备战高考数学一轮复习(热点难点)专题41 妙用线性规划巧解最优化问题
- 格式:doc
- 大小:618.01 KB
- 文档页数:20
线性规划中求整点最优解的两种常用方法简单的线性规划是新教材的新增加内容,它在人们的生活和生产实践中有着广泛的应用,因此,它必将成为高考的一个新亮点,而在线性规划中,求整点最优解的问题是一个难点,下面介绍两种常用的方法.1、平移求解法步骤:1、作出可行域(若是实际问题,则首先应根据题意列出线性约束条件,找出线性目标函数);2、找出最优解(当最优解不是整数解时,过最优解作与线性目标函数平行的直线);3、平移直线族(在平面直角坐标系中,打出网格,在可行域内,平移步骤2中所作的直线,最先经过的整点即为所求的整点最优解). 【范例引导】例1、要将两种大小不同的钢板截成A 、B 、C 三种规格,每张钢板可同时截得三种规格今需要A 、B 、C 三种规格的成品分别为15、18、27块,问各截这两种钢板多少张可得所需三种规格成品,且使所用钢板张数最少.解:设需截第一种钢板x 张,第二种钢板y 张,则⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥≥+≥+≥+0027*******y x y x y x y x 目标函数为:y x z +=.作出可行域,由⎪⎪⎩⎪⎪⎨⎧==⇒⎩⎨⎧=+=+539518152273y x y x y x ,所以A ⎪⎭⎫ ⎝⎛539,518.此时,5211=+y x ,因为A 点不是整点,它是非整点最优解,用平移求解法,打出网格,将平行直线族y x t +=中的5211=+y x 向右上方平移,由图可知,在可行域中最先经过的整点是B (3,9)和C (4,8),它们是所求的最优整点解,此时.12=+y x答:要截得所需三种规格的钢板,且使所截两种钢板的张数最少的方法有两种,一种是截第一种钢板3张、第二种钢板9张;二是截第一种钢板4张、第二种钢板8张. 2、调整优值法步骤:1、求出非整点的最优解及最优值(即对应最优解的目标函数值);2、借助不定方程的知识调整最优值;3、筛选出符合条件的最优解. 【范例引导】例2、用“调整优值法” 解例1 .解:由⎪⎪⎩⎪⎪⎨⎧==⇒⎩⎨⎧=+=+539518152273y x y x y x ,所以A ⎪⎭⎫ ⎝⎛539,518,因为A 点不是整点,它是非整点最优解,此时,5211=+=y x t = 11.4不是整数,因而需要对t 进行调整,由于y x ,为整数,所以t 为整数,而与11.4最靠近的整数是12,故取t =12,即12=+y x ,将x y -=12代入到线性约束条件,解得:5.43≤≤x ,取4,3==x x 得整点的最优解为:B (3,9)和C (4,8),此时.12=+y x例3、已知y x ,满足不等式组:⎪⎪⎩⎪⎪⎨⎧∈∈≥≥≤+≤+Ny N x y x y x y x ;0;040356056(*)求y x z 150200+=的最大值. 解:根据约束条件画出可行域,由⎩⎨⎧=+=+40356056y x y x 得非整点最优解)760,720(,此时,711857760150720200=⋅+⋅=z 也是非整数.因为y x z 150200+=)34(50y x +=,又y x ,为整数,所以z 一定是50的倍数.令y x z 150200+==1850,则)437(31x y -=,代入到(*)式中得3212≤≤x ,故当3=x 时,325=y 为非整数解.令y x z 150200+==1800,则)436(31x y -=,代入到(*)式中得:40≤≤x ,经计算(0,12),(3,8)为其整数解,此时,1800=z . 【名师小结】在一定的约束条件下使某目标达到最大值或最小值的问题称为数学规划,而当约束条件和目标函数都是一次的(又称线性的),我们称这种规划问题为线性规划.例如,如何分配有限的资源以达到某种既定的目标(如利润最大,支付最小等),称为资源分配问题,而许多资源分配问题可以归结为线性规划模型来处理. 在解线性规划应用问题时的一般步骤为:(1)审题;(2)设出所求的未知数;(3)列出约束条件,建立目标函数;(4)作出可行域;(5)找出最优解. 【误区点拨】1、对于整点解问题,其最优解不一定是离边界点最近的整点,而先要过边界点作目标函数By Ax t +=的图象,则最优解是在可行域内离直线By Ax t +=最近的整点;2、熟练掌握二元一次不等式所表示的平面区域是解决线性问题的基础,因此,正确地作出可行域是我们解题的关键;3、一般的线性规划问题,其约束条件是平面上的一个多边形闭区域,或者是向某一方向无限延展的半闭区域,而目标函数必在边界取最值,且是边界的顶点处取最值,但不一定有最优整数解,这一点一定要注意. 【反馈训练】1、设y x ,满足⎪⎪⎩⎪⎪⎨⎧∈∈>>≤+<+zy z x y x y x y x ,0,01141023,求y x u 45+=的最大值. 2怎样搭配价格最低?3、有一化肥厂生产甲、乙两种混合肥料,生产1车皮甲种肥料或1车皮乙种肥料需要的主要原料和产生的利润分别是:磷酸盐4吨,硝酸盐18吨,利润10000元或磷酸盐1吨,硝酸盐15吨,利润5000元.工厂现有库存磷酸盐10吨,硝酸盐66吨,应生产甲、乙肥料各多少车皮可获得最大的利润?4、某工厂有甲、乙两种产品,计划每天各生产不少于15吨,已知生产甲产品1吨需煤9吨,电力4千瓦,劳动力3个;乙产品4吨需煤9吨,电力5千瓦,劳动力10个.甲产品1吨利润7万元,甲产品1吨利润12万元,但每天用煤不超过300吨,电力不超过200千瓦,劳动力只有300个,问每天生产甲、乙两种产品各多少,能使利润总额达到最大? 【参考答案】1、最优整数解为(2,1),=m an u 14;2、10片A 和3片B 搭配价格最低为1.6元.3、最后归结为在约束条件⎪⎩⎪⎨⎧≥≥≤+≤+0,0661518104y x y x y x 下,求目标函数y x u 500010000+=的整数解问题,答案是生产甲、乙肥料各2车皮时可获得最大的利润30000元.4、最后归结为在约束条件⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+≤+.15,15,300103,20054,30049y x y x y x y x 下,求目标函数y x u 127+=的整数解问题,答案是甲、乙两种产品各20吨、24吨,利润总额达到最大428元.。
线性规划解决最优化问题的数学方法线性规划是一种常见的数学方法,用来解决最优化问题。
它能够帮助我们在给定一组线性约束条件下,找到最优的目标函数值。
在实际应用中,线性规划方法被广泛用于制定优化决策、资源配置、生产计划等领域。
本文将介绍线性规划的基本概念、公式以及解决最优化问题的具体步骤。
一、线性规划的基本概念与公式线性规划的目标是在给定约束条件下,找到使目标函数(也称为优化函数)取得最大或最小值的解。
它包含三个基本要素:决策变量、约束条件和目标函数。
1. 决策变量:决策变量是问题中需要确定的变量,它们可以是实数、整数或布尔变量。
决策变量的取值范围和类型由问题的实际情况决定。
2. 约束条件:约束条件是对决策变量的限制条件,它们可以是线性等式或不等式。
约束条件用于描述问题的限制条件,例如资源约束、技术限制等。
3. 目标函数:目标函数是求解问题的目标,它可以是最小化或最大化一个线性函数。
目标函数的形式通常是关于决策变量的线性组合。
线性规划问题可以用如下的标准形式表示:最小化 Z = c₁x₁ + c₂x₂ + ... + cₙxₙ约束条件:a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ ≤ b₂...aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ ≤ bₙ非负约束:x₁ ≥ 0, x₂ ≥ 0, ... , xₙ ≥ 0其中,Z为目标函数值,c₁, c₂, ... , cₙ为目标函数的系数,aᵢₙ为约束条件的系数,b₁, b₂, ... , bₙ为约束条件的常数项,x₁, x₂, ... , xₙ为决策变量。
二、线性规划的解决步骤解决线性规划问题一般可以遵循以下步骤:1. 定义问题:明确问题的目标函数、约束条件和决策变量,并将其转化为标准形式。
2. 建立数学模型:根据问题的实际情况,根据标准形式建立数学模型,将问题转化为求解目标函数最大或最小值的数学问题。
高中数学线性规划解题技巧在高中数学中,线性规划是一个重要的内容,也是考试中常见的题型。
线性规划是一种优化问题,通过建立数学模型,找出使目标函数达到最优值的变量取值。
在解题过程中,我们需要掌握一些技巧和方法,下面就来具体介绍一下。
一、确定变量和目标函数在解线性规划问题时,首先要明确变量和目标函数。
变量是我们要求解的未知数,而目标函数则是我们要优化的目标。
例如,假设我们要求解一个生产问题,生产两种产品A和B,我们可以将A的产量表示为x,B的产量表示为y,目标函数可以是总利润或总成本。
二、列出约束条件约束条件是限制变量取值范围的条件,也是我们解题的关键。
要列出准确的约束条件,需要仔细分析题目并进行逻辑推理。
约束条件可以是生产能力、资源限制、市场需求等各种限制条件。
例如,假设某工厂生产产品A和B,A的生产需要2个单位的资源1和3个单位的资源2,B的生产需要4个单位的资源1和1个单位的资源2。
工厂拥有资源1的总量为10个单位,资源2的总量为12个单位。
那么我们可以得到以下约束条件:2x + 4y ≤ 103x + y ≤ 12三、确定可行域可行域是指满足所有约束条件的变量取值范围。
在解线性规划问题时,我们需要确定可行域的范围,以便找到最优解。
为了确定可行域,我们可以将约束条件转化为不等式,并将其绘制在坐标系中。
通过求解这些不等式的交集,我们可以确定可行域的范围。
以前面的例子为例,我们可以将约束条件绘制在坐标系中,得到以下图形:[图1]根据图中的交集部分,我们可以确定可行域的范围。
四、确定最优解确定最优解是线性规划的核心问题。
我们需要找到使目标函数达到最大或最小值的变量取值。
在确定最优解时,有两种常用的方法:图形法和单纯形法。
图形法通过绘制等高线图来找到最优解,而单纯形法通过迭代计算来逐步逼近最优解。
以目标函数为总利润的例子为例,我们可以通过图形法找到最优解。
在可行域中,我们需要找到使总利润最大化的点。
通过绘制等高线图,我们可以找到目标函数的等高线与可行域的交点,从而确定最优解。
高中数学中的线性规划与最优解数学是一门抽象而又实用的学科,它在我们的日常生活中无处不在。
而在高中数学中,线性规划与最优解是一个重要的概念和技巧。
本文将探讨线性规划与最优解在高中数学中的应用和意义。
线性规划是一种数学模型,它的目标是在一组约束条件下,找到使目标函数取得最大或最小值的变量取值。
在高中数学中,线性规划经常出现在优化问题中,如最大利润、最小成本等。
它的基本思想是将问题转化为一组线性不等式或等式,然后通过图像、代数或其他方法求解最优解。
首先,我们来看一个简单的例子。
假设某工厂生产两种产品A和B,每单位产品A的利润为$5,每单位产品B的利润为$8。
工厂每天的生产时间为8小时,产品A每小时需要2个工人,产品B每小时需要3个工人。
而工厂每天最多能雇佣10个工人。
现在我们要求工厂每天的最大利润是多少。
我们可以设产品A的产量为x,产品B的产量为y。
根据题目条件,我们可以列出以下不等式:2x + 3y ≤ 8 (工时约束)2x + 3y ≤ 10 (工人约束)x ≥ 0, y ≥ 0 (产量非负)我们要求的是最大利润,即目标函数为z = 5x + 8y。
现在我们将这个问题转化为一个线性规划问题,目标是求解z的最大值。
通过图像或代数方法,我们可以找到最优解。
在这个例子中,最优解是x = 2,y = 2,z = 34。
也就是说,工厂每天生产2个单位的产品A和2个单位的产品B时,可以获得最大利润34美元。
这个例子展示了线性规划在实际问题中的应用。
通过建立数学模型,我们可以找到最优解,从而在有限的资源下,达到最佳的效果。
除了图像和代数方法,线性规划还可以通过单纯形法等数值方法来求解。
这些方法可以帮助我们更快地找到最优解,尤其是在复杂的问题中。
通过计算机软件的辅助,我们可以处理更多的变量和约束条件,从而得到更精确的结果。
线性规划不仅在数学中有重要的应用,还在经济学、管理学等领域中起着重要的作用。
它可以帮助我们优化资源配置,提高效率,降低成本。
高三线性规划知识点线性规划是高中数学中的一个重要知识点,它在实际生活中有着广泛的应用。
本文将全面介绍高三线性规划的相关知识,包括定义、基本概念、解题步骤以及一些典型例题。
一、线性规划的定义线性规划是一种数学模型,用于求解一个线性函数在一组线性约束条件下的最优值。
在实际生活中,我们常常需要在一定的条件下寻找最优解,例如:生产成本最小、收益最大、资源利用最佳等等。
线性规划通过建立数学模型,帮助我们找到最优解。
二、线性规划的基本概念1. 目标函数:线性规划的目标通常是最大化或最小化一个线性函数。
这个函数被称为目标函数,记作Z。
2. 线性约束条件:线性规划的约束条件是一组线性不等式或等式,限制了变量的取值范围。
3. 变量:线性规划的变量是我们要求解的未知数,可以用任意字母表示。
4. 可行解:满足所有约束条件的解称为可行解。
可行解的集合称为可行域。
5. 最优解:在所有可行解中,使目标函数取到最大值或最小值的解称为最优解。
三、线性规划的解题步骤1. 建立数学模型:根据问题的描述,将目标函数和约束条件用代数式表示出来。
2. 确定可行域:将约束条件化为不等式形式,并将它们表示在坐标系中,找出它们的交集,确定可行域的范围。
3. 确定最优解:在可行域内寻找目标函数的极值点,得出最优解。
4. 检验最优解:将最优解代入原问题中,检验是否满足所有约束条件。
四、典型例题例题1:某工厂生产甲、乙两种产品,甲产品每吨利润为1000元,乙产品每吨利润为1200元。
已知生产一吨甲产品需要材料A 30千克,材料B 10千克;生产一吨乙产品需要材料A 20千克,材料B 40千克。
工厂每天可以使用材料A 600千克,材料B 200千克。
问如何安排生产,使得利润最大化?解:首先,我们定义两个变量x和y,分别表示甲、乙产品的生产量(吨)。
目标函数Z表示利润的最大值,即Z=1000x+1200y。
约束条件如下:30x+20y ≤ 60010x+40y ≤ 200x,y ≥ 0我们可以将该问题转化为图形解法,将约束条件绘制在坐标系中,确定可行域的范围。
高考数学中的线性规划算法解题技巧高考数学中的线性规划是一种非常重要的问题类型,在考试中经常被考查,对于学生来说是必须掌握的一项技能。
而在线性规划中,解题的算法是关键,正确运用算法不仅能够提高解题效率,还能避免不必要的错误。
本文将介绍一些线性规划解题的算法和技巧,帮助学生在考试中取得更好的成绩。
一、线性规划的基本概念在解题之前,我们需要熟悉线性规划的一些基本概念。
线性规划是指在一定的限制条件下,求解一个线性函数的最大或最小值。
在这个过程中,我们需要确定目标函数、约束条件以及变量的取值范围。
通常情况下,我们可以将线性规划问题表示为标准型或非标准型。
标准型的形式如下:$$\max(z)=c_1x_1+c_2x_2+...+c_nx_n$$$$s.t.\begin{cases}a_{11}x_1+a_{12}x_2+...+a_{1n}x_n\le b_1\\a_{21}x_1+a_{22}x_2+...+a_{2n}x_n\le b_2\\...\\a_{m1}x_1+a_{m2}x_2+...+a_{mn}x_n\le b_m\\\end{cases}$$变量取值范围为$x_i\ge0(i=1,2,...,n)$而非标准型的形式则可以被转化为标准型。
二、单纯形法的原理和步骤单纯形法是解决线性规划问题的一种经典算法,其基本原理是通过不断地构造可行解和寻找可行解中的最优解来达到最终的优化目标。
其具体步骤如下:1、将标准型问题中的目标函数系数、约束条件系数和右端项系数分别组成一个矩阵。
2、选择其中一个非基变量(即取值为0的变量)作为入基变量,计算出使目标函数增大的最大步长。
3、选择其中一个基变量(即取值不为0的变量)作为出基变量,计算出使目标函数增大的最小步长。
4、通过第2步和第3步计算出的步长来更新目标函数和约束条件,得到一个新的可行解。
5、使用新的可行解重复进行第2-4步的计算,直到找到最优解。
需要注意的是,单纯形法有两种可能的结果:一是存在最优解,二是存在无穷多个最优解。
数学知识点归纳线性规划与最优化问题数学知识点归纳:线性规划与最优化问题数学作为一门学科,其中有很多重要的知识点需要我们去学习和掌握。
线性规划和最优化问题就是其中的两个重要知识点。
本文将对线性规划和最优化问题进行详细归纳和讲解。
一、线性规划线性规划是一种数学优化方法,其目标是在一组线性约束条件下,寻找一个线性目标函数的最大值或最小值。
线性规划广泛应用于工程、经济、管理等领域。
下面我们将逐步介绍线性规划的基本概念、模型和解法。
1. 问题的建模在线性规划中,我们需要确定目标函数、约束条件和决策变量。
目标函数是我们希望最大化或最小化的线性指标,约束条件限制了决策变量的取值范围。
通过确定这些要素,我们可以建立一个数学模型,描述出线性规划问题。
2. 单变量线性规划在单变量线性规划中,我们只有一个决策变量。
通过绘制目标函数和约束条件的图像,我们可以找到使目标函数取得最大值或最小值的决策变量。
3. 多变量线性规划在多变量线性规划中,我们有多个决策变量。
通过使用线性代数和数学优化方法,我们可以求解出目标函数的最优解。
4. 线性规划的解法求解线性规划问题的常用方法有单纯形法和内点法。
单纯形法是一种基于顶点的搜索方法,通过不断迭代改进目标函数的值,直到找到最优解。
内点法则是通过将问题转化为一系列约束条件更强的问题,逐步逼近最优解。
二、最优化问题最优化问题是数学分析中的一个重要问题领域,它涉及在一定约束条件下找出使目标函数取得最大值或最小值的问题。
最优化问题广泛应用于工程、经济和科学等领域。
下面我们将介绍最优化问题的基本概念和求解方法。
1. 单变量最优化问题在单变量最优化问题中,我们只有一个自变量。
通过求导、求极值点和判断二阶导数的符号,我们可以找到目标函数的最大值或最小值。
2. 多变量最优化问题在多变量最优化问题中,我们有多个自变量。
通过使用梯度下降法、牛顿法等数值优化方法,我们可以找到目标函数的最优解。
3. 最优化问题的约束条件最优化问题中的约束条件可以是等式约束或不等式约束。
线性规划问题的解法与最优解分析线性规划是一种数学建模方法,用于解决最优化问题。
它在工程、经济学、管理学等领域有着广泛的应用。
本文将介绍线性规划问题的解法和最优解分析。
一、线性规划问题的定义线性规划问题是指在一定的约束条件下,求解一个线性目标函数的最大值或最小值的问题。
线性规划问题的数学模型可以表示为:max/min Z = c₁x₁ + c₂x₂ + ... + cₙxₙsubject toa₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ ≤ b₂...aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ ≤ bₙx₁, x₂, ..., xₙ ≥ 0其中,Z表示目标函数的值,c₁, c₂, ..., cₙ为目标函数中的系数,a₁₁,a₁₂, ..., aₙₙ为约束条件中的系数,b₁, b₂, ..., bₙ为约束条件中的常数,x₁,x₂, ..., xₙ为决策变量。
二、线性规划问题的解法线性规划问题的解法主要有两种:图形法和单纯形法。
1. 图形法图形法适用于二维或三维的线性规划问题。
它通过绘制约束条件的直线或平面以及目标函数的等高线或等高面,来确定最优解。
首先,将约束条件转化为不等式,并将其绘制在坐标系上。
然后,确定目标函数的等高线或等高面,并绘制在坐标系上。
最后,通过观察等高线或等高面与约束条件的交点,找到最优解。
图形法简单直观,但只适用于低维的线性规划问题。
2. 单纯形法单纯形法是一种迭代的求解方法,适用于高维的线性规划问题。
它通过在可行域内不断移动,直到找到最优解。
单纯形法的基本思想是从初始可行解开始,每次通过找到一个更优的可行解来逼近最优解。
它通过选择一个基本变量和非基本变量,来构造一个新的可行解。
然后,通过计算目标函数的值来判断是否找到了最优解。
如果没有找到最优解,则继续迭代,直到找到最优解为止。
单纯形法是一种高效的求解线性规划问题的方法,但对于大规模的问题,计算量会很大。
高中数学中的最优化问与线性规划方法在高中数学的学习中,最优化问题和线性规划方法是非常重要的内容。
它们不仅在数学领域有着广泛的应用,还与我们的日常生活、经济活动等密切相关。
最优化问题,简单来说,就是在一系列的限制条件下,寻找一个最佳的解决方案,使得某个目标函数达到最大值或最小值。
比如说,在资源有限的情况下,如何安排生产,以获得最大的利润;或者在给定预算的前提下,如何采购物品,以满足最大的需求。
线性规划则是解决最优化问题的一种重要方法。
它的核心在于通过建立线性的数学模型,来描述问题中的各种关系和限制条件。
我们先来看一个简单的线性规划问题。
假设一家工厂生产两种产品A 和 B,生产一件 A 产品需要消耗 2 个单位的原材料和 3 个单位的工时,生产一件B 产品需要消耗 3 个单位的原材料和 2 个单位的工时。
工厂共有 100 个单位的原材料和 80 个单位的工时。
已知 A 产品的利润为5 元每件,B 产品的利润为4 元每件,那么工厂应该如何安排生产,才能获得最大的利润?为了解决这个问题,我们首先要设出未知数。
设生产 A 产品 x 件,生产 B 产品 y 件。
然后,根据题目中的条件,我们可以列出以下不等式组:2x +3y ≤ 100 (原材料限制)3x +2y ≤ 80 (工时限制)x ≥ 0,y ≥ 0 (非负限制)而我们的目标函数是利润 Z = 5x + 4y,我们要在满足上述不等式组的条件下,求出 Z 的最大值。
接下来,我们可以通过图形的方法来求解。
将上述不等式组转化为直线方程,然后在平面直角坐标系中画出这些直线所围成的区域,这个区域就被称为可行域。
在可行域内,我们要找到目标函数的最优解。
一般来说,最优解会出现在可行域的顶点处。
通过计算各个顶点处的目标函数值,我们就可以找到最大值。
线性规划问题在实际生活中有很多应用。
比如在物流运输中,如何安排车辆的运输路线,使得运输成本最低;在资源分配中,如何分配有限的资源,使得效益最大化等等。
专题41 妙用线性规划巧解最优化问题考纲要求:1.会从实际情境中抽象出二元一次不等式组.2.了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.3.会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.基础知识回顾:1.二元一次不等式(组)的解集满足二元一次不等式(组)的x和y的取值构成有序数对(x,y),所有这样的有序数对(x,y)构成的集合称为二元一次不等式(组)的解集.2.二元一次不等式所表示的平面区域一般地,二元一次不等式Ax+By+C>0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域.我们把直线画成虚线以表示区域不包括边界.当我们在坐标系中画不等式Ax+By+C≥0所表示的平面区域时,此区域应包括边界,则把边界画成实线.3.二元一次不等式表示平面区域的判断方法直线l:Ax+By+C=0把坐标平面内不在直线l上的点分为两部分,直线l的同一侧点的坐标使式子Ax+By+C的值具有相同的符号,并且两侧点的坐标使Ax+By+C的值的符号相反,一侧都大于0,另一侧都小于0.4.线性规划中的基本概念约束条件:由变量x,y组成的不等式组.线性约束条件:由x,y的线性不等式(或方程)组成的不等式组;f x y,如z=2x+3y等;目标函数:关于x,y的函数(,)线性目标函数:关于x,y的线性目标函数.可行解:满足线性约束条件的解.可行域:所有可行解组成的平面区域.最优解:使目标函数取得最大值或最小值的可行解线性规划问题:在线性约束条件下求线性目标函数的最大值或最小值问题应用举例:类型一、二元一次不等式(组)表示平面区域【例1】【内蒙古呼和浩特市2018届高三11月质量普查考试】已知,x y 满足条件0{0 2x y y x ≤≥-≤,则目标函数z x y =+从最小值连续变化到1时,所有满足条件的点(),x y 构成的平面区域的面积为( )A .74 B . 94 C . 92D . 1 【答案】A【例2】【2017河北正定一中高三月考】不等式组⎩⎪⎨⎪⎧x +y ≥2,2x -y ≤4,x -y ≥0所围成的平面区域的面积为()A .3 2B .6 2C .6D .3【答案】D【解析】如图,不等式组所围成的平面区域为△ABC ,其中A (2,0),B (4,4),C (1,1),所求平面区域的面积为S △ABO -S △ACO =12(2×4-2×1)=3.【例3】如图2阴影部分表示的区域可用二元一次不等式组表示为__________.【答案】⎩⎪⎨⎪⎧x +y -1≥0,x -2y +2≥0类型二、求线性目标函数的最值【例4】【2018年高考2017年11月份衡水联考文数】若实数x , y 满足不等式组10,{30, 10,x y x y -+≥-≤-≥则2z x y =+的最大值为( )A . 12B . 10C . 7D . 1【答案】B【解析】作出可行域:当动直线2x z y =-+经过C 点时,z 最大, 即23410z =⨯+= 故选:B图2点睛:本题考查的是线性规划问题,解决线性规划问题的实质是把代数问题几何化,即数形结合思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意让其斜率与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大值或最小值会在可行域的端点或边界上取得.【例5】【江西省宜春市2017届高三下学期第五次调研考试】已知实数,x y满足2{2452x yx yy x+≥+≥≤-,则32z x y=+的最大值为__________.【答案】9【例6】【2017四川省成都市高三摸底】若实数,x y满足条件222x yx yx y-≤⎧⎪+≥-⎨⎪-≥-⎩,则2z x y=+的最大值是()A.10 B.8 C.6 D.4 【答案】C类型三、求非线性目标函数的最值【例7】【安徽省蒙城县“五校”2018届高三上学期联考】已知变量,x y 满足约束条件20{30 10y x x y -≤+≥--≤,则64x y x +--的最大值是__________.【答案】137【解析】 由题意得,画出约束条件所表示的平面区域 如图所示 又()42621444x y x y y x x x -+-+--==+---,设24y z x -=-,当取可行域内点C 时,此时z 取得最大值, 由30{10x x y +=--=,得()3,4C --,此时max 426347z --==--,所以64x y x +--的最大值为613177+=.【例8】【黑龙江省齐齐哈尔市第八中学2017届高三第二次模拟考试】已知变量,x y 满足2,{2, 0,x y x y x -≥-+≥-≤则23y x ++的最大值为( ) A . 2 B . 32 C . 43D . 1【答案】A类型四、求参数的值【例9】【福建省闽侯第四中学2018届高三上学期期中考试】已知实数x , y 满足20{40 250x y x y x y -+≥+-≥--≤,若使得目标函数z ax y =+取最大值的最优解有无数个,则实数a 的值是( )A . 2B . 2-C . 1D . 1-【答案】D点睛:简单的线性规划有很强的实用性,线性规划问题常有以下几种类型:(1)平面区域的确定问题;(2)区域面积问题;(3)最值问题;(4)逆向求参数问题.而逆向求参数问题,是线性规划中的难点,其主要是依据目标函数的最值或可行域的情况决定参数取值.若目标函数中含有参数,则一般会知道最值,此时要结合可行域,确定目标函数取得最值时所经过的可行域内的点(即最优解),将点的坐标代入目标函数求得参数的值.【例10】【甘肃省天水市第一中学2018届高三上学期第二学段考试】若,x y 满足220{20 0x y x y y -+≥-+≥≥,且z kx y =-+有最大值,则k 的取值范围是( )A . 1k ≤B . 12k ≤≤C . 1k ≥D . 2k ≥【答案】C【例11】【2017江苏省泰州中学高三摸底】已知实数x 、y 满足20,50,40,x y x y y -≤⎧⎪+-≥⎨⎪-≤⎩若不等式222()()a x y x y +≥+恒成立,则实数a 的最小值是 .【答案】95【解析】可行域为一个三角形ABC 及其内部,其中510(2,4),(1,4),(,)33A B C ,因此[,][2,4]OA OB yk k x∈=,因为y x x y+在[2,4]上单调递增,所以517[,]24y x x y +∈,不等式222()()a x y x y +≥+恒成立等价于2max max min22()299[][1].55x y a a y x x y x y+≥=+=⇒=++点评:线性规划问题,首先明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.类型五、线性规划解决实际问题【例12】【天津市河东区2017届高三二模】制定投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目.根据预测,甲、乙项目可能的最大盈利率分别为100%和50%,可能的最大亏损分别为30%和10%.投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元.问投资人对甲、乙两个项目各投资多少万元,才能使可能的盈利最大?【答案】投资人用4万元投资甲项目、6万元投资乙项目,才能在确保亏损不超过1.8 万元的前提下,使可能的盈利最大考点:利用线性规划求目标函数的最值. 方法、规律归纳:1.求目标函数最值的一般步骤:一画二移三求.其关键是准确作出可行域,理解目标函数的意义. 2.常见的目标函数有:(1)截距型:形如z =ax +by . 求这类目标函数的最值常将函数z =ax +by 转化为直线的斜截式:y =-a b x +z b ,通过求直线的截距zb的最值间接求出z 的最值.(2)距离型:形如z =(x -a )2+(y -b )2. (3)斜率型:形如z =y -bx -a. 3.解线性规划应用题的步骤(1)转化——设元,写出约束条件和目标函数,从而将实际问题转化为线性规划问题; (2)求解——解这个纯数学的线性规划问题 (3)作答——将数学问题的答案还原为实际问题的答案.实战演练:1.【山东省、湖北省部分重点中学2018届高三第二次联考】若正数,x y 满足约束条件2142{x y x y y lnx-≤-≤,则22y xxy+的取值范围为()A.117,4ee⎡⎤+⎢⎥⎣⎦B.1,ee⎡⎤++∞⎢⎥⎣⎦C.172,4⎡⎤⎢⎥⎣⎦D.12,ee⎡⎤+⎢⎥⎣⎦【答案】A2.【四川省成都市第七中学2018届高三上学期一诊】设实数,x y 满足约束条件4{2 ,10x y x y x +≤-≤-≥则目标函数1yz x =+的取值范围是() A . ][13,0,22⎛⎤-∞-⋃ ⎥⎝⎦ B . 13,42⎡⎤⎢⎥⎣⎦ C . 11,24⎡⎤-⎢⎥⎣⎦ D . 13-,22⎡⎤⎢⎥⎣⎦【答案】D3.【湖南省五市十校教研教改共同体2018届高三12月联考】若实数,x y 满足不等式组10{10 x y x y x a+-≥-+≥≤,若目标函数2z ax y =-的最大值为1,则实数a 的值是( )A1 B . 1 CD . 3【答案】B【解析】作可行域如图,则直线2z ax y =-过点B (),1a a -时,z 取得最大值,()2211,1a a a --==(负值舍去),选B.点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.4.【江西省南昌县莲塘一中2018届高三11月质量检测】若存在实数,x y 使不等式组0{320 60x y x y x y -≥-+≤+-≤与不等式20x y m -+≤都成立,则实数m 的取值范围是( )A . 0m ≥B . 3m ≤C . 1m ≥D . 3m ≥【答案】B5.【2018届高三南京市联合体学校调研测试】若不等式组0{24 24x x y x y ≥+≤+≥所表示的平面区域被直线4y kx =+分为面积相等的两部分,则k的值为________【答案】7 2 -6.【江西省宜春市2017届高三下学期第五次调研考试】已知实数,x y满足2{2452x yx yy x+≥+≥≤-,则1yzx=+的取值范围为__________.【答案】1,2 3⎡⎤⎢⎥⎣⎦【解析】作出不等式2{2452x yx yy x+≥+≥≤-表示的平面区域,如下图,7.【重庆市第一中学2018届高三11月月考】已知x,y满足约束条件0,{2,0,x yx yy-≥+≤≥若z ax y=+的最大值为4,则a的值为__________.【答案】28.【河南省豫南豫北2018届高三第二次联考联评】已知实数,x y 满足220{210 20x y x y x y -+≥-+≤+-≤,则()221z x y =++的取值范围为__________. 【答案】9,95⎡⎤⎢⎥⎣⎦【解析】可行域是由A ()()()1,10,21,0B C -围成的三角形及其内部, ()221z x y =++表示点()0,1- 与区域中的点(),x y 之间距离的平方,在点B 处, z 取得最大值为9,最小值即为点()0,1-到直线x 210y -+=的距离d 的平方,295d d === 故()221z x y =++的取值范围为9,95⎡⎤⎢⎥⎣⎦故答案为9,95⎡⎤⎢⎥⎣⎦9.【天津市实验中学2018届高三上学期期中(第三阶段)考试】某餐厅装修,需要大块胶合板20张,小块胶合板50张,已知市场出售A B 、两种不同规格的胶合板。