基本蚁群算法的收敛性研究
- 格式:pdf
- 大小:226.51 KB
- 文档页数:5
《基于蚁群算法的智能算法收敛性改进》
以下是为您生成的一篇符合您要求的文章:
哎呀,说起这个蚁群算法的智能算法收敛性改进,我就想起了之前发生的一件特别有意思的事儿。
那时候,我和几个小伙伴参加了一个科技比赛。
比赛的题目就是要对一种智能算法进行优化改进。
我们几个一商量,就决定挑战这个蚁群算法的收敛性问题。
刚开始的时候,我们就像没头的苍蝇一样乱撞。
我对着电脑屏幕,眼睛都快看花了,嘴里还嘟囔着:“这到底该咋整啊?”一旁的小李拍了拍我的肩膀说:“别着急,咱们慢慢研究。
”小王也凑过来,皱着眉头说:“就是就是,咱们得好好想想办法。
”
于是,我们就开始分工合作。
我负责查阅各种资料,小李呢,就埋头写代码尝试各种可能性,小王则在一旁不停地计算和分析数据。
有一天,我们聚在一起讨论方案。
我着急地说:“我看的那些资料都没啥特别有用的,这可咋办?”小李停下手中的键盘,抬起头说:“我这边试了好多代码,效果也不太理想。
”小王拿着笔,在纸上划来划去,突然眼睛一亮:“要不咱们从这个角度试试?”我们听了,又燃起了希望。
就这样,经过无数次的失败和尝试,我们终于有了一些进展。
当看到数据一点点变好,我们几个兴奋得差点跳起来。
最后,虽然我们的成果可能不是最完美的,但通过这次经历,我深深地明白了,改进智能算法就像走一条充满荆棘的路,需要耐心、勇气和团队的力量。
这不就和蚁群算法一样嘛,单个蚂蚁力量小,但一群蚂蚁齐心协力,就能找到最优的路径。
所以啊,对于蚁群算法的智能算法收敛性改进,咱们得有耐心,得团结,才能一步步走向成功。
蚁群算法综述控制理论与控制工程09104046 吕坤一、蚁群算法的研究背景蚂蚁是一种最古老的社会性昆虫,数以百万亿计的蚂蚁几乎占据了地球上每一片适于居住的土地,它们的个体结构和行为虽然很简单,但由这些个体所构成的蚁群却表现出高度结构化的社会组织,作为这种组织的结果表现出它们所构成的群体能完成远远超越其单只蚂蚁能力的复杂任务。
就是他们这看似简单,其实有着高度协调、分工、合作的行为,打开了仿生优化领域的新局面。
从蚁群群体寻找最短路径觅食行为受到启发,根据模拟蚂蚁的觅食、任务分配和构造墓地等群体智能行为,意大利学者M.Dorigo等人1991年提出了一种模拟自然界蚁群行为的模拟进化算法——人工蚁群算法,简称蚁群算法(Ant Colony Algorithm,ACA)。
二、蚁群算法的研究发展现状国内对蚁群算法的研究直到上世纪末才拉开序幕,目前国内学者对蚁群算法的研究主要是集中在算法的改进和应用上。
吴庆洪和张纪会等通过向基本蚁群算法中引入变异机制,充分利用2-交换法简洁高效的特点,提出了具有变异特征的蚊群算法。
吴斌和史忠植首先在蚊群算法的基础上提出了相遇算法,提高了蚂蚁一次周游的质量,然后将相遇算法与采用并行策略的分段算法相结合。
提出一种基于蚁群算法的TSP问题分段求解算法。
王颖和谢剑英通过自适应的改变算法的挥发度等系数,提出一种自适应的蚁群算法以克服陷于局部最小的缺点。
覃刚力和杨家本根据人工蚂蚁所获得的解的情况,动态地调整路径上的信息素,提出了自适应调整信息素的蚁群算法。
熊伟清和余舜杰等从改进蚂蚁路径的选择策略以及全局修正蚁群信息量入手,引入变异保持种群多样性,引入蚁群分工的思想,构成一种具有分工的自适应蚁群算法。
张徐亮、张晋斌和庄昌文等将协同机制引入基本蚁群算法中,分别构成了一种基于协同学习机制的蚁群算法和一种基于协同学习机制的增强蚊群算法。
随着人们对蚁群算法研究的不断深入,近年来M.Dorigo等人提出了蚁群优化元启发式(Ant-Colony optimization Meta Heuristic,简称ACO-MA)这一求解复杂问题的通用框架。
蚁群算法原理及其应用蚁群算法是一种模拟生物群体行为的智能优化算法,它源于对蚂蚁群体觅食行为的研究。
蚁群算法模拟了蚂蚁在觅食过程中释放信息素、寻找最优路径的行为,通过模拟这种行为来解决各种优化问题。
蚁群算法具有很强的鲁棒性和适应性,能够有效地解决复杂的组合优化问题,因此在工程优化、网络路由、图像处理等领域得到了广泛的应用。
蚁群算法的原理主要包括信息素的作用和蚂蚁的行为选择。
在蚁群算法中,蚂蚁释放信息素来引导其他蚂蚁的行为,信息素浓度高的路径会吸引更多的蚂蚁选择,从而增加信息素浓度,形成正反馈的效应。
与此同时,蚂蚁在选择路径时会考虑信息素浓度和路径长度,从而在探索和利用之间寻找平衡,最终找到最优路径。
这种正反馈的信息传递和路径选择策略使得蚁群算法能够在搜索空间中快速收敛到全局最优解。
蚁群算法的应用非常广泛,其中最为典型的应用就是在组合优化问题中的求解。
例如在旅行商问题中,蚁群算法可以有效地寻找最短路径,从而解决旅行商需要经过所有城市并且路径最短的问题。
此外,蚁群算法还被应用在网络路由优化、无线传感器网络覆盖优化、图像处理中的特征提取等领域。
在这些问题中,蚁群算法能够快速地搜索到较优解,并且具有较强的鲁棒性和适应性,能够适应不同的问题特征和约束条件。
除了在优化问题中的应用,蚁群算法还可以用于解决动态环境下的优化问题。
由于蚁群算法具有分布式计算和自适应性的特点,使得它能够在动态环境下及时地对问题进行调整和优化,适应环境的变化。
这使得蚁群算法在实际工程和生活中的应用更加广泛,能够解决更加复杂和实时性要求较高的问题。
总的来说,蚁群算法作为一种模拟生物群体行为的智能优化算法,具有很强的鲁棒性和适应性,能够有效地解决各种复杂的组合优化问题。
它的原理简单而有效,应用范围广泛,能够在静态和动态环境下都取得较好的效果。
因此,蚁群算法在工程优化、网络路由、图像处理等领域具有很大的应用前景,将会在未来得到更广泛的应用和发展。
蚁群优化算法的收敛性分析与研究作者:赵世安来源:《现代电子技术》2017年第19期摘要:蚁群算法本身存在收敛速度慢、容易陷入局部最优解的缺陷,针对该缺陷提出一些改进的蚁群优化算法。
主要讨论蚁群优化算法的收敛性理论及应用,得出蚁群系统和最大最小蚂蚁系统的性能好于蚂蚁系统,而且最大最小蚂蚁系统的性能最好,蚁群系统和最大最小蚂蚁系统是值收敛的,一种特殊的[ACOgs,ρ(θ)]算法是解收敛的。
关键词:蚁群优化算法;收敛性;蚁群系统;解收敛中图分类号: TN911.1⁃34; TM417 文献标识码: A 文章编号: 1004⁃373X(2017)19⁃0173⁃04Analysis and research on convergence of ant colony optimization algorithmZHAO Shian(School of Mathematics & Statics, Baise University, Baise 533000, China)Abstract: The ant colony algorithm has the defect of slow convergence speed and is easy to fall into the local optimal solution, so some improved ant colony optimization algorithms are proposed to elimanite the defect. The convergence theory and application of the ant colony optimization (ACO) algorithm are discussed mainly in this paper. It is obtained that the performance of the ant colony systen and min⁃max ant system is higher than that of the ant system, in which the min?max ant system has the highest performance, the ant colony system and min⁃max ant system are convergent, and a special [ACOgs,ρ(θ)] algorithm is solution convergent.Keywords: ant colony optimization algorithm; convergence; ant colony system; solution convergence0 引言随着科学技术和现代化生产的快速发展,优化问题在各行各业中显得越来越重要,然而传统的优化方法对函数性质的要求比较高,如要求函数连续、可微等,而实际问题中,很多函数都不具有上述性质,因此在应用上有很大的局限性,而且实际问题往往很复杂,所以需要寻求新的优化方法[1⁃2]。
万方数据万方数据万方数据万方数据1650电子学报2009焦文下一步将重点研究ACS算法的强收敛性条件.参考文献:[1]ColomiA,DorigoM,MailiezzoV.Distributedoptil/liz撕ollbyantcolonies[A].Proc.oftheFirstEuropeanConf.onArtificialⅡfe[c].Paris,Frallce:ElsevierPublishing,1991.134—142.[2]DofigoM,Gambardel/aLM.Antcolonysystem:ACOOperafivclearningapproachtothetravelingsalesmanproblemlJJ.IEEETransactionsOnEvolutionaryComputation,1997,1(1):53—66.[3]MontemanniR,SmithDH,AllenSM.AnANTSalgorithmfortheminimum-spanfrequency-assignmentproblem、】vitIlmultipleinterference[J].IEEETransacfomOff.VehicularTechnology,2002.51(5):949—953.[4]蒋建国,夏娜,齐美彬,木春梅.一种基于蚁群算法的串行多任务联盟生成算法[J].电子学报,2005,33(12):2178—2182.JIANGJian-guo,XIANa,QIMei・bin,MUChun-mei.Anantcolonyalgorithmbasedmulti—taskcoalitionserialgenerational-gorithm[J].ActaElectronicaSinica,2005,33(12):2178—2182.(inClose)[5]吴春明,陈治,姜明.蚁群算法中系统初始化及系统参数的研究[J].电子学报,2006,34(8):1530—1533.WUChun-ming,CHENZhi,JIANGMing.TheresearchOilini—ti删onofantssystemandcoraigumaonofparamete口'sfordifferentTSPproblemsinantalgorithmlJ].ActaElectronicaSinica,2006,34(8):1530—1533.(inChinese)[6]徐宗本,聂赞坎,张文修.遗传算法的几乎必然强收敛性——鞅方法[J].计算机学报,2002,25(8):785—793.XUZong-ben,NIEZan-kan,ZHANGWen-xiu.Almostsureconvergenceofgeneticalgorithms:amartingaleapproach【JJ.ChineseJoumalofComputers,2002,25(8):785—793.(inChinese)[7]王霞,周国标.整体退火遗传算法的几乎处处强收敛性[J].应用数学,2003,16(3):1—7.WANGXia,ZhouGuo-biao.Strongconvergence(a.s.)0fglobalannealinggeneticalgorithm[J].MathenaticaApplicata,2003,16(3):1—7.(inChinese)[8]罗小平,韦巍.生物免疫遗传算法的几乎处处强收敛性分析及收敛速度估计[J].电子学报,2005,33(10):1803一1807.LUOXiao-ping,WEIWei.Theanalysisonstrongconvergence(a.s.)andconvergencerateeStilllateofinllnlu]egeneticalgo-rit埘J].Acta日ec咖icaSinica,2005,33(10):1803—1807.(ina妇)19JG硼ahWJ.Ageneralizedconvergenceresultforthegraphbasedantsystemmetahenristic【R].TechnicalReport99—09,Austria,Dept.ofStatisticsandDecisionSupportSystems,Uni—versityofVienna:1999.[10]G叫ahrWJ.Agraph-basedantsystemanditsconvergence[J].FutureGenerationComputingSystems,2000,16(9):873—888.[11]oatjahWJ.ACOalgorithmswithguaranteedconvergencetotheoptimalsolufion[J].InformationProcessingLetters,2002,82(3):145—153.[12]StiitzleT,DorigoM.Ashortconvergenceproofforaclassofantcolonyopfinlizzfionalgorithms[JJ.IEEETransacfiomOnEvolutionaryComputation,2002,6(4):358—365.[13]BadrA,FahmyA.Aproofofconvergenceforantalgorithms[J].InformationSciences,2004,160(1-4):267—279.[14]朱庆保.蚁群优化算法的收敛性分析.控制与决策[J].2006,21(7):763—766.ZHUQing-bao.Analysisofctmvergenceofantcolonyopti・mizationalgorithms[J].ControlandDecision,2006,21(7):267—279.(inChinese)[15]段海滨,王道波,于秀芬.基本蚁群算法的A.s.收敛性研究[J].应用基础与工程科学学报,2006,14(2):297—301.DUANHal—bin,WANGDao-bo,YUXiu-fen.Research011thea.s.convergenceptDperfiesofbasicantcolonyalgorithm[J].JournalofBasicScienceandEngineering,2006,14(2):297—301.(inChinese)[16]张波,张景肖.应用随机过程[M].北京:清华大学出版社.2004.ZHANGBo,ZHANGJing-xiao.AppliedStochasticProcesses[M].Beijing:TsinghuaUniversityPress,2004.(inChinese)【17]EdwardPCK.AnIntroductiOiltoStochasticProcesseslMJ.Belmont,Calif.,London:OuxburyPress,1997.[18]StiatzleT,HcosHH.Max—Minantsystem[J].FutureGenera-tionComputerSystem,2000,16(8):889—914.作者简介:苏兆品女。
蚁群优化算法及其理论进展摘要:蚁群优化算法作为一种新的智能计算模式,近年来在理论研究上取得了丰硕成果。
本文主要阐述蚁群优化算法的研究成果,论述了算法在离散域、连续域问题上的理论进展,然后对收敛性研究做了介绍。
最后,阐述了蚁群优化算法的发展趋势。
关键词:蚁群算法离散域连续域收敛性中图分类号:tp301.6 文献标识码:a 文章编号:1674-098x(2012)04(a)-0032-021 引言意大利学者dorigo[1]等人根据真实蚂蚁觅食行为,提出了蚁群优化算法的(aco)最早形式—蚂蚁系统(as),并应用在tsp旅行商问题中。
该算法采用分布式并行计算机制,易与其他方法结合,具有较强的鲁棒性。
as算法提出之后,其应用范围逐渐广泛,已经由单一的tsp领域渗透到了多个应用领域[2],算法本身也不断完善和改进,形成了一系列改进aco算法。
2 蚁群算法理论研究2.1 基本蚂蚁算法与真实蚂蚁觅食行为类似,基本蚁群算法主要包括路径选择和信息素更新两个步骤。
以蚁群算法求解tsp问题为例[1]:tsp问题可表述成,旅行商走完n个城市有多种走法,每周游完所有城市可得长度为i的路径,它们构成解的集合。
而每个解是依次走过n个城市的路径距离构成的集合,可表示设是在第g次周游中城市i上的蚂蚁数。
在算法周游过程中,每只蚂蚁根据概率转换规则生成一个有n步过程的行动路线,整个算法的周游过程以g为刻度,。
其中是预先设定的算法最大周游次数,当所有蚂蚁移动一次后,周游次数计数器加1。
经过次周游,基本可找到一条最短路径。
设,np为算法中总蚂蚁数。
基本步骤为:算法开始时,每条路径上初始信息素设置为常数,并对每只蚂蚁设置随机起始城市。
蚂蚁移动过程中,从城市i选择移动到城市j主要是根据概率启发公式(1)来完成,每次选择的城市都是从可选城市列表中取出。
(1)其中为启发优先系数且。
可以改变信息素与启发优先系数的相对重要性。
如果则最近的城市容易被选择,这类似经典的随机贪婪算法。
网络拓扑优化的蚁群算法方法网络拓扑优化是指通过改变网络的拓扑结构,使得网络的性能得到优化和改善的过程。
而蚁群算法是一种基于觅食行为的模拟优化算法,它可以用来解决包括网络拓扑优化在内的许多实际问题。
本文将介绍蚁群算法在网络拓扑优化中的应用方法。
一、蚁群算法简介蚁群算法是受到蚂蚁觅食行为的启发而发展起来的一种优化算法。
在自然界中,蚂蚁觅食时会释放信息素,在路径上的蚂蚁会受到这些信息素的影响,越多的蚂蚁经过的路径上的信息素浓度会越高,从而吸引更多的蚂蚁选择该路径。
蚁群算法通过模拟蚂蚁在搜索问题中的行为,从而找到问题的最优解。
二、蚁群算法在网络拓扑优化中的应用1. 蚁群算法在网络路由优化中的应用在一个复杂的计算机网络系统中,合理的路由选择对于网络的性能和稳定性至关重要。
传统的路由优化算法需要考虑的因素较多,而蚁群算法在解决这类问题时能够简化问题的复杂性。
蚁群算法通过模拟蚂蚁在网络中搜索路径的过程,找到最佳路由路径,从而最大程度地优化网络的性能。
2. 蚁群算法在无线传感器网络中的应用无线传感器网络是由一组无线节点组成的网络,这些节点可以感知和采集周围环境的信息,并通过无线通信传输数据。
无线传感器网络通常分布在一片广阔的区域内,节点之间的通信距离是有限的,因此如何合理部署节点并建立网络拓扑结构是一项具有挑战性的任务。
蚁群算法可以通过模拟蚂蚁在区域内的搜索行为,找到最佳的节点部署策略,从而优化无线传感器网络的覆盖范围和性能。
3. 蚁群算法在云计算中的应用云计算是一种基于互联网的计算模式,通过共享的计算资源为用户提供服务。
在一个大规模的云计算中心中,服务器之间的连接拓扑结构对于网络的负载均衡和效率非常重要。
蚁群算法可以通过模拟蚂蚁在网络中的搜索行为,找到最优的服务器连接拓扑结构,从而优化云计算的性能和资源利用率。
三、蚁群算法在网络拓扑优化中的优势与挑战1. 优势蚁群算法在解决网络拓扑优化问题时具有以下优势:1) 分布式计算:蚁群算法是一种分布式计算方法,适用于大规模网络系统中的优化问题。
蚁群算法原理一、什么是蚁群算法蚁群算法(Ant Colony Optimization,ACO)是一种仿生智能算法,它模拟蚂蚁搜索食物的行为,从而解决多种优化问题。
该算法旨在建立蚂蚁在搜索空间中的路径,并在这些路径上传播信息,从而使蚂蚁在搜索空间中最终能够找到最优解的路径。
二、蚁群算法的原理1、蚁群算法的基本原理蚁群算法建立在模拟生物天性的基础上,它的基本原理如下:蚂蚁在搜索过程中会搜索出一系列可能的路径,当它们回到搜索起点时,会把它们走过的路线信息传给其它蚂蚁,然后其它蚂蚁据此搜索出其它可能的路线,此过程一直持续,所有蚂蚁在搜索空间中随机探索,把自己走过的路线都留下越多的信息,这样就把多条路线的信息逐渐累积,最终能够找到最优解的路径,从而解决优化问题。
2、蚁群算法的过程(1)协作首先,许多蚂蚁在搜索空间中进行协作,它们在这个空间中进行随机搜索,并尝试找到最优解的路径。
(2)共嗅搜索过程中,蚂蚁会随机尝试搜索各种可能的路径,并在路径上沿途留下一些信息,这些信息就是蚂蚁在搜索过程中搜集到的数据,以这些数据为基础,一方面蚂蚁能够自动判断路径上的优劣,另一方面其它蚂蚁也可以共享这些信息,从而改进和优化搜索效率。
(3)路径搜索蚂蚁在搜索过程中会随机尝试搜索所有可能的路径,它们也会把自己走过的最好的路径留下,这个路径就是最后需要搜索的最优路径,当蚂蚁搜索完毕时,就能够把这条最优路径传给其它蚂蚁,从而解决优化问题。
三、蚁群算法的优势1、收敛性好蚁群算法拥有良好的收敛性,它可以较快地找到最优解。
2、实现简单蚁群算法实现简单,只需要定义蚂蚁在寻找最优路径时的行为模型即可,无需定义较多的参数,因此能够大大减少计算量。
3、鲁棒性高蚁群算法的鲁棒性很高,它可以有效地避免局部最优路径,从而更容易达到全局最优路径。
四、蚁群算法的应用1、旅行商问题蚁群算法可以用来解决旅行商问题,即给定一组城市,求解访问相关城市的最优路径。
毕业论文蚁群算法蚁群算法(Ant Colony Optimization,ACO)是一种模拟蚂蚁寻找食物的行为而发展而来的一种计算智能算法。
该方法利用蚂蚁在寻找食物过程中留下的信息素来指导其他蚂蚁选择路径,从而达到最优路径的目的。
本文将介绍蚁群算法的基本原理、应用领域以及算法的优缺点。
一、算法原理1.1信息素在蚁群算法中,信息素是指蚂蚁在寻找食物时分泌的一种化学物质,它会留在路径上,用于指导其他蚂蚁选择路径。
当一条路径上的信息素浓度足够高时,其他蚂蚁会更倾向于选择这条路径。
1.2蚁群算法过程(1)初始化:随机放置一些蚂蚁并随机设置它们的起点和终点。
(2)蚂蚁选择路径:每个蚂蚁根据当前位置的信息素浓度,选择下一步要走的路径。
选择路径的规则可以根据具体问题来设计。
(3)信息素更新:当蚂蚁完成任务后,会在其经过的路径上留下一定量的信息素。
信息素的更新可以通过公式:$ T_{ij}=(1-ρ) ·T_{ij}+∑\\frac{\\Delta T_{ij}^{k}}{L_{k}} $ 来完成,其中 $ T_{ij} $ 表示在第 $i$ 个节点到第 $j$ 个节点之间路径的信息素,$ L_{k} $ 表示第 $k$ 只蚂蚁走过的路径长度,$ \\Delta T_{ij}^{k} $ 表示第 $k$ 只蚂蚁在第 $i$ 个节点到第$j$ 个节点之间路径上留下的信息素。
(4)重复执行步骤(2)和(3),直到满足算法终止条件。
二、应用领域由于蚁群算法具有寻优能力和适应性强等优点,因此在多个应用领域得到了广泛的应用:2.1路线规划将蚁群算法应用到路线规划中,可以帮助人们更快捷、更准确地规划出最优路径。
例如,在地图搜索、货车路径规划、船只导航等领域都有广泛的应用。
2.2优化问题蚁群算法能够在多种优化问题中得到应用,例如在图像处理、模式识别、网络优化中,通过不断地调节参数,可以找出最佳的结果。
2.3组合优化问题在组合优化问题中,由于问题的规模较大,常规优化算法很容易陷入局部最优解中无法跳出。
蚁群算法的基本原理与改进蚁群算法是一种模拟蚂蚁群体行为的启发式算法,通过模拟蚂蚁在寻找食物和归巢过程中的行为,来解决优化问题。
蚂蚁在移动的过程中,通过信息素的释放和感知,实现了全局信息传递和局部信息更新。
蚁群算法基于这种行为特性,通过模拟蚂蚁在解空间中的过程,找到问题的最优解。
1.初始化一群蚂蚁在问题的解空间中随机选择一个起点。
2.每只蚂蚁根据问题的特性和上一次的行走经验,利用概率选择下一步要行走的方向。
3.每只蚂蚁根据选择的方向进行移动,并释放一定量的信息素到路径上。
4.蚁群中的每只蚂蚁根据选择的方向和移动的结果,更新自己的经验和信息素矩阵。
5.重复步骤2-4,直到达到停止条件。
1.路径选择策略的改进:蚂蚁选择下一步行走方向的概率通常根据路径上的信息素浓度和启发式信息来计算,可以根据具体问题的特性,采用不同的路径选择策略,如轮盘赌选择、最大值选择等,来提升算法的能力。
2.信息素更新策略的改进:信息素释放和更新对算法的性能起到重要影响。
可以通过引入一定的衰减因子,控制信息素的挥发速率,降低过快的信息素挥发过程;同时,可以通过引入信息素增强/衰减机制,根据蚂蚁经验和当前信息素浓度调整信息素的更新速率,以提升算法的收敛速度和稳定性。
3.多种启发式信息的融合:在算法中,蚂蚁根据启发信息来选择下一步行走方向。
可以采用多种启发式信息,并将它们进行适当的融合,以增加算法对问题的能力。
4.并行计算和局部:蚁群算法由于全局信息传递的特性,容易陷入局部最优解。
可以通过引入并行计算和局部机制,增加算法的广度和多样性,提升算法的全局能力。
5.参数的自适应调节:蚁群算法中存在一些参数,如信息素释放量、信息素衰减因子等,合理的参数设置对算法的性能至关重要。
可以考虑通过自适应调节参数的方法,如基于概率或规则的自适应机制,自适应地调节参数值,以提高算法的效果。
总而言之,蚁群算法通过模拟蚂蚁的行为特性,实现了全局信息传递和局部信息更新,并通过适当的改进措施,提升了算法的能力和收敛速度。