动量守恒定律碰撞问题试卷
- 格式:doc
- 大小:85.00 KB
- 文档页数:17
动量守恒定律的应用(碰撞)一、选择题1.质量为M和m0的滑块用轻弹簧连接,以恒定的速度v沿光滑水平面运动,与位于正对面的质量为m的静止滑块发生碰撞,如图所示,碰撞时间极短,在此过程中,下列哪个或哪些说法是可能发生的?().A.M、m0、m速度均发生变化,分别为v1、v2、v3,而且满足(M+m0)v=Mv1+m0v2+mv3B.m0的速度不变,M和m的速度变为v1和v2,而且满足Mv=Mv1+mv2C.m0的速度不变,M、m的速度都变为v',且满足Mv=(M+m)v'D.M、m0、m速度均发生变化,M和m0速度都变为v,m速度变为v2,而且满足(M+m)v0=(M+m0)v1+mv22.A、B两物体发生正碰,碰撞前后物体A、B都在同一直线上运动,其位移一时间图象(s-t图象)如图中ADC和BDC所示.由图可知,物体A、B的质量之比为().A.1∶1 B.1∶2 C.1∶3 D.3∶13.三个相同的木块A、B、C从同一高度处自由下落,其中木块A刚开始下落的瞬间被水平飞来的子弹击中,木块B在下落到一定高度时,才被水平飞来的子弹击中.若子弹均留在木块中,则三木块下落的时间t A、t B、t C的关系是().A.t A<t B<t C B.t A>t B>t C C.t A=t C<t B D.t A=t B<t C4.如图所示,木块A和B质量均为2 kg,置于光滑水平面上,B与一轻质弹簧一端相连,弹簧另一端固定在竖直挡板上,当A以4 m/s的速度向B撞击时,由于有橡皮泥而粘在一起运动,那么弹簧被压缩到最短时,具有的弹性势能大小为().A.4 J B.8 J C.16 J D.32 J5.如图所示,有两个质量相同的小球A和B(大小不计),A球用细绳吊起,细绳长度等于悬点距地面的高度,B点静止放于悬点正下方的地面上.现将A球拉到距地面高度为h处由静止释放,摆动到最低点与B球碰撞后粘在起共同上摆,则它们升起的最大高度为().A .h /2B .hC .h /4D .h /26.在光滑水平面上,动能为0E 、动量的大小为0P 的小钢球l 与静止小钢球2发生碰撞.碰撞前后球l 的运动方向相反.将碰撞后球l 的动能和动量的大小分别记为1E 、1P ,球2的动能和动量的大小分别记为2E 、2P ,则必有( ). A .1E <0E B .1P <0PC .2E >0ED .2P >2P7.甲乙两球在水平光滑轨道上向同方向运动,已知它们的动量分别是=5kg m/s P ⋅甲、=7kg m/s P ⋅乙,甲从后面追上乙并发生碰撞,碰后乙球的动量变为10kg m/s ⋅。
动量守恒定律和碰撞问题特训目标特训内容目标1 动量守恒的条件(1T—4T)目标2 弹性碰撞动碰静模型(5T—8T)目标3 弹性碰撞动碰动模型(9T—12T)目标4 完全非弹性碰撞模型(13T—16T)目标5 类碰撞问题(17T—20T)【特训典例】一、动量守恒的条件1.在光滑水平面上,A、B两小车中间有一轻弹簧(弹簧不与小车相连),如图所示,用手抓住小车并将弹簧压缩后使小车处于静止状态,将小车及弹簧看成一个系统,下列说法中不正确的是()A.两手同时放开后,系统总动量始终为零B.先放开左手,再放开右手后,动量不守恒C.先放开左手,后放开右手,总动量向左D.无论何时放手,两手放开后,系统总动量都保持不变【答案】B【详解】A.若两手同时放开A、B两小车,系统所受合外力为零,系统动量守恒,由于系统初动量为零,则系统总动量为零,A正确,不符合题意;BC.先放开左手,系统所受合外力向左,系统所受合外力的冲量向左,再放开右手,系统总动量向左,因为两手放开后,系统所受合外力为零,系统动量守恒,B错误,符合题意,C正确,不符合题意;D.无论何时放手,两手放开后,系统所受合外力为零,系统动量守恒,系统总动量保持不变,D正确,不符合题意。
故选B。
2.如图所示,A、B两物体的质量之比A BM M=,原来静止在平板小车C上,A、B间有一根被压缩的:1:2弹簧,地面光滑。
当弹簧突然释放后,A、B两物体被反向弹开,则A、B两物体滑行过程中()A .若A 、B 与平板车上表面间的动摩擦因数相同,A 、B 组成的系统动量守恒B .若A 、B 与平板车上表面间的动摩擦因数之比为2:1,A 、B 组成的系统动量守恒,机械能守恒C .若A 、B 所受的动摩擦力大小相等,A 、B 组成的系统动量守恒D .若A 、B 所受的动摩擦力大小不相等,则A 、B 、C 组成的系统动量不守恒 【答案】C【详解】A .若A 、B 与平板车上表面间的动摩擦因数相同,则有A B 12M g M g µµ=由于A 、B 受到的滑动摩擦力大小不相等,可知A 、B 组成的系统受到的合外力不为零,A 、B 组成的系统动量不守恒,故A 错误; B .若A 、B 与平板车上表面间的动摩擦因数之比为2:1,则有A A B B M g M g µµ=由于A 、B 受到的滑动摩擦力大小相等,可知A 、B 组成的系统受到的合外力为零,A 、B 组成的系统动量守恒,但A 、B 的动能都在增加,A 、B 组成的系统机械能增加,故B 错误;C .若A 、B 所受的动摩擦力大小相等,可知A 、B 组成的系统受到的合外力为零,A 、B 组成的系统动量守恒,故C 正确;D .若A 、B 所受的动摩擦力大小不相等,但摩擦力是A 、B 、C 组成的系统的内力,A 、B 、C 组成的系统受到的合外力一定为零,A 、B 、C 组成的系统动量一定守恒,故D 错误。
考点2.2.1 类碰撞模型之“滑块+弹簧+滑块〞1.对于弹簧类问题,在作用过程中,系统合外力为零,满足动量守恒.2.整个过程涉及到弹性势能、动能、内能、重力势能转化,应用能量守恒定律解决此类问题.3.注意:弹簧压缩最短时,弹簧连接两物体速度相等,此时弹簧弹性势能最大.例4 两物块A 、B 用轻弹簧相连,质量均为2kg ,初始时弹簧处于原长,A 、B 两物块都以v =6m/s 速度在光滑水平地面上运动,质量为4kg 物块C 静止在前方,如图4所示.B 与C 碰撞后二者会粘在一起运动.那么在以后运动中:(1)当弹簧弹性势能最大时,物块A 速度为多大?(2)系统中弹性势能最大值是多少?【解析】(1)当A 、B 、C 三者速度相等时弹簧弹性势能最大.由A 、B 、C 三者组成系统动量守恒,(m A +m B )v =(m A +m B +m C )·v ABC ,解得v ABC =2+2×62+2+4m/s =3 m/s. (2)B 、C 碰撞时B 、C 组成系统动量守恒,设碰后瞬间B 、C 两者速度为v BC ,那么m B v =(m B +m C )v BC ,v BC =2×62+4m/s =2 m/s ,设物块A 、B 、C 速度一样时弹簧弹性势能最大为E p ,根据能量守恒E p =12(m B +m C )v 2BC +12m A v 2-12(m A +m B +m C )v 2ABC =12×(2+4)×22J +12×2×62J -12×(2+2+4)×32J =12J. 【答案】(1)3m/s (2)12J1. (多项选择)光滑水平地面上,A 、B 两物体质量都为m ,A 以速度v 向右运动,B 原来静止,左端有一轻弹簧,如下图,当A 撞上弹簧,弹簧被压缩最短时( AD )A .A 、B 系统总动量仍然为mvB .A 动量变为零C .B 动量到达最大值D .A 、B 速度相等2. 如下图,质量相等两个滑块位于光滑水平桌面上,其中弹簧两端分别与静止滑块N 与挡板P 相连接,弹簧与挡板质量均不计;滑块M 以初速度v 0向右运动,它与档板P 碰撞〔不粘连〕后开场压缩弹簧,最后滑块N 以速度v 0向右运动。
物理动量守恒定律题20套(带答案)及解析一、高考物理精讲专题动量守恒定律1.如图所示,在水平地面上有两物块甲和乙,它们的质量分别为2m 、m ,甲与地面间无摩擦,乙与地面间的动摩擦因数恒定.现让甲以速度0v 向着静止的乙运动并发生正碰,且碰撞时间极短,若甲在乙刚停下来时恰好与乙发生第二次碰撞,试求:(1)第一次碰撞过程中系统损失的动能 (2)第一次碰撞过程中甲对乙的冲量 【答案】(1)2014mv ;(2) 0mv 【解析】 【详解】解:(1)设第一次碰撞刚结束时甲、乙的速度分别为1v 、2v ,之后甲做匀速直线运动,乙以2v 初速度做匀减速直线运动,在乙刚停下时甲追上乙碰撞,因此两物体在这段时间平均速度相等,有:212v v =而第一次碰撞中系统动量守恒有:01222mv mv mv =+ 由以上两式可得:012v v =,20 v v = 所以第一次碰撞中的机械能损失为:222201201111222224E m v m v mv mv ∆=--=gg g g (2)根据动量定理可得第一次碰撞过程中甲对乙的冲量:200I mv mv =-=2.如图所示,一小车置于光滑水平面上,轻质弹簧右端固定,左端栓连物块b ,小车质量M =3kg ,AO 部分粗糙且长L =2m ,动摩擦因数μ=0.3,OB 部分光滑.另一小物块a .放在车的最左端,和车一起以v 0=4m/s 的速度向右匀速运动,车撞到固定挡板后瞬间速度变为零,但不与挡板粘连.已知车OB 部分的长度大于弹簧的自然长度,弹簧始终处于弹性限度内.a 、b 两物块视为质点质量均为m =1kg ,碰撞时间极短且不粘连,碰后一起向右运动.(取g =10m/s 2)求:(1)物块a 与b 碰后的速度大小;(2)当物块a 相对小车静止时小车右端B 到挡板的距离;(3)当物块a相对小车静止时在小车上的位置到O点的距离.【答案】(1)1m/s (2) (3) x=0.125m【解析】试题分析:(1)对物块a,由动能定理得:代入数据解得a与b碰前速度:;a、b碰撞过程系统动量守恒,以a的初速度方向为正方向,由动量守恒定律得:,代入数据解得:;(2)当弹簧恢复到原长时两物块分离,a以在小车上向左滑动,当与车同速时,以向左为正方向,由动量守恒定律得:,代入数据解得:,对小车,由动能定理得:,代入数据解得,同速时车B端距挡板的距离:;(3)由能量守恒得:,解得滑块a与车相对静止时与O点距离:;考点:动量守恒定律、动能定理。
高中物理动量守恒定律题20套(带答案)及解析一、高考物理精讲专题动量守恒定律1.水平放置长为L=4.5m 的传送带顺时针转动,速度为v =3m/s ,质量为m 2=3kg 的小球被长为1l m =的轻质细线悬挂在O 点,球的左边缘恰于传送带右端B 对齐;质量为m 1=1kg 的物块自传送带上的左端A 点以初速度v 0=5m/s 的速度水平向右运动,运动至B 点与球m 2发生碰撞,在极短的时间内以碰撞前速率的12反弹,小球向右摆动一个小角度即被取走。
已知物块与传送带间的滑动摩擦因数为μ=0.1,取重力加速度210m/s g =。
求:(1)碰撞后瞬间,小球受到的拉力是多大?(2)物块在传送带上运动的整个过程中,与传送带间摩擦而产生的内能是多少? 【答案】(1)42N (2)13.5J 【解析】 【详解】解:设滑块m1与小球碰撞前一直做匀减速运动,根据动能定理:221111011=22m gL m v m v μ--解之可得:1=4m/s v 因为1v v <,说明假设合理滑块与小球碰撞,由动量守恒定律:21111221=+2m v m v m v - 解之得:2=2m/s v碰后,对小球,根据牛顿第二定律:2222m v F m g l-=小球受到的拉力:42N F =(2)设滑块与小球碰撞前的运动时间为1t ,则()01112L v v t =+ 解之得:11s t =在这过程中,传送带运行距离为:113S vt m == 滑块与传送带的相对路程为:11 1.5X L X m ∆=-=设滑块与小球碰撞后不能回到传送带左端,向左运动最大时间为2t 则根据动量定理:121112m gt m v μ⎛⎫-=-⋅⎪⎝⎭解之得:22s t =滑块向左运动最大位移:121122m x v t ⎛⎫=⋅⋅ ⎪⎝⎭=2m 因为m x L <,说明假设成立,即滑块最终从传送带的右端离开传送带 再考虑到滑块与小球碰后的速度112v <v , 说明滑块与小球碰后在传送带上的总时间为22t在滑块与传送带碰撞后的时间内,传送带与滑块间的相对路程22212X vt m ∆==因此,整个过程中,因摩擦而产生的内能是()112Q m g x x μ=∆+∆=13.5J2.如图所示,质量为M =2kg 的小车静止在光滑的水平地面上,其AB 部分为半径R =0.3m的光滑14圆孤,BC 部分水平粗糙,BC 长为L =0.6m 。
动量守恒定律题目一、两小球在光滑水平面上沿同一直线相向运动,碰撞后两球均静止,则可以断定碰撞前( )A. 两球的速度大小相等B. 两球的质量相等C. 两球的动量大小相等、方向相反D. 两球的动量相等(答案:C)二、在光滑的水平面上,有甲、乙两辆小车,甲车上放一物体,用水平力F甲推甲车,同时用相同的水平力F乙推乙车,两车均从静止开始运动,在相同的位移内( )A. 甲车对物体的做功较多B. 乙车对物体的做功较多C. 甲、乙两车对物体做功一样多D. 无法确定(答案:A)三、一静止的原子核发生α衰变,生成一新原子核,已知衰变前后原子核的质量数分别为A和A−4,电荷数分别为Z和Z−2,则( )A. 衰变过程中释放的核能转变为新原子核的动能B. 衰变过程中释放的核能转变为α粒子和新原子核的动能之和C. 衰变前后原子核的质量亏损为Δm=4u(u为质子和中子的质量)D. 衰变前后核子数减少,所以质量数和电荷数都减小(答案:B)四、在光滑水平面上,有两个小球A、B沿同一直线相向运动,碰撞后有一球静止,则( )A. 若A球质量大于B球质量,则B球一定静止B. 若A球初速度大于B球初速度,则B球一定静止C. 若A球动量大于B球动量,则一定是A球静止D. 以上说法均不正确(答案:A)五、在光滑的水平面上,有两个质量相等的物体A和B,用水平力F1推A,同时用水平力F2推B,当它们相距一定距离时,两力同时撤去,则两物体( )A. 一定相碰B. 一定不相碰C. 若F1>F2,则一定相碰D. 若F1<F2,则一定相碰(答案:B)六、在光滑的水平面上停着一辆小车,小车上有一木块,现用一水平力拉小车,使小车和木块一起加速运动,则( )A. 小车对木块的摩擦力使木块加速B. 小车对木块的摩擦力方向与车加速度方向相同C. 小车受到的拉力与木块对小车的摩擦力是一对平衡力D. 小车受到的拉力与小车对木块的摩擦力是一对作用力与反作用力(答案:A)七、在光滑的水平面上,一质量为m1的小球A沿水平方向以速度v0与质量为m2的静止小球B发生正碰,碰撞后,A球的动能变为原来的1/9,则小球B的速度可能是( )A. v0/3B. 2v0/3C. v0/9D. 8v0/9(答案:A;B)八、在光滑的水平面上,有两个质量相等的物体,中间用弹簧相连,开始时弹簧处于原长,现给它们一个大小相等、方向相反的水平恒力,当它们的距离增大到某一值时,保持恒力不变,突然撤去弹簧,则( )A. 两物体的速度均增大B. 两物体的速度均减小C. 两物体的加速度均增大D. 两物体的加速度均不变(答案:D)九、在光滑的水平面上,一质量为m的球A沿水平方向以速度v与原来静止的质量为2m的球B发生正碰,碰撞后,A球的动能变为原来的1/9,则球B的速度可能是( )A. v/3B. v/6C. 2v/3D. 2v/9(答案:A;C)十、在光滑的水平面上,有两个质量相等的物体A和B,用水平力F推A,同时用与F相同大小的水平力推B,当它们分别通过相同的位移时( )A. 若A、B均做匀加速直线运动,则力F对A、B所做的功一样多B. 若A做匀加速直线运动,B做匀速直线运动,则力F对A做的功较多C. 若A做匀加速直线运动,B做匀速直线运动,则力F对B做的功较多D. 若A、B均做匀速直线运动,则力F对A、B都不做功(答案:A;D)。
碰 撞 与 动 量 守 恒 单 元 测 试 题命题人:官桥中学高二物理备课组一、单项选择题(共4小题,每小题4分,共16分,在每小题给出的四个选项中,只有一个选项正确)1、篮球运动员接传来的篮球时,通常要先伸出两臂迎接,手接触到球后,两臂随球迅速引至胸前,这样做可以( )A.减小球对手作用力的冲量B.减小球的动量变化率C.减小球的动量变化量D.减小球的动能变化量2、在空间某一点以大小相等的速度分别竖直上抛、竖直下抛、水平抛出质量相等的小球,不计空气阻力,当小球落地时( )A.做上抛运动的小球动量变化最大B.三个小球动量变化大小相等C. 做平抛运动的小球动量变化最小D.三个小球动量变化相等3、把一支枪水平固定在小车上,小车放在光滑的水平地面上。
当枪发射子弹时,关于枪、子弹、车,下列说法中正确的是( ) A.枪和子弹组成的系统动量守恒 B.枪和车组成的系统动量守恒C.若不计子弹和枪筒之间的摩擦,枪、车、子弹组成的系统动量近似守恒D.枪、子弹、车组成的系统动量守恒4、自行火炮车连同炮弹的总质量为M,火炮车在·水平路面上以1V 的速度向右匀速行驶,炮管水平发射一枚质量为m 的炮弹后,自行火炮的速度变为2V ,仍向右行驶,则炮弹相对炮筒的发射速度0V 为( ) A.mmV V V m 221)(+- B.mV V M )(21- C. m mV V V m 2212)(+- D.m V V m V V m )()(2121---二、双项选择(共5小题,每小题5分,共25分)5、质量为m 的物体在倾角为θ的光滑斜面顶端由静止释放,斜面高h,物体从斜面顶端滑到斜面底端过程中( ) A.物体所受支持力的冲量为零B.物体所受支持力的冲量方向垂直于斜面向上C.物体所受重力的冲量方向沿斜面向下D.物体所受重力的冲量大小为θsin 2ghm6、在光滑水平面上,两球沿着球心连线以相等速率相向而行,并发生碰撞,下列现象中可能发生的是( )A.若两球质量相等,碰后以某一相等速率相互分开B.若两球质量相等,碰后以某一相等速率同向而行C.若两球质量不同,碰后以某一相等速率互相分开D.若两球质量不同,碰后以某一相等速率同向而行7、一粒钢珠从静止状态开始自由下落,然后陷人泥潭中。
一、选择题1.(0分)[ID :127088]A 、B 两球沿一直线运动并发生正碰。
如图所示为两球碰撞前后的位移—时间图象。
a 、b 分别为A 、B 两球碰撞前的位移—时间图线,c 为碰撞后两球共同运动的位移—时间图线,若A 球质量是m =2 kg ,则由图可知( )A .A 、B 碰撞前的总动量为3 kg·m/s B .碰撞时A 对B 所施冲量为4 N·sC .碰撞前后A 的动量变化为6 kg·m/sD .碰撞中A 、B 两球组成的系统损失的动能为10 J2.(0分)[ID :127058]动量相等的甲、乙两车刹车后分别沿两水平路面滑行。
若两车质量之比:23m m 甲乙:,路面对两车的阻力相同,则甲、乙两车的滑行距离之比为( ) A .3:2B .2:3C .9:4D .4:93.(0分)[ID :127056]甲乙是两个完全相同的小球,在同一位置以相等的速率抛出,甲被水平抛出,乙被斜上抛,只受到重力,则下列说法正确的是( ) A .两球落地时的速度相同 B .两球落地时的重力瞬时功率相等 C .两球落地时前的重力冲量相同 D .两球落地前的动量变化快慢相同4.(0分)[ID :127050]如图所示质量为m 的小球从距离地面高H 的A 点由静止开始释放,落到地面上后又陷入泥潭中,由于受到阻力作用到达距地面深度为h 的B 点速度减为零。
不计空气阻力重力加速度为g 。
关于小球下落的整个过程,下列说法中正确的有( )A .小球的机械能减少了mgHB .小球所受阻力的冲量大于2m ghC .小球克服阻力做的功为mghD .小球动量的改变量等于所受阻力的冲量5.(0分)[ID :127039]几个水球可以挡住一颗子弹?《国家地理频道》的实验结果是:四个水球足够!如图所示,完全相同的水 球紧挨在一起水平排列,子弹在水球中沿水平方向做匀变速直线运动,恰好能穿出第4个水球,则下列判断正确的是 ( )A .子弹在每个水球中的速度变化相同B .子弹在每个水球中运动的时间相同C .每个水球对子弹的冲量依次增大D .子弹在每个水球中的动能变化不相同6.(0分)[ID :127034]如图所示,两质量均为m 的物块A 、B 通过一轻质弹簧连接,B 足够长、放置在水平面上,所有接触面均光滑。
动量守恒测试题及答案高中1. 动量守恒定律适用于哪些情况?2. 一个质量为2kg的物体以5m/s的速度向北运动,与一个质量为3kg 的物体以3m/s的速度向南运动相撞。
如果两物体发生完全非弹性碰撞,请计算碰撞后两物体的共同速度。
3. 一个质量为5kg的物体以10m/s的速度向东运动,撞击一个静止的质量为3kg的物体。
如果碰撞是完全弹性的,请计算碰撞后两物体的速度。
4. 一辆质量为1000kg的汽车以20m/s的速度行驶,突然刹车。
如果刹车过程中动量守恒,计算汽车在刹车过程中受到的平均冲击力(假设刹车过程持续了0.5秒)。
5. 一个质量为0.5kg的足球以15m/s的速度被踢出,如果足球在撞击墙壁后以相同的速率反弹回来,计算墙壁对足球的平均作用力(假设作用时间为0.1秒)。
答案1. 动量守恒定律适用于没有外力作用或外力之和为零的系统。
在这种情况下,系统的总动量在时间上保持不变。
2. 碰撞前总动量为 \( P_{\text{总}} = (2 \times 5) - (3 \times3) = 10 - 9 = 1 \) kg·m/s。
因为完全非弹性碰撞后两物体粘在一起,所以共同速度 \( v \) 为 \( P_{\text{总}} / (2 + 3) = 1 /5 = 0.2 \) m/s,方向向北。
3. 碰撞前总动量为 \( P_{\text{总}} = 5 \times 10 = 50 \)kg·m/s。
碰撞后两物体的总动量仍为50 kg·m/s。
设碰撞后5kg物体速度为 \( v_1 \),3kg物体速度为 \( v_2 \),则 \( 5v_1 + 3v_2= 50 \)。
由于完全弹性碰撞,还满足 \( \frac{5}{3} =\frac{v_1}{v_2} \)。
解得 \( v_1 = 10 \) m/s,\( v_2 = 6 \)m/s。
4. 汽车的初始动量为 \( P_{\text{初}} = 1000 \times 20 = 20000 \) kg·m/s。
动量守恒练习题碰撞与弹性问题动量守恒练习题:碰撞与弹性问题动量守恒是物理学中一个重要的基本原理,用于描述各种碰撞和相互作用过程中动量的守恒特性。
本文将通过几个练习题来阐述碰撞和弹性问题中的动量守恒原理。
1. 两个小球的弹性碰撞假设有两个质量分别为m1和m2的小球,在一维情况下,它们以速度v1和v2相向运动,发生完全弹性碰撞。
我们需要求解碰撞之后两个小球的速度。
解析:根据动量守恒定律,碰撞前后总动量守恒,即m1v1 + m2v2 =m1v1' + m2v2',其中v1'和v2'分别是碰撞之后两个小球的速度。
根据动能守恒定律,碰撞前后总动能守恒,即(m1v1^2 + m2v2^2) / 2 = (m1v1'^2 + m2v2'^2) / 2。
由于发生完全弹性碰撞,动能守恒条件表示为(m1v1^2 + m2v2^2) = (m1v1'^2 + m2v2'^2)。
通过求解以上两个方程组,可以得到碰撞后两个小球的速度v1'和v2'。
2. 弹簧碰撞问题现假设有一个质量为m的小球以速度v撞向一个静止的质量为M 的小球。
两个小球之间通过弹簧连接,并假设弹簧的劲度系数为k。
求解两个小球碰撞后的速度。
解析:根据动量守恒定律,碰撞前后总动量守恒,即mv = mv' + Mv',其中v和v'分别为碰撞前和碰撞后小球的速度。
由于两个小球通过弹簧连接,在碰撞过程中弹簧发生变形,因此弹簧的势能产生了改变。
根据能量守恒定律,碰撞前后总机械能守恒,即1/2mv^2 = 1/2mv'^2 + 1/2Mv'^2 + 1/2kx'^2,其中x'表示弹簧伸长的距离。
通过求解以上两个方程组,可以得到碰撞后两个小球的速度v'。
3. 斜面上的碰撞问题考虑一个质量为m的小球以速度v沿着一个倾斜角度为α的光滑斜面滑下,在斜面底部与一个质量为M的小球碰撞,假设碰撞是完全弹性的。
考点23动量守恒定律碰撞问题考点名片考点细研究:(1)动量守恒定律处理系统内物体的相互作用;(2)碰撞、打击、反冲等“瞬间作用”问题。
其中考查到的如:2016年全国卷Ⅰ第35题(2)、2016年全国卷Ⅲ第35题(2)、2016年天津高考第9题(1)、2015年福建高考第30题(2)、2015年北京高考第17题、2015年山东高考第39题(2)、2014年重庆高考第4题、2014年福建高考第30题(2)、2014年江苏高考第12题C(3)、2014年安徽高考第24题、2013年天津高考第2题、2013年福建高考第30题等。
高考对本考点的考查以识记、理解为主,试题难度不大。
备考正能量:预计今后高考仍以选择题和计算题为主要命题形式,以物理知识在生活中的应用为命题热点,灵活考查动量守恒定律及其应用,难度可能加大。
一、基础与经典1. 如图所示,在光滑水平面上,用等大反向的力F1、F2分别同时作用于A、B两个静止的物体上。
已知m A<m B,经过相同的时间后同时撤去两力,以后两物体相碰并粘为一体,则粘合体最终将( )A.静止 B.向右运动 C.向左运动 D.无法确定答案A解析选取A、B两个物体组成的系统为研究对象,根据动量定理,整个运动过程中,系统所受的合外力为零,所以动量改变量为零。
初始时刻系统静止,总动量为零,最后粘合体的动量也为零,即粘合体静止,选项A正确。
2.关于系统动量守恒的条件,下列说法正确的是( )A.只要系统内存在摩擦力,系统动量就不可能守恒B.只要系统中有一个物体具有加速度,系统动量就不守恒C.只要系统所受的合外力为零,系统动量就守恒D.系统中所有物体的加速度为零时,系统的总动量一定守恒答案C解析动量守恒的条件是系统不受外力或所受合外力为零,与系统内是否存在摩擦力无关,与系统中物体是否具有加速度无关,故A、B选项错误,C选项正确;所有物体加速度为零时,各物体速度恒定,动量恒定,总动量只能说不变,不能说守恒,D选项错误。
3. 质量为m的甲物块以3 m/s的速度在光滑水平面上运动,有一轻弹簧固定在甲物块上。
另一质量也为m的乙物块以4 m/s的速度与甲相向运动,如图所示。
则( )A.甲、乙两物块在压缩弹簧过程中,由于弹力作用,系统动量不守恒B.当两物块相距最近时,甲物块的速率为零C.当甲物块的速率为1 m/s时,乙物块的速率可能为2 m/s,也可能为0D.甲物块的速率可能达到5 m/s答案C解析甲、乙两物块在压缩弹簧过程中,由于弹力是系统内力,系统合外力为零,所以动量守恒,选项A错误;当两物块相距最近时,它们的速度相同,设为v,取水平向右为正方向,根据动量守恒定律有mv乙-mv甲=2mv,代入数据,可得v= m/s,选项B错误;当甲物块的速率为1 m/s 时,其运动方向可能向左,也可能向右,当水平向左时,根据动量守恒定律可得,乙物块的速率为2 m/s,当水平向右时,同理可得,乙物块的速率为0,且均满足能量守恒条件,所以选项C正确;因为整个过程中,系统的机械能不可能增加,若甲物块的速率达到5 m/s,那么乙物块的速率肯定不为零,这样系统的机械能增加了,所以选项D错误。
4.(多选)如图所示,三辆完全相同的平板小车a、b、c成一直线排列,静止在光滑水平面上。
c车上有一小孩跳到b车上,接着又立即从b车跳到a车上。
小孩跳离c车和b车时对地的水平速度相同。
他跳到a车上相对a车保持静止,此后( )A.a、b两车运动速率相等B.a、c两车运动速率相等C.三辆车的速率关系v c>v a>v bD.a、c两车运动方向相反答案CD解析若人跳离b、c车时速度为v,由动量守恒定律知,人和c 车组成的系统:0=-M车v c+m人v对人和b车:m人v=-M车v b+m人v对人和a车:m人v=(M车+m人)v a所以:v c=m人vM车,v b=0,v a=m人vM车+m人即v c>v a>v b,并且v c与v a方向相反。
5. (多选)如图所示,弹簧的一端固定在竖直墙上,质量为m的光滑弧形槽静止在光滑水平面上,底部与水平面平滑连接,一个质量也为m的小球从槽上高h处由静止开始自由下滑( )A.在下滑过程中,小球和槽之间的相互作用力对槽不做功B.在下滑过程中,小球和槽组成的系统水平方向动量守恒C.被弹簧反弹后,小球和槽都做速率不变的直线运动D.被弹簧反弹后,小球能回到槽上高h处答案BC解析在下滑过程中,小球和槽之间的相互作用力对槽做功,选项A错误;在下滑过程中,小球和槽组成的系统在水平方向所受合外力为零,系统在水平方向动量守恒,选项B正确;小球被弹簧反弹后,小球和槽在水平方向不受外力作用,小球与槽组成的系统动量守恒,球与槽的质量相等,小球沿槽下滑,球与槽分离后,小球与槽的速度大小相等,小球被弹簧反弹后与槽的速度相等,故小球和槽都做匀速运动,小球不能滑到槽上,选项C正确、D错误。
6. 如图所示,在光滑水平面上有一质量为M的木块,木块与轻弹簧水平相连,弹簧的另一端连在竖直墙上,木块处于静止状态。
一质量为m的子弹以水平速度v0击中木块,并嵌在其中,木块压缩弹簧后在水平面做往复运动。
木块自被子弹击中前到第一次回到原来位置的过程中,木块受到的合外力的冲量大小为( )B.2Mv0 D.2mv0答案A解析子弹击中木块并嵌在其中,该过程动量守恒,即mv0=(m+M)v,即击中后木块速度为v=mv0m+M,此后只有弹簧弹力做功,子弹、木块和弹簧组成系统机械能守恒,当第一次回到平衡位置时,速度仍然等于v,根据动量定理,合外力的冲量等于动量变化量,即I=Mv-0=Mmv0m+M,选项A正确。
7.两球A、B在光滑水平面上沿同一直线、同一方向运动,m A=1 kg,m B=2 kg,v A=6 m/s,v B=2 m/s。
当A追上B并发生碰撞后,两球A、B速度的可能值是( )A.v A′=5 m/s,v B′= m/sB.v A′=2 m/s,v B′=4 m/sC.v A′=-4 m/s,v B′=7 m/sD.v A′=7 m/s,v B′= m/s答案B解析虽然题中四个选项均满足动量守恒定律,但A、D两项中,碰后A的速度v A′大于B的速度v B′,必然要发生第二次碰撞,不符合实际;C项中,两球碰后的总动能E k′=12m A v A′2+12m B v B′2=57 J,大于碰前的总动能E k =12m A v 2A +12m B v 2B =22 J ,违背了能量守恒定律,故B 项正确。
8. (多选)将两个小物体放在光滑的水平面上,其中小物体B 的左端与一轻弹簧相连接,在光滑的水平面上处于静止状态,现给小物体A 一水平向右的初速度v 0。
已知小物体A 、B 的质量分别为m A =1 kg 、m B =3 kg ,v 0=4 m/s 。
则下列关于两小物体的运动描述正确的是( )A .整个过程中小物体A 的最小速度为1 m/sB .整个过程中小物体B 的最大速度为2 m/sC .整个过程中弹簧储存的最大弹性势能为6 JD .整个运动过程中小物体A 、B 整体动能减少量的最大值为8 J 答案 BC解析 当弹簧压缩最短时,弹簧的弹性势能最大,此时小物体A 、B 共速,由动量守恒定律得m A v 0=(m A +m B )v ,解得v =1 m/s ,此时弹簧的弹性势能最大,即小物体A 、B 整体动能减少量最多,ΔE pm =ΔE km =12m A v 20-12(m A +m B )v 2=6 J ,C 正确,D 错误;当弹簧恢复原长时,小物体B 获得最大速度,由动量守恒和能量守恒得m A v 0=m A v A +m B v m ,12m A v 20=12m B v 2m+12m A v 2A ,解得v m =2 m/s ,v A =-2 m/s ,B 正确;由以上的计算可以看出小物体A 的运动方向发生了改变,因此整个过程中小物体A 的最小速度应为0,A 错误。
9. (多选)如图所示,半径和动能都相等的两个小球相向而行。
甲球的质量m 甲大于乙球的质量m 乙,水平面是光滑的,两球做对心碰撞以后的运动情况可能是( )A .甲球速度为零,乙球速度不为零B.乙球速度为零,甲球速度不为零C.两球速度都不为零D.两球都以各自原来的速率反向运动答案AC解析上述分析知E k甲=E k乙,因为E k=12mv2=m2v22m=p22m,所以动量为:p=2mE k,因为m甲>m乙,所以有:p甲>p乙。
甲乙相向运动,故甲乙碰撞后总动量沿甲原来的方向,甲可能继续沿原来的方向运动,乙必弹回。
所以乙的速度不可能为零,故A正确,B错误;因为碰撞后甲乙可能都沿甲原来的方向运动,故甲乙速度不为零,C正确;若碰撞后两球都以各自原来的速率反向运动,则违反了动量守恒定律,故D错误。
10. (多选)如图所示,小车AB放在光滑水平面上,A端固定一个轻弹簧,B端粘有油泥,AB总质量为M,质量为m的木块C放在小车上,用细绳连接于小车的A端并使弹簧压缩,开始时AB和C都静止,当突然烧断细绳时,C被释放,使C离开弹簧向B端冲去,并跟B端油泥粘在一起,忽略一切摩擦,以下说法正确的是( )A.弹簧伸长过程中C向右运动,同时AB也向右运动B.C与B碰前,C与AB的速率之比为M∶mC.C与油泥粘在一起后,AB立即停止运动D.C与油泥粘在一起后,AB继续向右运动答案BC解析小车AB与木块C组成的系统在水平方向上动量守恒,C向右运动时,AB应向左运动,故A错误。
设碰前C的速率为v1,AB的速率为v2,则0=mv1-Mv2,得v1v2=Mm,故B正确。
设C与油泥粘在一起后,AB、C的共同速度为v共,则0=(M+m)v共,得v共=0,故C 正确,D错误。
二、真题与模拟11. [2015·福建高考]如图,两滑块A、B在光滑水平面上沿同一直线相向运动,滑块A的质量为m,速度大小为2v0,方向向右,滑块B的质量为2m,速度大小为v0,方向向左,两滑块发生弹性碰撞后的运动状态是( )A.A和B都向左运动B.A和B都向右运动C.A静止,B向右运动D.A向左运动,B向右运动答案D解析选向右的方向为正方向,根据动量守恒定律得:2mv0-2mv0=mv A+2mv B=0,选项A、B、C都不满足此式,只有选项D满足此式,所以D项正确。
12.[2015·北京高考] 实验观察到,静止在匀强磁场中A点的原子核发生β衰变,衰变产生的新核与电子恰在纸面内做匀速圆周运动,运动方向和轨迹示意图如图所示,则( )A.轨迹1是电子的,磁场方向垂直纸面向外B.轨迹2是电子的,磁场方向垂直纸面向外C.轨迹1是新核的,磁场方向垂直纸面向里D.轨迹2是新核的,磁场方向垂直纸面向里答案D解析β衰变方程:Z A X―→0-1e+ZA+1Y,知电子电量较小。