =p 定义式:(2) .1-kg·m·s ,符号为千克米每秒单位:在国际单位制中,动量的单位是(3) (4)方向:动量是矢量,其方向与速度方向相同.3.动量的变化量.)矢量式(0p -p =p Δ,)也是矢量(的矢量差初动量与末动量物体在某段时间内 4.动量定理动量的改变量.的冲量,等于物体合力内容:物体所受(1) .0mv -t mv =Ft 公式:(2)预习完成后,请把你疑惑的问题记录在下面的表格中问题1 问题2 问题3一、弹性碰撞和非弹性碰撞1.碰撞中能量的特点:碰撞过程中,一般伴随机械能的损失,即:E k1+E k2≤E k10+E k20.2.弹性碰撞:两个物体碰撞后形变能够完全恢复,碰撞后没有动能转化为其他形式的能,即碰撞前后两物体构成的系统的动能相等.3.非弹性碰撞:两个物体碰撞后形变不能完全恢复,该过程有动能转化为其他形式的能,总动能减少.非弹性碰撞的特例:两物体碰撞后粘在一起以共同的速度运动,该碰撞称为完全非弹性碰撞,碰撞过程能量损失最多.【例1】 一个质量为2 kg 的小球A 以v 0=3 m/s 的速度与一个静止的、质量为1 kg 的小球B 正碰,试根据以下数据,分析碰撞性质: (1)碰后小球A 、B 的速度均为2 m/s ;(2)碰后小球A 的速度为1 m/s ,小球B 的速度为4 m/s. 答案 (1)非弹性碰撞 (2)弹性碰撞 解析 碰前系统的动能E k0=12m A v 02=9 J.(1)当碰后小球A 、B 速度均为2 m/s 时,碰后系统的动能E k =12m A v A2+12m B v B2=(12×2×22+12×1×22)J =6 J <E k0,故该碰撞为非弹性碰撞.(2)当碰后v A ′=1 m/s ,v B ′=4 m/s 时,碰后系统的动能E k ′=12m A v A ′2+12m B v B ′2=(12×2×12+12×1×42)J =9 J =E k0,故该碰撞为弹性碰撞.针对训练1 现有甲、乙两滑块,质量分别为3m 和m ,以相同的速率v 在光滑水平面上相向运动,发生了碰撞.已知碰撞后甲滑块静止不动,乙滑块反向运动,且速度大小为2v .那么这次碰撞是( ) A .弹性碰撞 B .非弹性碰撞 C .完全非弹性碰撞 D .条件不足,无法确定答案 A解析 碰前总动能:E k =12·3m ·v 2+12mv 2=2mv 2碰后总动能:E k ′=12mv ′2=2mv 2,E k =E k ′,所以A 对.二、对动量和动量变化量的理解1.动量:p =mv ,动量是矢量,方向与速度v 的方向相同. 2.动量和动能的区别动量和动能都是描述物体运动状态的物理量,动量p =mv 是矢量,而动能E k =12mv 2是标量.当速度发生变化时,物体的动量一定发生变化,而动能不一定发生变化. 3.动量的变化量(Δp ) Δp =p -p 0(1)若p 、p 0在同一条直线上,先规定正方向,再用正、负号表示p 、p 0的方向,则可用Δp =p -p 0=mv t -mv 0进行代数运算.(2)动量变化量的方向:与速度变化的方向相同.【例2】 羽毛球是速度较快的球类运动之一,运动员扣杀羽毛球的速度可达到342 km/h ,假设球飞来的速度为90 km/h ,运动员将球以 342 km/h 的速度反向击回.设羽毛球的质量为5 g ,试求: (1)运动员击球过程中羽毛球的动量变化量;(2)在运动员的这次扣杀中,羽毛球的动能变化量是多少? 答案 (1)0.6 kg·m/s,方向与球飞来的方向相反 (2)21 J解析 (1)以球飞来的方向为正方向,则 羽毛球的初速度v 1=903.6 m/s =25 m/s末速度v 2=-3423.6m/s =-95 m/sp 1=mv 1=5×10-3×25 kg·m/s=0.125 kg·m/sp 2=mv 2=-5×10-3×95 kg·m/s=-0.475 kg·m/s 所以动量的变化量Δp =p 2-p 1=-0.475 kg·m/s-0.125 kg·m/s=-0.6 kg·m/s.即羽毛球的动量变化量大小为0.6 kg·m/s,方向与球飞来的方向相反. (2)羽毛球的初动能:E k =12mv 21≈1.56 J,羽毛球的末动能:E k ′=12mv 22≈22.56 J.所以ΔE k =ΔE k ′-E k =21 J. 借题发挥 关于动量变化量的计算(1)若初、末动量在同一直线上,则在选定正方向的前提下,可化矢量运算为代数运算. (2)若初、末动量不在同一直线上,运算时应遵循平行四边形定则. 三、对动量定理的理解和应用 1.动量定理的理解(1)动量定理的表达式Ft =mv t -mv 0是矢量式,等号包含了大小相等、方向相同两方面的含义. (2)动量定理反映了合外力的冲量是动量变化的原因.(3)公式中的F 是物体所受的合外力,若合外力是变力,则F 应是合外力在作用时间内的平均值. 2.动量定理的应用 (1)定性分析有关现象:①物体的动量变化量一定时,力的作用时间越短,力就越大;力的作用时间越长,力就越小. ②作用力一定时,力的作用时间越长,动量变化量越大;力的作用时间越短,动量变化量越小. (2)应用动量定理定量计算的一般步骤: ①选定研究对象,明确运动过程. ②进行受力分析和运动的初、末状态分析. ③选定正方向,根据动量定理列方程求解.【例3】 在水平力F =30 N 的作用下,质量m =5 kg 的物体由静止开始沿水平面运动.已知物体与水平面间的动摩擦因数μ=0.2,若F 作用6 s 后撤去,撤去F 后物体还能向前运动多长时间才停止?(g 取10 m/s 2) 答案 12 s解析 法一 用动量定理解,分段处理.选物体为研究对象,对于撤去F 前物体做匀加速运动的过程,受力情况如图甲所示,始态速度为零,终态速度为v .取水平力F 的方向为正方向, 根据动量定理有(F -μmg )t 1=mv -0,对于撤去F 后,物体做匀减速运动的过程,受力情况如图乙所示,始态速度为v ,终态速度为零.根据动量定理有-μmgt 2=0-mv . 以上两式联立解得t 2=F -μmg μmg t 1=30-0.2×5×100.2×5×10×6 s=12 s. 法二 用动量定理解,研究全过程.选物体作为研究对象,研究整个运动过程,这个过程的始、终状态的物体速度都等于零. 取水平力F 的方向为正方向,根据动量定理得 (F -μmg )t 1+(-μmg )t 2=0解得t 2=F -μmg μmg t 1=30-0.2×5×100.2×5×10×6 s=12 s.针对训练2 质量为0.5 kg 的弹性小球,从1.25 m 高处自由下落,与地板碰撞后回跳高度为0.8 m ,g 取10 m/s 2.(1)若地板对小球的平均冲力大小为100 N ,求小球与地板的碰撞时间;(2)若小球与地板碰撞无机械能损失,碰撞时间为0.1 s ,求小球对地板的平均冲力. 答案 (1)0.047 s (2)55 N ,方向竖直向下 解析 (1)碰撞前的速度:v 1=2gh1=5 m/s 方向竖直向下碰撞后的速度:v 2=2gh2=4 m/s 方向竖直向上取竖直向上为正方向,碰撞过程由动量定理得: (F -mg )Δt =mv 2-(-mv 1) 解得Δt ≈0.047 s(2)由于小球与地板碰撞无机械能损失 故碰撞后球的速度:v 2′=5 m/s ,方向竖直向上由动量定理得(F ′-mg )Δt ′=mv 2′-(-mv 1) 解得F ′=55 N由牛顿第三定律得小球对地板的平均冲力大小为55 N ,方向竖直向下.对弹性碰撞和非弹性碰撞的理解1.质量为1 kg 的A 球以3 m/s 的速度与质量为2 kg 静止的B 球发生碰撞,碰后两球均以1 m/s 的速度一起运动.则两球的碰撞属于______类型的碰撞,碰撞过程中损失了______J 动能.答案 完全非弹性 3解析 由于两球碰后速度相同,没有分离,因此两球的碰撞属于完全非弹性碰撞,在碰撞过程中损失的动能为t2v )B m +A m (12-02v A m 12=k E Δ3 J.=) J 2×3×112-2×1×312(= 对动量和动量变化量的理解2.关于动量,下列说法正确的是( ) A .速度大的物体,它的动量一定也大 B .动量大的物体,它的速度一定也大C .只要物体运动的速度大小不变,物体的动量也保持不变D .质量一定的物体,动量变化越大,该物体的速度变化一定越大答案 D解析 动量由质量和速度共同决定,只有质量和速度的乘积大,动量才大,A 、B 均错误;动量是矢量,速度方向变化,动量也发生变化,选项C 错误;由Δp =m ·Δv ,知D 正确.动量定理的理解和应用3.(多选)一个小钢球竖直下落,落地时动量大小为0.5 kg·m/s,与地面碰撞后又以等大的动量被反弹.下列说法中正确的是( )A .引起小钢球动量变化的是地面给小钢球的弹力的冲量B .引起小钢球动量变化的是地面对小钢球弹力与其自身重力的合力的冲量C .若选向上为正方向,则小钢球受到的合冲量是-1 N·sD .若选向上为正方向,则小钢球的动量变化是1 kg·m/s答案 BD4.质量为60 kg 的建筑工人,不慎从高空跌下,幸好弹性安全带的保护使他悬挂起来.已知弹性安全带的)(,则安全带所受的平均冲力的大小为210 m/s 取g ,5 m ,安全带自然长度为1.5 s 缓冲时间是 A .500 N B .1 100 N C .600 ND .1 000 N 答案 D解析 建筑工人下落5 m 时速度为v , 10 m/s.=m/s 2×10×5=2gh =v 则 设安全带所受平均冲力为F ,则由动量定理得:(mg -F )t =-mv1 000 N.=N 60×101.5+60×10 N =mv t+mg =F 所以(时间:60分钟)题组一 对碰撞的理解,1E 反向运动,其动能大小为1发生碰撞,碰后球2与静止钢球1的钢球0E .在光滑的水平面上,动能为1)(,则必有2E 的动能大小为2球 0E <1E .A 0E =1E .B0E >2E .C0E =2E .D 答案 A项对.A 故只有.0E <2E ,0E <1E ,必有0E ≤2E +1E 根据碰撞前后动能关系得 解析2. (多选)如图1所示,A 、B 两个小球发生碰撞,在满足下列条件时能够发生正碰的是( )图1A .小球A 静止,另一个小球B 经过A 球时刚好能擦到A 球的边缘 B .小球A 静止,另一个小球B 沿着A 、B 两球球心连线去碰A 球C .相碰时,相互作用力的方向沿着球心连线时D .相碰时,相互作用力的方向与两球相碰之前的速度方向在同一条直线上答案 BD解析 根据牛顿运动定律,如果力的方向与速度方向在同一条直线上,这个力只改变速度的大小,不能改变速度的方向;如果力的方向与速度的方向不在同一直线上,则速度的方向一定发生变化,所以B 、D 项正确;A 项不能发生一维碰撞;在任何情况下相碰两球的作用力方向都沿着球心连线,因此满足C 项条件不一定能发生一维碰撞.图乙为它们碰撞前后的.2m 和1m 甲所示,在光滑水平面上的两个小球发生正碰,小球的质量分别为2.如图3,由此可以判断:0.3 kg =2m ,0.1 kg =1m 图象.已知t -s图2碰撞过程中系④ 碰撞过程中系统机械能守恒③ 都向右运动1m 和2m 碰后② 向右运动1m 静止,2m 碰前①统损失了0.4 J 的机械能 以上判断正确的是( )A .①③B .①②③C .①②④D .③④ 答案 A是正①向右运动,故1m 静止,2m 位移不变,可知2m 加,位移随时间均匀增1m 由题图乙可以看出,碰前 解析的速1m 错误;由题图乙可以计算出碰前②确的;碰后一个位移增大,一个位移减小,说明运动方向不一致,,碰撞过程中系统损失的2 m/s =2v ,碰后速度0=20v 的速度20m ,碰前2 m/s =-1v ,碰后速度4 m/s =10v 度错误的.是④是正确的,③,因此0=22v 2m 12-12v 1m 12-102v 1m 12=k E Δ机械能 题组二 对动量的理解4.(多选)下列说法中正确的是( )A .物体的速度大小改变时,物体的动量一定改变B .物体的速度方向改变时,其动量不一定改变C .物体的动量不变,其速度一定不变D .运动物体在任一时刻的动量方向,一定是该时刻的速度方向答案 ACD5.(多选)下列说法中正确的是( )A .动能变化的物体,动量一定变化B .动能不变的物体,动量一定不变C .动量变化的物体,动能一定变化D .动量不变的物体,动能一定不变答案 AD正确;当动A ,所以动能变化,则动量的大小一定变化,2mv 12=k E ,动能是标量,mv =p 动量是矢量, 解析量的大小不变,只是方向变化时,物体的动能不变,B 、C 错误;动量不变的物体,速度一定不变,则动能一定不变,D 正确.6.下列说法正确的是( )A .动能为零时,物体一定处于平衡状态B .物体做曲线运动时动量一定变化C .物体所受合外力不变时,其动量一定不变D .动能不变,物体的动量一定不变答案 B解析 动能为零时,速度为零,而加速度不一定等于零,物体不一定处于平衡状态,选项A 错误;物体做曲线运动时速度方向一定变化,所以动量一定变化.选项B 正确;合外力不变且不为0时,加速度不变,速度均匀变化,动量一定变化,C 项错误;动能不变,若速度的方向变化,动量就变化,选项D 错误.题组三 动量定理的理解与计算7.(多选)从同样高度落下的玻璃杯,掉在水泥地上容易打碎,而掉在草地上不容易打碎,其原因是( )A .掉在水泥地上的玻璃杯动量大,掉在草地上的玻璃杯动量小B .掉在水泥地上的玻璃杯动量改变大,掉在草地上的玻璃杯动量改变小C .掉在水泥地上的玻璃杯动量改变快,掉在草地上的玻璃杯动量改变慢D .掉在水泥地上的玻璃杯与地面接触时,相互作用时间短,而掉在草地上的玻璃杯与地面接触时作用时间长 答案 CD解析 杯子是否被撞碎,取决于撞击地面时,地面对杯子的撞击力大小.规定竖直向上为正方向,设玻璃杯=p ,则落地前瞬间的动量大小为m ,设玻璃杯的质量为2gh ,则落地瞬间的速度大小为h 下落高度为相同,再2gh m =p Δ时间后,杯子停下,在此过程中,玻璃杯的动量变化t Δ,与水泥或草地接触2gh m 越小,玻璃杯所受撞击力越t Δ由此可知,.mg +m 2ghΔt=F ,所以2gh m =t )·Δmg -F (由动量定理可知大,玻璃杯就越容易碎,杯子掉在草地上作用时间较长,动量变化慢,作用力小,因此玻璃杯不易碎.8.如图3所示,一铁块压着一纸条放在水平桌面上,当以速度v 抽出纸条后,铁块掉到地面上的P 点,若以2v 速度抽出纸条,则铁块落地点( )图3A .仍在P 点B .在P 点左侧C .在P 点右侧不远处D .在P 点右侧原水平位移的两倍处答案 B解析 以2v 速度抽出纸条时,纸条对铁块作用时间减少,而纸条对铁块的作用力相同,故与以速度v 抽出相比,纸条对铁块的冲量I 减小,铁块获得的动量减少,平抛的速度减小,水平射程减小,故落在P 点的左侧.9.如图4所示,运动员挥拍将质量为m 的网球击出.如果网球被拍子击出前、后瞬间速度的大小分别为)(忽略网球的重力,则此过程中拍子对网球作用力的冲量.1v >2v 方向相反,且2v 与1v ,2v 、1v图4方向相同1v ,方向与)1v -2v (m .大小为A 方向相同1v ,方向与)1v +2v (m .大小为B 方向相同2v ,方向与)1v -2v (m .大小为C 方向相同2v ,方向与)1v +2v (m .大小为D 答案 D+2v (m =)1mv -(-2mv =I 方向为正方向,对网球运用动量定理有2v 在球拍拍打网球的过程中,选取 解析方向相同.2v ,方向与)1v +2v (m ,即拍子对网球作用力的冲量大小为)1v 速度为零然后又下滑,经过时1t 的斜面向上滑动,经过时间θ的小滑块沿倾角为m 所示,质量为5如图10.在整个过程中,重力对滑块的总冲量为.1F 回到斜面底端,滑块在运动过程中受到的摩擦力大小始终为2t 间( )图5)2t +1t (θsin mg .A)2t -1t (θsin mg .B )2t +1t (mg .C0.D 答案 C解析 谈到冲量必须明确是哪一个力的冲量,此题中要求的是重力对滑块的总冲量,根据冲量的定义式I =正确.C ,即)2t +1t (mg =G I ,因此重力对滑块的总冲量应为重力乘以作用时间,所以Ft 增大v 内速度由2t Δ,在时间v 增大到0内速度由1t Δ作用下做直线运动,在时间F .物体在恒定的合力11)(那么.2I ,冲量是2W 内做的功是2t Δ;在1I ,冲量是1W 内做的功是1t Δ在F 设.v 2到 2W =1W ,2I <1I .A 2W <1W ,2I <1I .B2W =1W ,2I =1I .C2W <1W ,2I =1I .D 答案 D,mv =0-mv =1t ΔF =1I ,内1t Δ在 解析 ,mv =mv -mv 2=2t ΔF =2I ,内2t Δ在 ,2I =1I 所以,2mv 12=1W 又因为 ,2mv 32=2mv 12-2)v (2m 12=2W .正确D 选项,2W <1W 所以 12.质量为0.5 kg 的小球沿光滑水平面以5 m/s 的速度冲向墙壁后又以4 m/s 的速度反向弹回,如图6所示,若球跟墙的作用时间为0.05 s ,则小球所受到的平均力大小为________N.图6答案 901mv -2mv =-Ft 的方向为正方向,对小球应用动量定理得1v 小球与墙碰撞的过程,取选定 解析 90 N =-N -0.5×4-0.5×50.05=-mv2-mv1t =F 所以, “-”号说明F 的方向向左.13.蹦床是运动员在一张绷紧的弹性网上蹦跳、翻滚并做各种空中动作的运动项目.一个质量为60 kg 的运动员,从离水平网面3.2 m 高处自由下落,着网后沿竖直方向蹦回到离水平网面5 m 高处.已知运动员与网)210 m/s 取g (力的大小..若把这段时间内网对运动员的作用力当作恒力处理,求此1.2 s 接触的时间为 N31.5×10 答案 .)竖直向下(2gh1=1v 处下落,刚接触网时速度的大小1h 的质点,从高m 将运动员看做质量为 解析 ,刚离网时速度的大小2h 弹跳后到达的高度为 .)竖直向上(2gh2=2v 选竖直向上为正方向.)]1v -(-2v [m =t )·Δmg -F (由动量定理得 由以上各式解得2gh2+2gh1Δtm+mg =F N31.5×10=F 代入数据得 第二节(2) 动量 动量守恒定律[目标定位] 1.理解系统、内力、外力的概念.2.理解动量守恒定律的内容及表达式,理解其守恒的条件.3.会用动量守恒定律解决实际问题.一、系统、内力与外力物体组成一个力学系统.两个.系统:具有相互作用的1 2.内力:系统中,物体间的相互作用力. 其他物体对系统的作用力.外部.外力:系统3 二、动量守恒定律为零,则系统的总动量保持不变.所受到的合外力.内容:如果系统1 组成的系统,常写成:2m 、1m .表达式:对两个物体2.2v 2m +1v 1m =20v 2m +10v 1m 想一想如图1所示,在风平浪静的水面上,停着一艘帆船,船尾固定一台电风扇,正在不停地把风吹向帆面,船能向前行驶吗?为什么?图1答案 不能.把帆船和电风扇看做一个系统,电风扇和帆船受到空气的作用力大小相等、方向相反,这是一对内力,系统总动量守恒,船原来是静止的,总动量为零,所以在电风扇吹风时,船仍保持静止.预习完成后,请把你疑惑的问题记录在下面的表格中问题1 问题2 问题3一、对动量守恒定律的理解 1.研究对象相互作用的物体组成的系统. 2.动量守恒定律的成立条件 (1)系统不受外力或所受合外力为零.(2)系统受外力作用,但内力远大于外力,此时动量近似守恒.(3)系统所受到的合外力不为零,但在某一方向上合外力为零或某一方向上内力远大于外力,则系统在该方向上动量守恒.3.动量守恒定律的几个性质(1)矢量性.公式中的v 10、v 20、v 1和v 2都是矢量,只有它们在同一直线上,并先选定正方向,确定各速度的正、负后,才能用代数方法运算.(2)相对性.速度具有相对性,公式中的v 10、v 20、v 1和v 2应是相对同一参考系的速度,一般取相对地面的速度.(3)同时性.相互作用前的总动量,这个“前”是指相互作用前同一时刻,v 10、v 20均是此时刻的瞬时速度;同理,v 1、v 2应是相互作用后的同一时刻的瞬时速度.【例1】 (多选)在光滑水平面上A 、B 两小车中间有一弹簧,如图2所示,用手抓住小车并将弹簧压缩后使两小车处于静止状态.将两小车及弹簧看做一个系统,下面说法正确的是( )图2A .两手同时放开后,系统总动量始终为零B .先放开左手,再放开右手后,动量不守恒C .先放开左手,后放开右手,总动量向左D .无论何时放手,两手放开后,在弹簧恢复原长的过程中,系统总动量都保持不变,但系统的总动量不一定为零答案 ACD解析 在两手同时放开后,水平方向无外力作用,只有弹簧的弹力(内力),故动量守恒,即系统的总动量始终为零,A 对;先放开左手,再放开右手后,是指两手对系统都无作用力之后的那一段时间,系统所受合外力也为零,即动量是守恒的,B 错;先放开左手,系统在右手作用下,产生向左的作用力,故有向左的冲量,后放开右手,系统的动量守恒,即此后的总动量向左,C 对;其实,无论何时放开手,只要是两手都放开后就满足动量守恒的条件,即系统的总动量都保持不变,D 对.运动,正前方有一静止的、质量沿光滑水平地面向前v ,以速度1m 所示,甲木块的质量为3如图 针对训练)(的乙木块,乙木块上连有一轻质弹簧.甲木块与弹簧接触后2m 为图3A .甲木块的动量守恒B .乙木块的动量守恒C .甲、乙两木块所组成系统的动量守恒D .甲、乙两木块所组成系统的动能守恒答案 C解析 两木块在光滑水平地面上相碰,且中间有弹簧,则碰撞过程系统的动量守恒,机械能也守恒,故选项A 、B 错误,选项C 正确;甲、乙两木块碰撞前、后动能总量不变,但碰撞过程中有弹性势能,故动能不守恒,选项D 错误.二、动量守恒定律的简单应用1.动量守恒定律的表达式及含义.p 等于相互作用后总动量0p :系统相互作用前总动量p =0p (1) :相互作用的两个物体组成的系统,一个物体的动量变化量与另一个物体的动量变化量大小2p Δ=-1p (2)Δ相等、方向相反.(3)Δp =0:系统总动量增量为零.:相互作用的两个物体组成的系统,作用前的动量和等于作用后的动量和.2v 2m +1v 1m =20v 2m +10v 1m (4) 2.应用动量守恒定律的解题步骤(1)确定相互作用的系统为研究对象;(2)分析研究对象所受的外力;(3)判断系统是否符合动量守恒条件;(4)规定正方向,确定初、末状态动量的正、负号;(5)根据动量守恒定律列式求解.50 =2m 的速率向右运动,恰遇上质量为30 cm/s =1v 的小球在光滑的水平桌面上以10 g =1m 质量 】2【例的速度大小和方向如1m 恰好停止,则碰后小球2m 的速率向左运动,碰撞后,小球10 cm/s =2v 的小球以g 何?答案 20 cm/s 方向向左解析 碰撞过程中,两小球组成的系统所受合外力为零,动量守恒.设向右为正方向,0.=2v ;10 cm/s =-20v ,30 cm/s =10v 则各小球速度为由动量守恒定律列方程,2v 2m +1v 1m =20v 2m +10v 1m 20 cm/s.=-1v 代入数据得 ,方向向左.20 cm/s 碰后的速度的大小为1m 故小球 借题发挥 处理动量守恒应用题“三步曲”(1)判断题目涉及的物理过程是否满足动量守恒的条件.(2)确定物理过程及其系统内物体对应的初、末状态的动量.(3)确定正方向,选取恰当的动量守恒的表达式列式求解.【例3】 如图4所示,将两个完全相同的磁铁(磁性极强)分别固定在质量相等的小车上,水平面光滑.开始时甲车速度大小为3 m/s ,乙车速度大小为2 m/s ,方向相反并在同一直线上.图4(1)当乙车速度为零时,甲车的速度多大?方向如何?(2)由于磁性极强,故两车不会相碰,那么两车的距离最小时,乙车的速度是多大?方向如何?答案 (1)1 m/s 方向向右 (2)0.5 m/s 方向向右解析 两个小车及磁铁组成的系统在水平方向不受外力作用,两车之间的磁力是系统内力,系统动量守恒.设向右为正方向.,′甲mv =乙mv -甲mv 据动量守恒得:(1) 代入数据解得,方向向右.1 m/s =2) m/s -(3=乙v -甲v =′甲v (2)两车相距最小时,两车速度相同,设为v ′,由动量守恒得:′.mv +′mv =乙mv -甲mv .,方向向右0.5 m/s =m/s 3-22=v 甲-v 乙2=mv 甲-mv 乙2m =′v 解得对动量守恒条件的理解1.把一支弹簧枪水平固定在小车上,小车放在光滑水平地面上,枪射出一颗子弹时,关于枪、弹、车,下列说法正确的是( )A .枪和弹组成的系统动量守恒B .枪和车组成的系统动量守恒C .枪弹和枪筒之间的摩擦力很小,可以忽略不计,故二者组成的系统动量近似守恒D .枪、弹、车三者组成的系统动量守恒答案 D解析 内力、外力取决于系统的划分,以枪和弹组成的系统,车对枪的作用力是外力,系统动量不守恒,枪和车组成的系统受到系统外弹簧对枪的作用力,系统动量不守恒;枪弹和枪筒之间的摩擦力属于内力,但枪筒受到车的作用力,属于外力,故二者组成的系统动量不守恒;枪、弹、车组成的系统所受合外力为零,系统动量守恒.故D 正确.2.(多选)木块a 和b 用一根轻弹簧连接起来,放在光滑水平面上,a 紧靠在墙壁上.在b 上施加向左的水平力使弹簧压缩,如图5所示.当撤去外力后,下列说法正确的是( )图5A .a 尚未离开墙壁前,a 和b 组成的系统动量守恒B .a 尚未离开墙壁前,a 和b 组成的系统动量不守恒C .a 离开墙壁后,a 和b 组成的系统动量守恒D .a 离开墙壁后,a 和b 组成的系统动量不守恒答案 BC解析 a 尚未离开墙壁前,墙壁对a 有冲量,a 和b 构成的系统动量不守恒;a 离开墙壁后,系统所受合外力等于零,系统的动量守恒.动量守恒定律的简单应用3.甲、乙两物体在光滑水平面上沿同一直线相向运动,甲、乙物体的速度大小分别为 3 m/s 和 1 m/s ;碰撞后甲、乙两物体都反向运动,速度大小均为2 m/s.则甲、乙两物体质量之比为( )图6A .2∶3B .2∶5C .3∶5D .5∶3答案 C,代入2v 乙m +1v 甲m =-20v 乙m -10v 甲m 选取碰撞前甲物体的速度方向为正方向,根据动量守恒定律有 解析正确.C ,5∶3=乙m ∶甲m 数据,可得 4.如图7所示,进行太空行走的宇航员A 和B 的质量分别为80 kg 和100 kg ,他们携手远离空间站,相对空间站的速度为0.1 m/s.A 将B 向空间站方向轻推后,A 的速度变为0.2 m/s ,求此时B 的速度大小和方向.图7答案 0.02 m/s 远离空间站方向,B v B m +A v A m =0v )B m +A m (向为正方向.据动量守恒定律得方0v 以空间站为参考系,选远离空间站,即 解析,远离空间站方向.0.02 m/s = B v 代入数据解得(时间:60分钟)题组一 对动量守恒条件的理解1.关于系统动量守恒的条件,下列说法中正确的是( )A .只要系统内存在摩擦力,系统的动量就不可能守恒B .只要系统中有一个物体具有加速度,系统的动量就不守恒C .只要系统所受的合外力为零,系统的动量就守恒。
1 碰撞2 动量[目标定位] 1.知道什么是碰撞及碰撞的分类,掌握弹性碰撞和非弹性碰撞的区别.2.理解动量、冲量的概念,知道动量、冲量的方向.3.知道动量的改变量,并会求动量的改变量.4.理解动量定理的物理意义和表达式,能用动量定理解释现象和解决实际问题.一、碰撞1.碰撞现象做相对运动的两个(或几个)物体相遇而发生相互作用,在很短的时间内,它们的运动状态会发生显著变化,这一过程叫做碰撞.2.碰撞的分类(1)弹性碰撞:碰撞前后两滑块的总动能不变.(2)非弹性碰撞:碰撞后两滑块的总动能减少了.(3)完全非弹性碰撞:两物体碰后粘在一起,以相同的速度运动,完全非弹性碰撞过程动能损失最大.二、动量1.定义:运动物体的质量和速度的乘积叫动量;公式p=mv;单位:千克·米/秒,符号:kg·m/s.2.矢量性:方向与速度的方向相同.运算遵循平行四边形定则.3.动量是状态量.4.动量的变化量(1)定义:物体在某段时间内末动量与初动量的矢量差(也是矢量),Δp=p′-p(矢量式).(2)动量始终保持在一条直线上时的运算:选定一个正方向,动量、动量的变化量用带有正、负号的数值表示,从而将矢量运算简化为代数运算(此时的正、负号仅代表方向,不代表大小).想一想质量和速度大小相同的两个物体动能相同,它们的动量也一定相同吗?答案不一定.动量是矢量,有方向性,而动能是标量,无方向.三、动量定理1.冲量(1)定义:力与力的作用时间的乘积,公式:I=Ft,单位:牛顿·秒,符号N·s.(2)矢量性:方向与力的方向相同.2.动量定理(1)内容:物体所受合外力的冲量等于物体的动量变化.(2)公式:Ft =p ′-p 或I =Δp .预习完成后,请把你疑惑的问题记录在下面的表格中一、碰撞中的动能变化及碰撞分类(1)发生碰撞的两物体,若两物体的形变是弹性的,碰后能够恢复原状,两物体碰撞前后动能不变,这样的碰撞叫弹性碰撞.(2)发生碰撞的两物体,若两物体的形变是非弹性的,碰后不能够完全恢复原状,两物体碰撞后动能减少,这样的碰撞叫非弹性碰撞.(3)若两物体碰后粘在一起,不再分开,此过程两物体损失的动能最大,这样的碰撞叫完全非弹性碰撞.【例1】 一个质量为2 kg 的小球A 以v 0=3 m/s 的速度与一个静止的、质量为1 kg 的小球B 正碰.试根据以下数据,分析碰撞性质. (1)碰后A 、B 的速度均为2 m/s.(2)碰后A 的速度为1 m/s ,B 的速度为4 m/s. 答案 (1)非弹性碰撞 (2)弹性碰撞 解析 碰前系统的动能E k0=12m A v 20=9 J.(1)当碰后A 、B 速度均为2 m/s 时,碰后系统的动能E k =12m A v A 2+12m B v B 2=(12×2×22+12×1×22) J =6 J<E k0 故碰撞为非弹性碰撞.(2)当碰后v A =1 m/s ,v B =4 m/s 时,碰后系统的动能E k ′=12m A v 2A +12m B v 2B=(12×2×12+12×1×42) J =9 J =E k0 故碰撞为弹性碰撞. 二、动量和动量的变化1.对动量的理解(1)动量的矢量性:动量是矢量,它的方向与速度v的方向相同,遵循矢量运算法则.动量是状态量,进行运算时必须明确是哪个物体在哪一状态(时刻)的动量.(2)动量具有相对性:由于速度与参考系的选择有关,一般以地球为参考系.(3)动量与动能的区别与联系:①区别:动量是矢量,动能是标量.②联系:动量和动能都是描述物体运动状态的物理量,大小关系为E k=p22m或p=2mE k. 2.动量的变化(Δp)(1)Δp=p′-p为矢量式.若p′、p不在一条直线上,要用平行四边形定则求矢量差.若p′、p在一条直线上,先规定正方向,再用正、负表示p′、p,则可用Δp=p′-p=mv′-mv进行代数运算.(2)动量变化的方向:与速度变化的方向相同.【例2】质量为0.5 kg的物体,运动速度为3 m/s,它在一个变力作用下速度变为7 m/s,方向和原来方向相反,则这段时间内动量的变化量为( )A.5 kg·m/s,方向与原运动方向相反B.5 kg·m/s,方向与原运动方向相同C.2 kg·m/s,方向与原运动方向相反D.2 kg·m/s,方向与原运动方向相同答案 A解析以原来的方向为正方向,由定义式Δp=mv′-mv得Δp=(-7×0.5-3×0.5) kg·m/s=-5 kg·m/s,负号表示Δp的方向与原运动方向相反.借题发挥关于动量变化量的求解1.若初、末动量在同一直线上,则在选定正方向的前提下,可化矢量运算为代数运算.2.若初、末动量不在同一直线上,运算时应遵循平行四边形定则.三、对冲量的理解和计算1.冲量的理解(1)冲量是过程量,它描述的是力作用在物体上的时间累积效应,求冲量时一定要明确所求的是哪一个力在哪一段时间内的冲量.(2)冲量是矢量,冲量的方向与力的方向相同.2.冲量的计算(1)求某个恒力的冲量:用该力和力的作用时间的乘积.(2)求合冲量的两种方法:可分别求每一个力的冲量,再求各冲量的矢量和;另外,如果各个力的作用时间相同,也可以先求合力,再用公式I合=F合Δt求解.图1(3)求变力的冲量:①若力与时间成线性关系变化,则可用平均力求变力的冲量.②若给出了力随时间变化的图像如图1所示,可用面积法求变力的冲量.③利用动量定理求解.图2【例3】如图2所示,在倾角α=37°的斜面上,有一质量为5 kg的物体沿斜面滑下,物体与斜面间的动摩擦因数μ=0.2,求物体下滑2 s的时间内,物体所受各力的冲量.(g 取10 m/s2,sin 37°=0.6,cos 37°=0.8)答案见解析解析重力的冲量:I G=Gt=mg·t=5×10×2 N·s=100 N·s,方向竖直向下.支持力的冲量:I F=Ft=mg cos α·t=5×10×0.8×2 N·s=80 N·s,方向垂直斜面向上.摩擦力的冲量:I Ff=F f t=μmg cos α·t=0.2×5×10×0.8×2 N·s=16 N·s,方向沿斜面向上.借题发挥求各力的冲量或者合力的冲量,首先判断是否是恒力,若是恒力,可直接用力与作用时间的乘积,若是变力,要根据力的特点求解,或者利用动量定理求解.四、对动量定理的理解和应用1.动量定理的理解(1)动量定理的表达式Ft=p′-p是矢量式,等号包含了大小相等、方向相同两方面的含义.(2)动量定理反映了合外力的冲量是动量变化的原因.(3)公式中的F是物体所受的合外力,若合外力是变力,则F应是合外力在作用时间内的平均值.2.动量定理的应用(1)定性分析有关现象:①物体的动量变化量一定时,力的作用时间越短,力就越大;力的作用时间越长,力就越小.②作用力一定时,力的作用时间越长,动量变化量越大;力的作用时间越短,动量变化量越小.(2)应用动量定理定量计算的一般步骤:①选定研究对象,明确运动过程.②进行受力分析和运动的初、末状态分析.③选定正方向,根据动量定理列方程求解.【例4】跳远时,跳在沙坑里比跳在水泥地上安全,这是由于( )A.人跳在沙坑的动量比跳在水泥地上的小B.人跳在沙坑的动量变化比跳在水泥地上的小C.人跳在沙坑受到的冲量比跳在水泥地上的小D.人跳在沙坑受到的冲力比跳在水泥地上的小答案 D解析人跳远时从一定的高度落下,落地前的速度是一定的,初动量是一定的,所以选项A 错误;落地后静止,末动量一定,人的动量变化是一定的,选项B错误;由动量定理可知人受到的冲量等于人的动量变化,所以两种情况下人受到的冲量相等,选项C错误;落在沙坑里力作用的时间长,落在水泥地上力作用的时间短,根据动量定理,在动量变化一定的情况下,时间t越长则受到的冲力F越小,故选项D正确.【例5】质量m=70 kg的撑竿跳高运动员从h=5.0 m高处落到海绵垫上,经Δt1=1 s 后停止,则该运动员身体受到的平均冲力约为多少?如果是落到普通沙坑中,经Δt2=0.1 s 停下,则沙坑对运动员的平均冲力约为多少?(g取10 m/s2)答案 1 400 N 7 700 N解析以全过程为研究对象,初、末动量的数值都是0,所以运动员的动量变化量为零,根据动量定理,合力的冲量为零,根据自由落体运动的知识,物体下落到地面上所需要的时间是t=2hg=1 s从开始下落到落到海绵垫上停止时,mg(t+Δt1)-FΔt1=0代入数据,解得F=1 400 N下落到沙坑中时,mg(t+Δt2)-F′Δt2=0代入数据,解得F′=7 700 N.对弹性碰撞和非弹性碰撞的理解1.现有甲、乙两滑块,质量分别为3m和m,以相同的速率v在光滑水平面上相向运动,发生了碰撞.已知碰撞后甲滑块静止不动,乙滑块反向运动,且速度大小为2v.那么这次碰撞是( )A .弹性碰撞B .非弹性碰撞C .完全非弹性碰撞D .条件不足,无法确定答案 A解析 碰前总动能:E k =12·3m ·v 2+12mv 2=2mv 2碰后总动能:E k ′=12mv ′2=2mv 2,E k =E k ′,所以A 对.对动量和冲量的理解2.关于动量,下列说法正确的是( ) A .速度大的物体,它的动量一定也大 B .动量大的物体,它的速度一定也大C .只要物体运动的速度大小不变,物体的动量也保持不变D .质量一定的物体,动量变化越大,该物体的速度变化一定越大 答案 D解析 动量由质量和速度共同决定,只有质量和速度的乘积大,动量才大,A 、B 均错误;动量是矢量,只要速度方向变化,动量也发生变化,选项C 错误;由Δp =m Δv 知D 正确. 3.如图3所示,质量为m 的小滑块沿倾角为θ的斜面向上滑动,经过时间t 1速度为零然后又下滑,经过时间t 2回到斜面底端,滑块在运动过程中受到的摩擦力大小始终为F 1.在整个过程中,重力对滑块的总冲量为( )图3A .mg sin θ(t 1+t 2)B .mg sin θ(t 1-t 2)C .mg (t 1+t 2)D .0答案 C解析 谈到冲量必须明确是哪一个力的冲量,此题中要求的是重力对滑块的冲量,根据冲量的定义式I =Ft ,因此重力对滑块的冲量应为重力乘作用时间,所以I G =mg (t 1+t 2),即C 正确.动量定理的理解和应用4.(多选)一个小钢球竖直下落,落地时动量大小为0.5 kg·m/s,与地面碰撞后又以等大的动量被反弹.下列说法中正确的是( )A .引起小钢球动量变化的是地面给小钢球的弹力的冲量B .引起小钢球动量变化的是地面对小钢球弹力与其自身重力的合力的冲量C .若选向上为正方向,则小钢球受到的合冲量是-1 N·sD .若选向上为正方向,则小钢球的动量变化是1 kg·m/s 答案 BD5.质量为60 kg 的建筑工人,不慎从高空跌下,幸好弹性安全带的保护使他悬挂起来.已知弹性安全带的缓冲时间是1.5 s ,安全带自然长度为5 m ,g 取10 m/s 2,则安全带所受的平均冲力的大小为( )A .500 NB .1 100 NC .600 ND .1 000 N 答案 D解析 建筑工人下落5 m 时速度为v ,则v =2gh =2×10×5 m/s =10 m/s.设安全带所受平均冲力为F ,则由动量定理得:(mg -F )t =-mv ,所以F =mg +mv t =60×10 N+60×101.5N=1 000 N ,故D 对,A 、B 、C 错.(时间:60分钟)题组一 对弹性碰撞和非弹性碰撞的理解 1.下列属于弹性碰撞的是( ) A .钢球A 与钢球B B .钢球A 与橡皮泥球B C .橡皮泥球A 与橡皮泥球B D .木球A 与钢球B 答案 A解析 钢球A 与钢球B 发生碰撞,形变能够恢复,属于弹性碰撞,A 对;钢球A 与橡皮泥球B 、橡皮泥球A 与橡皮泥球B 碰撞,形变不能恢复,即碰后粘在一起,是完全非弹性碰撞,B 、C 错;木球A 与钢球B 碰撞,形变部分能够恢复,属于非弹性碰撞,D 错.2.在光滑的水平面上,动能为E 0的钢球1与静止钢球2发生碰撞,碰后球1反向运动,其动能大小记为E 1,球2的动能大小记为E 2,则必有( ) A .E 1<E 0 B .E 1=E 0 C .E 2>E 0 D .E 2=E 0 答案 A解析 根据碰撞前后动能关系得E 1+E 2≤E 0,必有E 1<E 0,E 2<E 0.故只有A 项对. 题组二 对动量和冲量的理解 3.下列说法正确的是( )A .动能为零时,物体一定处于平衡状态B.物体受到恒力的冲量也可能做曲线运动C.物体所受合外力不变时,其动量一定不变D.动能不变,物体的动量一定不变答案 B解析动能为零时,速度为零,而加速度不一定等于零,物体不一定处于平衡状态,选项A 错误;物体受恒力,也可能做曲线运动.如平抛运动,选项B正确;合外力不变,加速度不变,速度均匀变化,动量一定变化,C项错误;动能不变,若速度的方向变化,动量就变化,选项D错误.4.(多选)如图1所示为放到水平地面上的物体受到的合外力随时间变化的关系,若物体开始时是静止的,则前3 s内( )图1A.物体的位移为0B.物体的动量改变量为0C.物体的动能变化量为0D.前3 s合力冲量为零,但重力冲量不为零答案BCD解析第1 s内:F=20 N,第2、3 s内:F=-10 N,物体先加速,后减速,在第3 s末速度为零,物体的位移不为零,A错误;根据动量定理I=Δp,前3 s内,动量的变化量为零,B正确;由于初速度和末速度都为零,因此,动能变化量也为零,C正确;无论物体运动与否,某一个力在这段时间的冲量不为零,D正确.5.把质量为10 kg的物体放在光滑的水平面上,如图2所示,在与水平方向成53°的10 N 的力F作用下从静止开始运动,在2 s内力F对物体的冲量为多少?物体获得的动量是多少?(sin 53°=0.8,cos 53°=0.6)图2答案20 N·s12 kg·m/s解析首先对物体进行受力分析:与水平方向成53°的拉力F、重力G、支持力F N.由冲量定义可知,力F的冲量为I F=Ft=10×2 N·s=20 N·s.在水平方向,由牛顿第二定律得F cos 53°=ma2 s 末的速度v =at 物体获得的动量P =mv =Ft cos 53°=10×0.6×2 kg·m/s=12 kg·m/s.题组三 动量定理的理解及定性分析6.从同样高度落下的玻璃杯,掉在水泥地上容易打碎,而掉在草地上不容易打碎,其原因是( )A .掉在水泥地上的玻璃杯动量大,而掉在草地上的玻璃杯动量小B .掉在水泥地上的玻璃杯动量改变大,掉在草地上的玻璃杯动量改变小C .掉在水泥地上的玻璃杯动量改变快,掉在草地上的玻璃杯动量改变慢D .掉在水泥地上的玻璃杯与地面接触时,相互作用时间短,而掉在草地上的玻璃杯与地面接触时作用时间长 答案 CD解析 杯子是否被撞碎,取决于撞击地面时,地面对杯子的撞击力大小.规定竖直向上为正方向,设玻璃杯下落高度为h ,它们从h 高度落地瞬间的速度大小为2gh ,设玻璃杯的质量为m ,则落地前瞬间的动量大小为p =m 2gh ,与水泥或草地接触Δt 时间后,杯子停下,在此过程中,玻璃杯的动量变化Δp =-(-m 2gh )相同,再由动量定理可知(F -mg )·Δt =-(-m 2gh ),所以F =m 2ghΔt+mg .由此可知,Δt 越小,玻璃杯所受撞击力越大,玻璃杯就越容易碎,杯子掉在草地上作用时间较长,动量变化慢,作用力小,因此玻璃杯不易碎. 7.从高处跳到低处时,为了安全,一般都是让脚尖着地,这样做是为了( ) A .减小冲量 B .减小动量的变化量C .增大与地面的冲击时间,从而减小冲力D .增大人对地面的压强,起到安全作用 答案 C解析 脚尖先着地,接着逐渐到整只脚着地,延缓了人落地时动量变化所用的时间,由动量定理可知,人落地动量变化一定,这样就减小了地面对人的冲力,故C 正确.8.质量为m 的钢球自高处落下,以速度大小v 1碰地,竖直向上弹回,碰撞时间极短,离地的速度大小为v 2.在碰撞过程中,地面对钢球的冲量的方向和大小为( )A .向下,m (v 1-v 2)B .向下,m (v 1+v 2)C .向上,m (v 1-v 2)D .向上,m (v 1+v 2)答案 D解析 物体以大小为v 1的竖直速度与地面碰撞后以大小为v 2的速度反弹.物体在与地面碰撞过程的初、末状态动量皆已确定.根据动量定理便可以求出碰撞过程中钢球受到的冲量.设垂直地面向上的方向为正方向,对钢球应用动量定理得Ft -mgt =mv 2-(-mv 1)=mv 2+mv 1 由于碰撞时间极短,t 趋于零,则mgt 趋于零.所以Ft =m (v 2+v 1),即弹力的冲量方向向上,大小为m (v 2+v 1).题组四 动量定理的有关计算9.质量为0.5 kg 的小球沿光滑水平面以5 m/s 的速度冲向墙壁后又以4 m/s 的速度反向弹回,如图3所示,若球跟墙的作用时间为0.05 s ,则小球所受到的平均作用力大小为________N.图3答案 90解析 选定小球与墙碰撞的过程,取v 1的方向为正方向,对小球应用动量定理得Ft =-mv 2-mv 1所以,F =-mv 2-mv 1t =-0.5×4-0.5×50.05N =-90 N“-”号说明F 的方向向左.10.如图4所示,质量为1 kg 的钢球从5 m 高处自由下落,又反弹到离地面3.2 m 高处,若钢球和地面之间的作用时间为0.1 s ,求钢球对地面的平均作用力大小.(g 取10 m/s 2)图4答案 190 N解析 钢球落到地面时的速度大小为v 0=2gh 1=10 m/s ,反弹时向上运动的速度大小为v t =2gh 2=8 m/s ,分析物体和地面的作用过程,取向上为正方向,因此有v 0的方向为负方向,v t 的方向为正方向,再根据动量定理得(F N -mg )t =mv t -(-mv 0),代入数据,解得F N =190 N ,由牛顿第三定律知钢球对地面的平均作用力大小为190 N.11.一辆轿车强行超车时,与另一辆迎面驶来的轿车相撞,两车车身因相互挤压,皆缩短了0.5 m ,据测算两车相撞前速度均为30 m/s ,则:(1)假设两车相撞时人与车一起做匀减速运动,试求车祸中车内质量约60 kg 的人受到的平均冲力是多大?(2)若此人系有安全带,安全带在车祸过程中与人体的作用时间是1 s ,求这时人体受到的平均冲力为多大?答案 (1)5.4×104 N (2)1.8×103N解析 (1)两车相撞时认为人与车一起做匀减速运动直到停止,位移为0.5 m. 设运动的时间为t ,则由x =v 02t 得,t =2x v 0=130s. 根据动量定理得Ft =Δp =-mv 0,解得F =-mv 0t =-60×30130N =-5.4×104 N ,与运动方向相反. (2)若人系有安全带,则F ′=-mv 0t ′=-60×301N =-1.8×103 N ,与运动方向相反. 12.将质量为m =1 kg 的小球,从距水平地面高h =5 m 处,以v 0=10 m/s 的水平速度抛出,不计空气阻力,g 取10 m/s 2.求:(1)抛出后0.4 s 内重力对小球的冲量;(2)平抛运动过程中小球动量的增量Δp ;(3)小球落地时的动量p ′的大小.答案 (1)4 N ·s 方向竖直向下(2)10 N·s 方向竖直向下 (3)10 2 kg·m/s解析 (1)重力是恒力,0.4 s 内重力对小球的冲量 I =mgt =1×10×0.4 N·s=4 N·s方向竖直向下.(2)由于平抛运动的竖直分运动为自由落体运动,故h =12gt ′2, 落地时间t ′=2h g=1 s. 小球飞行过程中只受重力作用,所以合外力的冲量为I ′=mgt ′=1×10×1 N·s=10 N·s,方向竖直向下.由动量定理得Δp =I ′=10 N·s,方向竖直向下.(3)小球落地时竖直分速度为v y=gt′=10 m/s.由速度合成知,落地速度v=v20+v2y=102+102m/s=10 2 m/s,所以小球落地时的动量大小为p′=mv=10 2 kg·m/s.。
1.碰撞[先填空]碰撞现象做相对运动的两个(或几个)物体相遇而发生相互作用,在很短的时间内,它们的运动状态会发生显著变化,这一过程叫做碰撞.[再判断]1.发生碰撞的两个物体的运动方向一定都发生变化.(×)2.两个物体之间发生碰撞后,它们的运动方向可能相同.(√)3.两个带正电的小球在碰撞时并不接触,所以不能算是碰撞.(×)[后思考]如图111所示,质量为m,速度为v的小球与挡板发生碰撞,碰后以大小不变的速度反向弹回.图111(1)小球的运动状态是否发生了改变?(2)小球的动能是否发生了变化?【提示】(1)由于小球的运动方向发生了改变,故小球的运动状态发生了改变.(2)由于小球的速度大小没有变化,故小球的动能没有变化.碰撞的特点1.时间特点:碰撞现象中,相互作用的时间极短,相对物体运动的全过程可忽略不计.2.相互作用力特点:在碰撞过程中,系统的内力远大于外力.3.位移特点:在碰撞过程中,由于在极短的时间内物体的速度发生突变,物体发生的位移极小,可认为碰撞前后物体处于同一位置.1.碰撞现象的主要特点有( )A.物体相互作用时间短B.物体相互作用前速度很大C.物体相互作用后速度很大D.物体间相互作用力远大于外力E.相互作用过程中物体的位移可忽略【解析】碰撞过程发生的作用时间很短作用力很大,远大于物体受到的外力,与物体作用前后的速度大小无关,物体的位移可忽略,故A、D、E正确.【答案】ADE2.钢球A以一定的速度沿光滑水平面向静止于前面的另一相同大小的钢球B运动,下列对两球相互作用过程说法正确的是( )【导学号:11010000】A.两球相互作用的过程始终没有动能的损失B.钢球A减速运动时,系统动能不变C.两球速度相等的瞬间,系统动能最小D.两球速度相等的瞬间,系统势能最大E.碰撞过程B的速度一直增大【解析】两球相互作用过程中由于存在相互作用的弹力,两球均发生形变,有弹性势能,系统动能有损失,两球速度相等瞬间,系统动能损失最大,弹性势能最大.【答案】CDE处理碰撞问题的几点提醒(1)作用时间很短.(2)运动状态变化显著.(3)位移变化非常小.1.实验装置:气垫导轨、数字计时器(图114).导轨上附有滑块和光电门,如图112所示.滑块上装有挡光条和弹簧片,如图113所示.图113图1142.探究过程(1)先用天平测出带弹簧片的滑块1、滑块2的质量m1、m2,然后用手推动滑块1使其获得初速度v1,与静止的滑块2发生正碰,测定碰撞前、后两滑块的速度大小,并算出两滑块碰撞前、后的动能E k1、E k2和E′k1、E′k2,比较E k1+E k2和E′k1+E′k2的大小.(2)换用不带弹簧片的两滑块重复(1).(3)将滑块上的弹簧片换成橡皮泥,使有橡皮泥的两端正对,重复实验(1).3.实验结论对于不同的碰撞情况,动能的变化情况不同,在第一种情况下,两滑块碰撞前、后的动能之和大致不变,在第二、三种情况下,碰后两滑块的动能之和变小了,而第三种情况动能损失的更多.3.在利用气垫导轨探究碰撞中的动能变化时,下列哪些因素可导致实验误差( ) A.导轨安放不水平B.小车上挡光片倾斜C.两小车质量不相等D.两小车碰后连在一起E.向气垫导轨送气的气源压力不足【解析】导轨安放不水平,小车速度将受重力的影响,从而导致实验误差;挡光片倾斜会导致挡光片宽度不等于挡光阶段小车通过的位移,使计算速度出现误差;气源压力不足时,小车与导轨的摩擦力对实验的影响而导致实验误差.故本题应选A、B、E.【答案】ABE4.某同学利用气垫导轨做“探究碰撞前、后物体动能变化”的实验,气垫导轨装置如图115所示,所用的气垫导轨装置由导轨、滑块、弹射架、光电门等组成.图115(1)下面是实验的主要步骤:①安装好气垫导轨,调节气垫导轨的调节旋钮,使导轨水平; ②向气垫导轨通入压缩空气; ③接通光电计时器;④把滑块2静止放在气垫导轨的中间; ⑤滑块1挤压导轨左端弹射架上的橡皮绳;⑥释放滑块1,滑块1通过光电门1后与左侧有固定弹簧的滑块2碰撞,碰后滑块1和滑块2依次通过光电门2,两滑块通过光电门后依次被制动;⑦读出滑块通过两个光电门的挡光时间:滑块1通过光电门1的挡光时间Δt 1=10.01 ms ,通过光电门2的挡光时间Δt 2=49.99 ms ,滑块2通过光电门2的挡光时间Δt 3=8.35 ms ;⑧测出挡光片的宽度d =5 mm ,测得滑块1(包括撞针)的质量为m 1=300 g ,滑块2(包括弹簧)质量为m 2=200 g ;(2)数据处理与实验结论:①实验中气垫导轨的作用是:A.________________________, B ._______________________________________________________.②碰撞前滑块1的速度v 1为________m/s ;碰撞后滑块1的速度v 2为________m/s ;滑块2的速度v 3为________m/s ;(结果保留两位有效数字)③碰撞前两滑块的总动能E k1=________J ,碰撞后两滑块的总动能E k2=________J ,E k1________E k2(选填“>”“=”或“<”).【解析】 (2)①A.大大减小了因滑块和导轨之间的摩擦而引起的误差. B .保证两个滑块的碰撞是正碰.②滑块1碰撞前的速度v 1=d Δt 1=5×10-310.01×10-3 m/s≈0.50 m/s;滑块1碰撞后的速度v 2=d Δt 2=5×10-349.99×10-3 m/s≈0.10 m/s;滑块2碰撞后的速度v 3=d Δt 3=5×10-38.35×10-3 m/s≈0.60 m/s ;③碰撞前的总动能E k1=12m 1v 21=0.037 5 J碰撞后的总动能E k2=12m 1v 22+12m 2v 23=0.037 5 J所以碰撞前后总动能相等.【答案】 (2)①A.大大减小了因滑块和导轨之间的摩擦而引起的误差. B .保证两个滑块的碰撞是正碰. ②0.50 0.10 0.60 ③0.037 5 0.037 5 =利用气垫导轨探究碰撞时,一定要保证碰撞的两物体“水平”和“正碰”.[先填空] 1.弹性碰撞碰撞前后的系统总动能不变,这种碰撞称为弹性碰撞. 2.非弹性碰撞碰撞后的系统总动能减小了,有一部分动能转化为其他形式的能量,这种碰撞称为非弹性碰撞.3.完全非弹性碰撞在非弹性碰撞中,如果两物体碰后粘在一起,以相同的速度运动,这种碰撞称为完全非弹性碰撞.4.正碰和斜碰(1)正碰:碰撞前后物体的运动方向在同一条直线上. (2)斜碰:碰撞前后物体的运动方向不在同一直线上. [再判断]1.弹性碰撞过程中,物体的总机械能守恒.(√) 2.两辆汽车迎面相撞属于弹性碰撞.(×)3.正、负离子碰撞后共同组成分子的现象属于完全非弹性碰撞.(√) [后思考]你能说出弹性碰撞与非弹性碰撞的本质区别吗?现实生活中,哪些碰撞可近似看作弹性碰撞?(请举例说明)【提示】 两种碰撞的本质区别是碰撞前后系统动能是否守恒.现实生活中的碰撞,多数是非弹性碰撞.乒乓球拍击打乒乓球、网球拍击打网球、台球间的碰撞可近似看作弹性碰撞.弹性碰撞与非弹性碰撞的区别5.如图116所示,两小球在同一轨道槽内发生了碰撞,两小球都是弹性小球,则它们的碰撞属于( )【导学号:11010001】图116A.正碰B.斜碰C.弹性碰撞D.非弹性碰撞E.碰撞前后动能保持不变【解析】两小球在同一槽内,两球运动的方向在两球的连心线上,是正碰,则选项A 正确;两小球都是弹性小球,属于弹性碰撞,故选项C、E正确.【答案】ACE6.下面对于碰撞的理解,正确的是( )A.碰撞是指相对运动的物体相遇时,在极短时间内它们的运动状态发生显著变化的过程B.在碰撞现象中,一般来说物体所受的外力作用可以忽略C.正、负离子碰撞后共同组成分子的现象属于完全非弹性碰撞D.根据碰撞过程中动能是否守恒,碰撞可分为正碰和斜碰E.正碰是弹性碰撞,斜碰是非弹性碰撞【解析】碰撞的主要特点是:相互作用时间短,作用力峰值大,因而其他外力可以忽略不计,在极短时间内物体的运动状态发生明显变化,故A、B对;根据碰撞前后动能是否不变,碰撞分为弹性碰撞和非弹性碰撞,其中动能不变的碰撞称为弹性碰撞,故C对、D、E错.【答案】ABC1.弹性碰撞是一种理想化碰撞,现实中的多数碰撞实际上都属于非弹性碰撞.2.当两物体碰撞后不再分开,此时系统动能损失最大,称为完全非弹性碰撞.。
第一章碰撞与动量守恒一、碰撞教学目标1.通过观察图片,初步了解碰撞现象及其特点2.通过实验,使学生能熟练测量质量、速度等大体物理量,能计算动能、动量之和、动能的改变量。
3.能通过实验中动能该变量的计算,对碰撞进行分类。
4.培育学生观察和计算的能力,初步培育学生用实验方式对同一现象从能量的角度进行分类的能力重点难点重点:碰撞的特点及分类难点:实验测量、数据处置和归纳设计思想动量守恒定律是自然界的大体守恒定律之一,是研究微观粒子所必需的知识,具体来讲,要学习原子结构和原子核的内容,动量的知识必不可少。
本章的核心是要表现学习中的探讨精神,强调物理学中“守恒量”的思想。
本章第一节“碰撞”,是通过实验为后面的教学展开打基础,因此本节课从生活中常见的碰撞事例入手,通过体验、观察和讨论,总结出碰撞现象的特点。
为整章的教学做好预备。
然后通过实验来探讨碰撞中的动能转变,使学生在老师的适当引导下归纳出碰撞的分类。
然后教师进行总结,结合相关的资料,把碰撞问题向学生不熟悉的领域适当拓展。
实验中,教师不要越俎代庖,要让学生自己动手实验,充分发挥学生在教学中的主体作用。
教学资源多媒体课件,气垫导轨(附光电门和滑块),弹簧片,数字计时器,天平,橡皮泥。
教学设计【课堂引入】碰撞是物质世界的常见现象,斯诺克中的碰撞给人以愉悦,汽车发生追尾给人们带来灾难,α粒子散射令人类熟悉了原子结构,在这些碰撞现象的背后蕴藏着什么样的规律呢?今天咱们就来学习3-5第一章“碰撞与动量守恒”的第1节“碰撞”。
【课堂学习】学习活动一:感受和体会碰撞进程请同窗们列举生活中的碰撞现象情境1:斯诺克中白球撞击花球。
情境2:公路上两车碰撞。
情境3:棒击球的一霎时。
情境4:跳高运动员落地。
(播放PPT)学生归纳:(1)必需是有彼此作用的系统(2)作历时刻很短教师引导并给出概念:做相对运动的两个(或几个)物体相遇而发生彼此作用,在很短的时刻内,它们的运动状态会发生显著的转变,这一进程叫碰撞。
1.1 探究动量变化与冲量的关系学习目标知识脉络1.理解动量的概念;知道动量和动量的变化量均为矢量;会计算一维情况下的动量的变化量.(重点)2.知道冲量的概念,知道冲量是矢量.(重点)3.理解动量定理的确切含义,掌握其表达式.(重点)4.会用动量定理解释碰撞、缓冲等现象.(难点)动量和冲量[先填空]1.冲量(1)定义力和力的作用时间的乘积Ft.(2)公式I=Ft.(3)单位冲量的单位是N·s.(4)矢量性冲量是矢量,其方向跟力的方向相同.2.动量及动量的变化(1)动量①定义:运动物体的质量m和速度v的乘积.②公式:p=mv.③单位:动量的单位是kg·m/s.④矢量性:动量是矢量,它的方向跟物体的速度方向相同.(2)动量的变化①定义:物体在某段时间内末动量与初动量的矢量差(也是矢量),Δp=p t-p0(矢量式).②动量始终保持在一条直线上时的动量运算:选定一个正方向,与正方向相同的动量为正,与正方向相反的动量为负,则将矢量运算简化为代数运算(此时的正、负号仅代表方向,不代表大小).[再判断]1.某物体的速度大小不变,动量一定不变.(×)2.物体的质量越大,动量一定越大.(×)3.物体的动量相同,其动能一定也相同.(×) [后思考]动量和动能都是由质量和速度定义的物理量,两者间有什么不同?【提示】 动量是矢量,动能是标量,动量和动能分别从不同的角度描述了物体的运动效果.[核心点击] 1.动量的性质(1)瞬时性:通常说物体的动量是物体在某一时刻或某一位置的动量,动量的大小可用p =mv 表示.(2)矢量性:动量的方向与物体的瞬时速度的方向相同.(3)相对性:因物体的速度与参考系的选取有关,故物体的动量也与参考系的选取有关. 2.冲量的性质(1)过程量:冲量描述的是力的作用对时间的积累效应,取决于力和时间这两个因素,所以求冲量时一定要明确所求的是哪一个力在哪一段时间内的冲量.(2)矢量性:冲量的方向与力的方向相同,与相应时间内物体动量变化量的方向相同. 3.动量的变化量:是矢量,其表达式Δp =p 2-p 1为矢量式,运算遵循平行四边形定则,当p 2、p 1在同一条直线上时,可规定正方向,将矢量运算转化为代数运算.4.动量和动能的比较动量 动能物理意义描述机械运动状态的物理量定义式 p =mvE k =12mv 2标矢性矢量标量变化决定因素 物体所受冲量 外力所做的功换算关系p =2mE k ,E k =p 22m1.关于物体的动量,下列说法中正确的是( )A.运动物体在任一时刻的动量方向,一定是该时刻的速度方向B.物体的动能不变,其动量一定不变C.动量越大的物体,其速度一定越大D.物体的动量越大,其惯性不一定越大E.物体的动能发生变化时,其动量一定发生变化【解析】 动量具有瞬时性,任一时刻物体动量的方向,即为该时刻物体的速度方向,选项A 正确;动能不变,若速度方向变化,动量也发生了变化,B 项错误;物体动量的大小由物体质量及速度大小共同决定,不是由物体的速度唯一决定,故物体的动量大,其速度不一定大,选项C 错误,惯性由物体质量决定,物体的动量越大,其质量并不一定越大,惯性也不一定越大,故选项D 正确;物体的动能发生变化时,物体的速度大小一定发生变化,故其动量也一定发生变化,E 正确.【答案】 ADE2.羽毛球是速度最快的球类运动之一,运动员扣杀羽毛球的速度可达到342 km/h ,假设球飞来的速度为90 km/h ,运动员将球以342 km/h 的速度反向击回.设羽毛球质量为5 g ,击球过程只用了0.05 s.试求:【导学号:67080000】(1)运动员击球过程中羽毛球的动量变化量;(2)运动员击球过程中羽毛球所受重力的冲量、羽毛球的动能变化量各是多少? 【解析】 (1)以羽毛球飞来的方向为正方向,则p 1=mv 1=5×10-3×903.6kg·m/s=0.125 kg·m/s p 2=mv 2=-5×10-3×3423.6kg·m/s=-0.475 kg·m/s,所以动量的变化量 Δp =p 2-p 1=(-0.475-0.125) kg·m/s=-0.600 kg·m/s,所以羽毛球的动量变化大小为0.600 kg·m/s,方向与羽毛球飞来的方向相反.(2)羽毛球重力大小为G =mg =0.05 N 所以重力的冲量I =G ·t =2.5×10-3N·s羽毛球的初速度为v =25 m/s ,羽毛球的末速度v ′=-95 m/s所以ΔE k =E ′k -E k =12mv ′2-12mv 2=21 J.【答案】 (1)0.600 kg·m/s,与球飞来的方向相反 (2)2.5×10-3N·s 21 J对动量和动量变化量的两个提醒(1)动量是矢量,比较两个物体的动量时,不能仅比较大小,还要比较方向,只有大小相等、方向相同的两个动量才能相等.(2)计算动量变化量时,应利用矢量运算法则进行计算.对于在同一直线上的矢量运算,要注意选取正方向.动 量 定 理 及 其 应 用[先填空] 1.内容物体所受合力的冲量等于物体的动量变化. 2.公式Ft =mv t -mv 0或I =mv t -mv 0或I =Δp .3.矢量性动量定理是矢量式,公式中冲量的方向与动量变化的方向相同. 4.应用如果物体的动量变化一定,那么它受到的冲量也一定.因此作用时间越短,力就越大;作用时间越长,力就越小.[再判断]1.物体动量的变化量越大,物体受到的作用力越大.(×)2.由F =mv t -mv 0t可知,当F 为恒量时,物体动量的变化与作用时间成正比.(√) 3.物体动量变化量一定时,力的大小与作用时间无关.(×) [后思考]在跳高比赛时,在运动员落地处为什么要放很厚的海绵垫子?【提示】 跳过横杆后,落地时速度较大.人落到海绵垫子上时,可经过较长的时间使速度减小到零,在动量变化相同的情况下,人受到的冲力减小,对运动员起到保护作用.[核心点击]1.对动量定理的理解(1)适用对象:在中学物理中,动量定理的研究对象通常为单个物体.(2)适用范围:动量定理不仅适用于宏观物体的低速运动,也适用于微观物体的高速运动.不论是变力还是恒力,不论物体的运动轨迹是直线还是曲线,动量定理都适用.(3)因果关系:合外力的冲量是原因,物体动量的变化量是结果.冲量反映了力对时间的积累效应,与物体的初、末动量以及某一时刻的动量无必然联系.物体动量变化的方向与合力的冲量的方向相同,物体在某一时刻的动量方向与合力的冲量的方向无必然联系.2.动量定理的应用(1)定性分析有关现象.①物体的动量变化量一定时,力的作用时间越短,力就越大,反之力就越小.例如,易碎物品包装箱内为防碎而放置碎纸、刨花、塑料泡沫等填充物.②作用力一定时,力的作用时间越长,动量变化量越大,反之动量变化量就越小.例如,杂耍中,用铁锤猛击“气功师”身上的石板令其碎裂,作用时间很短,铁锤对石板的冲量很小,石板的动量几乎不变,“气功师”才不会受伤害.(2)定量计算.①应用动量定理可以计算某力或合力的冲量,通常多用于计算变力的冲量.②应用动量定理可以计算某一过程中的平均作用力,通常多用于计算持续作用的变力的平均大小.③应用动量定理可以计算物体的初、末动量,尤其方便处理物体受瞬间冲量的问题.(3)应用动量定理定量计算的一般步骤.图1113.如图111所示,质量为m的小球从距离地面高H的A点由静止开始释放,落到地面上后又陷入泥潭中,由于受到阻力作用到达距地面深度为h的B点速度减为零.不计空气阻力,重力加速度为g.关于小球下落的整个过程,下列说法中正确的有( )【导学号:67080001】A.小球的机械能减少了mg (H +h )B.小球克服阻力做的功为mg (H +h )C.小球所受阻力的冲量大于m 2gHD.小球动量的改变量等于所受阻力的冲量E.小球所受重力的冲量等于m 2g H +h【解析】 由动能定理得mg (H +h )+W f =0,则W f =-mg (H +h ),所以小球的机械能减少了mg (H +h ),所以A 、B 选项均正确;小球自由落下至地面过程,机械能守恒,mgH =12mv 2,v =2gH ,落到地面上后又陷入泥潭中,由动量定理得I G -I f =0-mv ,所以I f =I G +mv =I G+m 2gH ,小球所受阻力的冲量大于m 2gH ,所以C 选项正确;由动量定理知小球动量的改变量等于合外力的冲量,所以D 选项错误;小球进入沙坑后做减速运动,故其下落总时间大于t =2H +hg,重力的总冲量大于mgt =m ·2g H +h ,故E 错误.【答案】 ABC4.高空作业须系安全带.如果质量为m 的高空作业人员不慎跌落,从开始跌落到安全带对人刚产生作用力前人下落的距离为h (可视为自由落体运动).此后经历时间t 安全带达到最大伸长,若在此过程中该作用力始终竖直向上.则该段时间安全带对人的平均作用力大小为________.【解析】 安全带刚要产生作用力时人的速度v =2gh 设安全带对人的平均作用力大小为F ,取竖直向上为正方向,由动量定理可得:(F -mg )t =0-(-mv ),解得:F =m 2ght+mg .【答案】m 2ght+mg 5.(2015·安徽高考)一质量为0.5 kg 的小物块放在水平地面上的A 点,距离A 点5 m 的位置B 处是一面墙,如图112所示,一物块以v 0=9 m/s 的初速度从A 点沿AB 方向运动,在与墙壁碰撞前瞬间的速度为7 m/s ,碰后以6 m/s 的速度反向运动直至静止,g 取10 m/s 2.图112(1)求物块与地面间的动摩擦因数μ;(2)若碰撞时间为0.05 s ,求碰撞过程中墙面对物块平均作用力的大小F ; (3)求物块在反向运动过程中克服摩擦力所做的功W .【解析】 (1)由动能定理,有-μmgs =12mv 2-12mv 2可得μ=0.32.(2)由动量定理:有F Δt =mv ′-mv 可得F =130 N. (3)W =12mv ′2=9 J.【答案】 (1)0.32 (2)130 N (3)9 J应用动量定理的四点注意事项(1)明确物体受到冲量作用的结果是导致物体动量的变化.冲量和动量都是矢量,它们的加、减运算都遵循平行四边形定则.(2)列方程前首先要选取正方向,与规定的正方向一致的力或动量取正值,反之取负值,而不能只关注力或动量数值的大小.(3)分析速度时一定要选取同一个参考系,未加说明时一般是选地面为参考系,同一道题目中一般不要选取不同的参考系.(4)公式中的冲量应是合外力的冲量,求动量的变化量时要严格按公式,且要注意是末动量减去初动量.欢迎您的下载,资料仅供参考!。